1. Field
The present disclosure relates to a socket contact for receiving a pin. More particularly, the present disclosure relates to a socket contact made of a single piece for simple manufacturing.
2. Description of the Related Art
Socket contacts receive a pin in order to create an electrical connection. The socket contact receives and snugly holds the pin to create a reliable connection. Socket contacts often utilize a hyperboloid wire cage to receive the pin. A hyperboloid wire cage comprises several wires arranged around the diameter in a hyperboloid shape, resembling two cones merged at the tips. When the pin is inserted into the hyperboloid wire cage, the pin slides along the wires, which contact the surface of the pin as well as hold the pin in place. The hyperboloid wire cage provides a generally even connection around the pin, and may contact more surface area—improving contact density—depending on the number of wires. The hyperboloid wire cage may further guide the pin to a proper insertion.
The hyperboloid wire cage is made from several wires arranged around a ring. Assembling a socket contact with a hyperboloid wire cage requires machining several parts, such as a forward ring, a ferrule, and a tail, and placing wires in specific locations around the forward ring and the tail. The number of pieces needed and the placement of wires require complex assembly requiring specific assembly equipment. The cost to manufacture may be high because of the added requirements. Reducing the number of parts or the complexity of the hyperboloid wire cage may reduce the manufacturing cost while maintaining reliability.
The present disclosure relates to a socket contact made of one piece. One aspect of the present disclosure is to provide a socket contact made of only a single piece, instead of several pieces. Another aspect of the present disclosure is to provide a simplified manufacturing process by forming a socket contact from a single piece.
In one implementation, a socket contact includes a rear tail and a ferrule having an opening configured to receive a pin. The opening has an opening diameter. The socket contact also includes a plurality of conductive bands connecting the rear tail to the ferrule. The conductive bands form a throat opening extending from the opening and tapering to a throat portion having a throat diameter. The throat diameter is smaller than the opening diameter.
In another implementation, a socket contact for mating with a pin is a tubular barrel having a first end, a second end, a rear tail portion on the first end, and a ferrule portion on the second end. The ferrule portion has an opening having an opening diameter and configured to receive the pin. A plurality of slots extend between the rear tail portion and the ferrule portion to define a plurality of bands. The plurality of bands form a throat opening extending from the opening and tapering to a throat portion having a throat diameter. The throat diameter is smaller than the opening diameter.
In yet another implementation, the present disclosure provides a method of fabricating a socket contact for mating with a pin comprising providing a tubular piece having a first end, a second end, and a sidewall, opening a hole in a center of the first end, the hole having an opening diameter, forming a plurality of slots along the sidewall to form a plurality of bands, and reshaping the plurality of bands to form a throat opening tapering to a throat portion having a throat diameter smaller than the opening diameter.
The features, obstacles, and advantages of the present application will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
Apparatus, systems and methods that implement the implementations of the various features of the present application will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate some implementations of the present application and not to limit the scope of the present application. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements.
In one implementation, shown in
The rear tail portion 110 includes a protrusion 112, and one or more protrusions 114. The protrusion 114 may be formed at an angle 116, such as 90 degrees, from the rear tail portion 110. The protrusion 114 may also have a sloping portion 115 at an angle 118, such as 30 degrees. The ferrule portion 120 includes an opening 122, having an opening diameter 126, as seen in
The plurality of bands 134 are arranged radially around the central axis 105. The plurality of bands 134 bends slightly inwards towards the central axis 105 near a center or midpoint along the length of the bands 134. A throat diameter 136 is the smallest throat opening diameter. As seen in
A throat portion 230 extends between the rear tail portion 210 and the ferrule portion 220. Unlike the throat portion 130, the throat portion 230 is straight and not bent or curved. Slots 232 define bands 234. A saw 202 cuts the tubular barrel 200 along the sidewall 219 to form the slots 232. The slots 232 are cut at an angle 206 with respect to the central axis 205. As seen in
In
The previous description of the disclosed examples is provided to enable any person of ordinary skill in the art to make or use the disclosed methods and apparatus. Various modifications to these examples will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosed method and apparatus. The described implementations are to be considered in all respects only as illustrative and not restrictive and the scope of the application is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Various embodiments of the invention have been disclosed in an illustrative style. Accordingly, the terminology employed throughout should be read in a non-limiting manner. Although minor modifications to the teachings herein will occur to those well versed in the art, it shall be understood that what is intended to be circumscribed within the scope of the patent warranted hereon are all such embodiments that reasonably fall within the scope of the advancement to the art hereby contributed, and that that scope shall not be restricted, except in light of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1833145 | Wilhelm | Nov 1931 | A |
2450529 | Sprigg | Oct 1948 | A |
3314044 | Powell | Apr 1967 | A |
4128293 | Paoli | Dec 1978 | A |
4203647 | Bonhomme | May 1980 | A |
4304457 | Lissau | Dec 1981 | A |
4345373 | Lacaze, Jr. | Aug 1982 | A |
4447108 | Ghigliotti et al. | May 1984 | A |
4572606 | Neumann et al. | Feb 1986 | A |
4720157 | Nestor et al. | Jan 1988 | A |
4840587 | Lancella | Jun 1989 | A |
5055055 | Bakker | Oct 1991 | A |
5921822 | Kennedy | Jul 1999 | A |
6358104 | Daugherty et al. | Mar 2002 | B2 |
6520998 | Scholler et al. | Feb 2003 | B1 |
6656002 | Zhao et al. | Dec 2003 | B2 |
6860768 | Zhao | Mar 2005 | B2 |
7331821 | Feldman | Feb 2008 | B2 |
7387548 | Takehara | Jun 2008 | B2 |
7931509 | Shaw | Apr 2011 | B2 |
8079885 | Lin | Dec 2011 | B1 |
9017089 | Flower et al. | Apr 2015 | B2 |
9236682 | Glick | Jan 2016 | B2 |
20150162687 | Meunier | Jun 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150162687 A1 | Jun 2015 | US |