One-position fill-up and circulating tool and method

Information

  • Patent Grant
  • 7694744
  • Patent Number
    7,694,744
  • Date Filed
    Thursday, January 12, 2006
    18 years ago
  • Date Issued
    Tuesday, April 13, 2010
    14 years ago
Abstract
Embodiments of the present invention include methods and apparatus for circulating fluid through casing and filling the casing with fluid using a combination fill-up and circulating tool while maintaining the fill-up/circulating tool in substantially the same position relative to the casing. In one embodiment, the fill-up/circulating tool includes a mandrel insertable into casing and having a sealing element therearound, the sealing element capable of sealingly engaging with an outer diameter of the mandrel to permit circulating fluid through the casing. The fill-up/circulating tool is also capable of allowing air flow around the outer diameter of the mandrel for the operation of filling the casing with fluid without the need to move the mandrel within the casing.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention generally relate to running a tubular into a wellbore. More specifically, embodiments of the present invention relate to using a circulating tool for running casing into a wellbore.


2. Description of the Related Art


To obtain hydrocarbons from an earth formation, a wellbore is typically drilled to a first depth using a drill string having a drill bit attached to its lower end. The drill string is then removed, and thereafter a first casing is lowered into the wellbore to line the wellbore. The casing may be a casing section or, in the alternative, a casing string including two or more casing sections threadedly connected to one another. After the first casing is lowered to the first depth, cement is typically circulated into an annulus between the outer diameter of the first casing and the wall of the wellbore to set the first casing within the wellbore.


After setting the first casing within the wellbore, the drill string is re-inserted into the wellbore through a bore of the first casing and used to drill to a second depth within the earth formation. The drill string is again removed, and a second casing is lowered into the wellbore and set therein using cement. This process is repeated with additional casing until casing is installed within the wellbore to the desired depth.


While the casing is being lowered into the wellbore during the “casing running” operation, the pressure within the wellbore is typically higher than the pressure within the bore of the casing. This higher pressure within the wellbore exerts stress on the casing as it is being lowered into the wellbore, risking damage or collapse of the casing during run-in; thus, a casing fill-up operation is performed, where the bore of the casing being run into the wellbore is filled with a fluid (often termed “mud”) in an attempt to equalize the pressure inside the casing with the pressure outside the casing (the pressure within the wellbore) and thereby prevent collapse of the casing during the run-in operation. Pressurized fluid is typically input into the bore of the upper end of the casing using a fill line from the existing mud pumps at the well site.


At various times during running of the casing into the wellbore, the casing often sticks within the wellbore. To dislodge the casing from the wellbore, a circulating operation is performed, where pressurized drilling fluid is circulated down the casing and out into the annulus to wash sand or other debris which is causing the casing to stick out from the lower end of the casing. To force pressurized fluid out into the annulus for the circulating operation, a circulating tool is utilized.


To “rig up” the circulating tool for the circulating of fluid through the casing, the circulating tool is inserted into the bore of the casing at the upper end of the casing. A sealing member on the circulating tool is then activated to seal the circulating tool with the casing, forming a path for fluid flow through the circulating tool and out into the bore of the casing. Specifically, in a circulation operation, fluid is introduced into the circulating tool, flows through the bore of the casing and out the lower end of the casing to remove the obstructing debris, and then the fluid having the debris therein flows up the annulus to the surface of the wellbore.


After the circulation operation, the circulating tool is removed from the casing to allow another casing fill-up operation and further running of the casing into the wellbore to occur. During the casing running and fill-up operations, air must be allowed to escape through the bore of the casing to prevent over-pressurizing the bore of the casing. To permit the air being replaced by the fluid during the fill-up operation to escape from the bore of the casing, the circulating tool must be removed from the casing prior to the fill-up operation. To remove the circulating tool (“rig down”), the sealing member is de-activated, and the circulating tool is lifted from the bore of the casing. The casing may then be lowered further into the wellbore while filling the casing with fluid to prevent collapse of the casing.


Rigging up and rigging down the circulating tool, which are time-consuming procedures, must often be performed numerous times during a casing running operation. Therefore, attaching and re-attaching the circulating tool each time the casing is stuck within the wellbore during casing running is expensive and decreases the profitability of the well. Furthermore, because rig personnel perform the rigging up and rigging down of the circulating tool, which are often dangerous operations, numerous rigging up and rigging down operations decrease the safety of the well site.


Thus, there is a need for a method for circulating fluid for a circulating operation and filling up the casing with fluid for casing running and fill-up operations without the need to rig up and rig down the circulating tool every time a circulating operation must be performed. There is a further need for a circulating tool which is capable of performing both the fill-up and circulating operations without removal of the circulating tool from the casing. There is yet a further need for a circulating tool which allows air to escape while maintaining the circulating tool inside the casing during the duration of the casing running operation.


SUMMARY OF THE INVENTION

In one embodiment, a combination fill-up and circulating tool comprises a tubular body insertable within casing and capable of fluid flow through a bore thereof; and a sealing element concentrically disposed around the tubular body in an annulus between an outer diameter of the tubular body and an inner diameter of the casing, the sealing element moveable between a first position and a second position relative to the casing without moving the tubular body relative to the casing, wherein in the first position, fluid flow through the annulus past the sealing element is at least substantially prevented, and wherein in the second position, fluid flow is allowed past the sealing element within the annulus.


In another embodiment, a method of running casing into a wellbore comprises providing an apparatus comprising a fill-up and circulating tool disposed within the casing, the tool comprising a mandrel having a sealing element disposed therearound, an annulus between the mandrel and the casing capable of being at least substantially sealed from fluid flow therethrough using the sealing element; flowing a first fluid into the casing through a bore of the tool; running the casing into the wellbore while permitting fluid flow past the sealing element through the annulus; moving the sealing element relative to the mandrel to at least substantially seal the annulus from fluid flow past the sealing element; and circulating a second fluid through the casing via the bore of the tool and into an annular area between the casing and the wellbore.


In another embodiment, an apparatus for handling a tubular comprises a gripping apparatus and a fluid conduit coupled to the gripping apparatus. The fluid conduit comprises a body insertable into the tubular, the body having a bore thereof; and a sealing element disposed around the body, the sealing element moveable between a first position and a second position relative to the tubular without moving the body relative to the tubular, wherein after insertion into the tubular, the sealing element, in the first position, substantially prevents fluid flow past the sealing element is at least substantially prevented, and, in the second position, allows fluid flow past the sealing element. In another embodiment, the gripping apparatus is adapted to engage an interior surface of the tubular. In yet another embodiment, the gripping apparatus is adapted to engage an exterior surface of the tubular.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a section view of the fill-up/circulating tool inserted in the casing.



FIG. 2 is a sectional view of the fill-up/circulating tool of FIG. 1 disposed within the casing and in the fill-up position. Portions of the fill-up/circulating tool are cut away to show features of the fill-up/circulating tool.



FIG. 2A is a perspective view of a portion of the fill-up/circulating tool of FIG. 1 in the fill-up position. Portions of the fill-up/circulating tool are cut away to show features of the fill-up/circulating tool.



FIG. 3 is a sectional view of the fill-up/circulating tool of FIG. 1 disposed within the casing and in the circulating position. Portions of the fill-up/circulating tool are cut away to show features of the fill-up/circulating tool.



FIG. 3A is a perspective view of a portion of the fill-up/circulating tool of FIG. 1 in the circulating position. Portions of the fill-up/circulating tool are cut away to show features of the fill-up/circulating tool.





DETAILED DESCRIPTION

Embodiments of the present invention advantageously provide a one-position fill-up and circulating tool for running casing into a wellbore. The fill-up/circulating tool of embodiments of the present invention eliminates the dangerous and costly procedure of repeatedly inserting and removing the prior art circulating tool from the casing while running the casing into the wellbore.



FIG. 1 illustrates a fill-up/circulating tool 5 inserted into an upper portion of casing 10. A lower portion of the fill-up/circulating tool 5 is disposed within a bore of the casing 10, while an upper end of the fill-up/circulating tool 5 is attached by a connecting member 70 (see FIGS. 2 and 3) to a gripping head such as a torque head 15 capable of grippingly engaging the outer diameter of the casing 10. The connecting member 70 may include threads on its upper end for mating with corresponding threads within the torque head 15, or the connecting member 70 may be provided in the form of any other connecting means known by those skilled in the art.


An exemplary (although not limiting) torque head usable with embodiments of the present invention is described in U.S. Pat. No. 6,311,792 B1, issued on Nov. 6, 2001 to Scott et al., which is herein incorporated by reference its entirety. Another exemplary torque head usable with embodiments of the present invention is described in U.S. Patent Application Publication No. 2005/0257933, filed by Pietras on May 20, 2004, which application is herein incorporated by reference in its entirety. In an alternate embodiment of the present invention, instead of the gripping head being a torque head, the gripping head may include a spear 90 capable of grippingly engaging the inner diameter of the casing 10, as shown in FIG. 1A. An exemplary (although not limiting) spear usable with embodiments of the present invention is disclosed in U.S. Patent Application Publication Number US 2001/0042625 A1, filed by Appleton on Jul. 30, 2001, which is herein incorporated by reference in its entirety. Regardless of its form (spear or torque head), the gripping head has a longitudinal bore therethrough through which fluid may flow and grippingly engages the casing 10 to serve as a load path to transmit torque applied from the top drive (not shown) to the casing 10.


As shown in FIGS. 1-3, the fill-up/circulating tool 5 includes a mandrel 20 operatively connected to the torque head 15 at one end and operatively connected to an upper end of a mandrel 25 having one or more ridges 65 (upset portions) located in its outer diameter (see FIGS. 2 and 3). The ridges 65 are preferably longitudinally disposed along the mandrel 25. The mandrel 25 is operatively connected at its lower end to an upper end of a centralizing member 40, which may include a centralizer, stabilizer, or any other tool known to those skilled in the art which is capable of maintaining the axial position of the fill-up/circulating tool 5 relative to the casing 10. The mandrels 20 and 25 may be separate mandrels operatively connected to one another, as shown and described above, or may instead in an alternate embodiment include one continuous mandrel having a portion with longitudinally disposed grooves therein.


One or more cylinders 60 are operatively attached to the outer diameter of the mandrel 20 and are axially spaced from one another across the mandrel 20. Each cylinder 60 includes a corresponding piston 55 telescopically moveable into and out of its respective cylinder 60 in response to a force. The force may include hydraulic or pneumatic fluid behind each piston 55, or instead may include a mechanical, electrical, or optical force. A lower end of each piston 55 is capable of contacting an upper portion of a helmet 30 which concentrically surrounds the mandrel 25, as shown in FIG. 1.


The helmet 30 is operatively connected to a sealing element such as a packer cup 35 which also concentrically surrounds the mandrel 25, as illustrated in FIG. 1. Exemplary packer cups, which in one example comprise an elastomeric or similar material, are known to those skilled in the art. Preferably, the packer cup 35 extends a height which is less than the length of the ridges 65 of the mandrel 25. FIGS. 2, 2A, 3, and 3A show the fill-up/circulating tool 5 with portions of the helmet 30 and packer cup 35 cut away to illustrate the mandrel 25 disposed within the helmet 30 and packer cup 35 and the integral relations of these components of the fill-up/circulating tool 5 to one another.


Extending concentrically around the outer diameter of the mandrel 25 above the ridges 65 are one or more sealing elements 75. The sealing elements 75 are preferably o-rings. The sealing elements 75 provide a sealed environment between the mandrel 25 and the packer cup 35 when the helmet 30 is located around the sealing elements 75, as shown in FIG. 3.


A biasing member such as a spring 50 is rigidly and operatively connected at its lower end to the upper end of the centralizing member 40 and concentrically disposed around the outer diameter of the mandrel 25. The upper end of the spring 50 contacts the lower end of the packer cup 35 to provide biasing force to urge the packer cup 35 (and helmet 30) upward relative to the mandrel 25 (see FIG. 3A). The spring 50 and the piston 55 and cylinder 60 arrangement cooperate to move the packer cup 35 and helmet 30 relative to the remainder of the fill-up/circulating tool 5, thereby moving the fill-up/circulating tool 5 between the fill-up position (see FIGS. 2 and 2A) and the circulating position (see FIGS. 3 and 3A) without removing the fill-up/circulating tool 5 from the bore of the casing 10 and also without moving the position of the fill-up/circulating tool 5 (including the mandrels 20 and 25, centralizing member 40, sealing member 75, and cylinders 60) and torque head 15 relative to the casing 10. In this way, the fill-up/circulating tool 5 is a one-position fill-up and circulating tool.


The piston/cylinder arrangement and the spring 50 constitute a driving mechanism for moving the helmet 30 and the packer cup 35. Other driving means are employable in alternate embodiments of the present invention for use in moving the helmet 30 and packer cup 35 in lieu of the piston/cylinder arrangement, including but not limited to electrical, mechanical, and/or optical driving means.


The helmet 30 and packer cup 35 cooperate with the driving mechanism to act as a valve for selectively allowing or disallowing fluid (e.g., air) flow through the annulus between the fill-up/circulating tool 5 and the casing 10. Essentially, the valve is capable of selectively sealing the annulus during the circulating operation, while removing the seal from the annulus during the fill-up operation. Any other valving means known to those skilled in the art may be utilized to selectively seal the annulus in lieu of the packer cup 35, helmet 30, and associated components.


In operation, an upper end of the casing 10 is sandwiched between the torque head 15 and the fill-up/circulating tool 5 by inserting the fill-up/circulating tool 5 into the bore of the casing 10, as shown in FIG. 1. The torque head 15 is activated to grippingly engage the outer diameter of the casing 10 (or to grippingly engage the inner diameter of the casing if instead using the spear as the gripping head). Example means and methods for grippingly engaging the casing 10 are described in the above incorporated-by-reference patent and patent application involving a torque head and a spear.


The torque head 15 is lowered towards the wellbore (not shown), thereby lowering the casing 10 grippingly engaged by the torque head 15 into the wellbore. During run-in of the casing 10 into the wellbore, the fill-up/circulating tool 5 is in the fill-up position shown in FIGS. 2 and 2A. The fill-up position is achieved by activating the pistons 55 to cause them to extend from the cylinders 60 (e.g., by the introduction of the force of fluid pressure or electrical, mechanical, or optical power) so that the pistons 55 push the helmet 30 and packer cup 35 downward relative to the mandrel 25 against the bias of the spring 50. Moving the helmet 30 and packer cup 35 downward over the mandrel 25 exposes a portion of the ridges 65 above the helmet 30, thereby allowing air to escape through the ridges 65 when the casing 10 is run into the wellbore. While the air is escaping or subsequent to the air escaping through the ridges 65, fluid is introduced into the fill-up/circulating tool 5 to fill up the casing 10 with the fluid and thereby prevent collapse of the casing 10 during run-in.


When an obstruction is reached within the wellbore preventing the further lowering of the casing 10, the fill-up/circulating tool 5 may be moved to the circulating position shown in FIGS. 3 and 3A. Moving the fill-up/circulating tool 5 to the fluid-circulating position is accomplished by removing the force extending the pistons 55 from the cylinders 60. Removing this force causes the biasing force of the spring 50 to push upward against the packer cup 35, thereby moving the packer cup 35 and helmet 30 upward relative to the mandrel 25 and forcing the pistons 55 upward within the cylinders 60. The packer cup 35 and helmet 30 move upward to cover the ridges 65, consequently preventing air and other fluid flow through the ridges 65.


Pressurized fluid is then introduced into the fill-up/circulating tool 5 (via the torque head 15) to flow down through the bore of the fill-up/circulating tool 5, out through the lower end of the fill-up/circulating tool 5 and into the bore of the casing 10, out through the lower end of the casing 10, and up into the annulus between the outer diameter of the casing 10 and the wall of the wellbore. The fluid dislodges the obstructing debris or other object while circulating through the wellbore, thereby removing the sticking of the casing 10 within the wellbore.


Un-sticking the casing 10 from the wellbore and/or removal of the debris or other object obstructing the bore of the casing 10 permits lowering of the casing 10 further into the wellbore. Before or while lowering the casing 10 further into the wellbore, the fill-up/circulating tool 5 is moved to its fill-up position (see FIGS. 2 and 2A) in the same manner as described above. This circulating process (and subsequent return of the fill-up/circulating tool 5 to the fill-up position for further run-in of the casing 10 into the wellbore) is repeated as desired when the casing 10 reaches an obstruction or is stuck within the wellbore. Moreover, the circulating process may be repeated at or near the end of the lowering of the casing 10 into the wellbore to remove debris from the lower end of the casing 10 at or near its final depth location.


Although the above description relates to lowering casing 10 into a wellbore, the fill-up/circulating tool 5 may also be used to lower any other type of tubular body, including drill pipes or mandrels, into a wellbore. Furthermore, the fill-up/circulating tool 5 is not only useful in a tubular-lowering operation, but is also contemplated for use in any pipe handling operation (including make-up and break-out of tubulars) or in any drilling operation (including drilling with casing or drilling with drill pipe).


The above description utilizes terms such as “lower,” “upper,” and other directional terms. These directional terms are used within the description merely to provide a description of one embodiment of the present invention and are not limiting. For example, although the tubular is “lowered” into the wellbore in the description above, it is within the scope of embodiments of the present invention that the fill-up/circulating tool 5 is also usable to convey a tubular into a horizontal, lateral, and/or directional wellbore.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A combination fill-up and circulating tool, comprising: a tubular body insertable within casing and capable of fluid flow through a bore thereof; anda sealing element concentrically disposed around the tubular body and sized to engage an inner diameter of the casing, wherein the sealing element is moveable between a first position and a second position,wherein in the first position, a fluid flow past the sealing element is at least substantially prevented,wherein in the second position, the fluid flow is allowed past the sealing element through at least one space between the sealing element and the tubular body, andwherein the first position is a circulating position for circulating fluid through a wellbore and the second position is a fill-up position for filling the casing with fluid for running the casing into the wellbore.
  • 2. The tool of claim 1, further comprising a gripping member adapted to engage an interior surface of the casing.
  • 3. The tool of claim 1, wherein the sealing element comprises a packer cup.
  • 4. The tool of claim 1, wherein in the second position, filling the casing with fluid is via the bore.
  • 5. A combination fill-up and circulating tool, comprising: a tubular body insertable within casing and capable of fluid flow through a bore thereof; anda packer cup concentrically disposed around the tubular body and adapted to seal an annulus between an outer diameter of the tubular body and an inner diameter of the casing, the tubular body comprising at least one groove within a first portion of its outer surface, the packer cup moveable between a first position and a second position relative to the casing without moving the tubular body relative to the casing,wherein in the first position, fluid flow through the annulus past the packer cup is at least substantially prevented, andwherein in the second position, the packer cup is disposed over the first portion to allow fluid flow through the annulus via the at least one groove.
  • 6. The tool of claim 5, wherein in the first position, the sealing element is disposed over a second portion of the tubular body, the second portion devoid of grooves.
  • 7. The tool of claim 6, wherein the sealing element cooperates with a sealing element integral to the second portion when in the first position to at least substantially prevent fluid flow past the sealing element in the annulus.
  • 8. The tool of claim 5, further comprising a driving mechanism capable of moving the sealing element between the first and second positions.
  • 9. The tool of claim 8, wherein the driving mechanism comprises a first mechanism and a second mechanism, the first mechanism exerting a biasing force on the sealing element and the second mechanism capable of exerting an opposing force on the sealing element.
  • 10. The tool of claim 9, wherein the first mechanism is a resilient spring.
  • 11. The tool of claim 9, wherein the second mechanism is hydraulically actuated.
  • 12. The tool of claim 9, wherein the second mechanism is a piston and cylinder assembly.
  • 13. The tool of claim 9, wherein the second mechanism is electrically actuated.
  • 14. The tool of claim 9, wherein the second mechanism is mechanically actuated.
  • 15. The tool of claim 9, wherein the first mechanism is capable of moving the sealing element in a first longitudinal direction within the annulus and the second mechanism is capable of moving the sealing element in a second longitudinal direction within the annulus, the second direction generally opposite to the first direction.
  • 16. The tool of claim 9, wherein the tool is in the first position when the opposing force is insufficient to overcome the biasing force.
  • 17. A method of running casing into a wellbore, comprising: disposing an apparatus comprising a fill-up and circulating tool within the casing, the tool comprising a mandrel having a sealing element disposed therearound, wherein the sealing element is adapted to seal an annulus between the mandrel and the casing from fluid flow therethrough;flowing a first fluid into the casing through a bore of the tool;running the casing into the wellbore while permitting fluid in the annulus on one side of the sealing element to flow between the sealing element and the mandrel into the annulus on the other side of the sealing element;moving the sealing element relative to the mandrel to at least substantially seal the annulus from fluid flow therethrough; andcirculating a second fluid through the casing via the bore of the tool and into an annular area between the casing and the wellbore.
  • 18. The method of claim 17, wherein moving the sealing element relative to the mandrel is accomplished without moving the mandrel relative to the casing.
  • 19. The method of claim 17, wherein moving the sealing element relative to the mandrel comprises moving the sealing element in a first direction; and further comprising moving the sealing element in a second direction relative to the mandrel, thereby permitting fluid flow between the sealing element and the mandrel.
  • 20. The method of claim 19, further comprising running the apparatus further into the wellbore.
  • 21. The method of claim 17, wherein the sealing element is in a first position relative to the mandrel when fluid flow is permitted between the sealing element and the mandrel, and wherein the sealing element is in a second position relative to the mandrel when the annulus is at least substantially sealed from fluid flow past the sealing element.
  • 22. The method of claim 21, wherein the sealing element is biased towards the second position by a biasing force.
  • 23. The method of claim 22, wherein the biasing force is a resilient spring.
  • 24. The method of claim 22, wherein moving the sealing element from the second position to the first position is accomplished when an opposing force overcomes the biasing force.
  • 25. The method of claim 24, wherein the opposing force is a piston and cylinder assembly.
  • 26. The method of claim 17, wherein the casing is at least substantially sealed from fluid flow therethrough using the sealing element in cooperation with a sealing element integral to the mandrel.
  • 27. The method of claim 17, further comprising coupling the apparatus to a gripping apparatus.
  • 28. The method of claim 27, wherein the gripping apparatus engages an interior surface of the casing.
  • 29. The method of claim 27, wherein the gripping apparatus engages an exterior surface of the casing.
  • 30. The method of claim 17 wherein the fill-up and circulating tool is disposed in the upper end of the casing, the upper end of the casing being outside of the well bore.
  • 31. The method of claim 30 wherein the sealing element comprises a packer cup.
  • 32. An apparatus for handling a tubular, comprising: a gripping apparatus;a fluid conduit coupled to the gripping apparatus, said fluid conduit comprising: a body insertable into the tubular, the body having a bore therethrough; anda sealing element disposed around the body, the sealing element moveable between a first position and a second position relative to the tubular without moving the body relative to the tubular,wherein after insertion into the tubular, the sealing element, in the first position, substantially prevents fluid flow past the sealing element, and, in the second position, allows fluid from one side of the sealing element to flow between the sealing element and the body to the other side of the sealing element.
  • 33. The apparatus of claim 32, wherein the gripping apparatus is adapted to engage an interior surface of the tubular.
  • 34. The apparatus of claim 32, wherein the gripping apparatus is adapted to engage an exterior surface of the tubular.
  • 35. The apparatus of claim 34 wherein the sealing element comprises a packer cup.
  • 36. A combination fill-up and circulating tool for use with a casing, comprising: a tubular body insertable within the casing and having a bore capable of fluid flow therethrough, the outer surface of the tubular body and the inner surface of the casing defining an annulus;a sealing element concentrically disposed around the tubular body in the annulus, the sealing element being capable of substantially sealing the annulus so that fluid cannot flow between the sealing element and the casing; anda bypass fluid path being selectively operable by the sealing element between an open position and a closed position,wherein in the open position, fluid in the annulus on one side of the sealing element is allowed to flow through the bypass fluid path into the annulus on the other side of the sealing element while the sealing element is engaged with an inner diameter of the casing, andwherein in the closed position, the bypass fluid path is substantially sealed so that fluid in the annulus on one side of the sealing element cannot flow through the bypass fluid path into the annulus on the other side of the sealing element.
  • 37. The tool of claim 36, wherein the bypass fluid path comprises at least one groove within an outer surface of the tubular body.
  • 38. The tool of claim 36, further comprising a driving mechanism capable of moving the sealing element between the open position and the closed position.
  • 39. The tool of claim 36 wherein the sealing element comprises a packer cup.
  • 40. The tool of claim 36 wherein, in the closed position, the bypass fluid path is sealed by the sealing element.
  • 41. A method of running casing into a wellbore, comprising: disposing a fill-up and circulating tool within the casing, the tool having: a mandrel and a sealing element disposed around the mandrel, wherein an annulus is defined between the outer surface of the mandrel and the inner surface of the casing, and wherein the sealing element at least substantially seals the annulus when the tool is disposed within the casing; anda bypass fluid path;flowing a fluid into the casing through a bore of the tool;running the casing into the wellbore while permitting air in the annulus on one side of the sealing element to flow through the bypass fluid path into the annulus on the other side of the sealing element;moving the sealing element relative to the mandrel to at least substantially seal the bypass fluid path so that air in the annulus on one side of the sealing element cannot flow into the annulus on the other side of the sealing element; andcirculating the fluid through the casing via the bore of the tool and into an annular area between the casing and the wellbore.
  • 42. The method of claim 41, wherein permitting air in the annulus on one side of the sealing element to flow through the bypass fluid path into the annulus on the other side of the sealing element comprises permitting air in the annulus below the sealing element to flow through the bypass fluid path into the annulus above the sealing element.
  • 43. The method of claim 41, wherein disposing the fill-up and circulating tool within the casing further comprises disposing the fill-up and circulating tool in the upper end of the casing, the upper end of the casing being above the well bore.
  • 44. A method of running casing into a wellbore, comprising: disposing a fill-up and circulating tool within the casing, the tool having: a mandrel and a sealing element disposed around the mandrel, whereinan annulus is defined between the outer surface of the mandrel and the inner surface of the casing; anda bypass fluid path;running the casing into the wellbore while permitting air in the annulus on one side of the sealing element to flow through the bypass fluid path into the annulus on the other side of the sealing element;closing the bypass fluid path and substantially preventing air from flowing through the bypass fluid path;sealing the annulus with the sealing element and substantially preventing air from flowing through the annulus; andcirculating a fluid through the casing via the bore of the tool and into an annular area between the casing and the wellbore.
  • 45. The method of claim 44, wherein permitting air in the annulus on one side of the sealing element to flow through the bypass fluid path into the annulus on the other side of the sealing element comprises permitting air in the annulus below the sealing element to flow past the sealing element into the annulus above the sealing element.
  • 46. A method of running casing into a wellbore, comprising: disposing a fill-up and circulating tool within the casing, the tool having: a mandrel and a sealing element disposed around the mandrel, wherein an annulus is defined between the outer surface of the mandrel and the outer surface of the casing; anda bypass fluid path;running the casing into the wellbore while flowing a fluid into the casing through a bore of the tool and while permitting air in the annulus on one side of the sealing element to flow through the bypass fluid path into the annulus on the other side of the sealing element;closing the bypass fluid path and substantially preventing air from flowing through the bypass fluid path;sealing the annulus with the sealing element and substantially preventing air from flowing through the annulus; andcirculating the fluid through the casing via the bore of the tool and into an annular area between the casing and the wellbore.
  • 47. The method of claim 46, wherein permitting air in the annulus on one side of the sealing element to flow through the bypass fluid path into the annulus on the other side of the sealing element comprises permitting air in the annulus below the sealing element to flow past the sealing element into the annulus above the sealing element.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of co-pending U.S. Provisional Patent Application Ser. No. 60/643,339, filed on Jan. 12, 2005, which application is herein incorporated by reference in its entirety.

US Referenced Citations (341)
Number Name Date Kind
179973 Thornton Jul 1876 A
1367156 McAlvay et al. Feb 1921 A
1414207 Reed Apr 1922 A
1418766 Wilson Jun 1922 A
1585069 Youle May 1926 A
1728138 Power Sep 1929 A
1777592 Thomas Oct 1930 A
1805007 Pedley May 1931 A
1822444 MacClatchie Sep 1931 A
1825026 Thomas Sep 1931 A
1842638 Wigle Jan 1932 A
1917135 Littell Jul 1933 A
2105885 Hinderliter Jan 1938 A
2128430 Pryor Aug 1938 A
2167338 Murcell Jul 1939 A
2184681 Osmun et al. Dec 1939 A
2214429 Miller Sep 1940 A
2414719 Cloud Jan 1947 A
2522444 Grable Sep 1950 A
2536458 Munsinger Jan 1951 A
2570080 Stone Oct 1951 A
2582987 Hagenbook Jan 1952 A
2595902 Stone May 1952 A
2610690 Beatty Sep 1952 A
2641444 Moon Jun 1953 A
2668689 Cormany Feb 1954 A
2692059 Bolling, Jr. Oct 1954 A
2953406 Young Sep 1960 A
2965177 Bus, Sr. et al. Dec 1960 A
3041901 Knights Jul 1962 A
3087548 Wooley Apr 1963 A
3122811 Gilreath Mar 1964 A
RE25639 Clark, Jr. et al. Sep 1964 E
3147992 Haeber et al. Sep 1964 A
3191683 Alexander Jun 1965 A
3193118 Kenneday et al. Jul 1965 A
3266582 Homanick Aug 1966 A
3305021 Lebourg Feb 1967 A
3321018 McGill May 1967 A
3380528 Timmons Apr 1968 A
3392609 Bartos Jul 1968 A
3460624 Droulers et al. Aug 1969 A
3477527 Koot Nov 1969 A
3489220 Kinley Jan 1970 A
3518903 Ham et al. Jul 1970 A
3548938 Kilgore et al. Dec 1970 A
3552507 Brown Jan 1971 A
3552508 Brown Jan 1971 A
3552509 Brown Jan 1971 A
3552510 Brown Jan 1971 A
3566505 Martin Mar 1971 A
3570598 Johnson Mar 1971 A
3602302 Kluth Aug 1971 A
3606664 Weiner Sep 1971 A
3635105 Dickmann et al. Jan 1972 A
3638989 Sandquist Feb 1972 A
3662842 Bromell May 1972 A
3680412 Mayer et al. Aug 1972 A
3691825 Dyer Sep 1972 A
3697113 Palauro et al. Oct 1972 A
3698426 Litchfield et al. Oct 1972 A
3700048 Desmoulins Oct 1972 A
3706347 Brown Dec 1972 A
3746330 Taciuk Jul 1973 A
3747675 Brown Jul 1973 A
3766991 Brown Oct 1973 A
3776320 Brown Dec 1973 A
3780883 Brown Dec 1973 A
3808916 Porter et al. May 1974 A
3838613 Wilms Oct 1974 A
3840128 Swoboda, Jr. et al. Oct 1974 A
3848684 West Nov 1974 A
3857450 Guier Dec 1974 A
3871618 Funk Mar 1975 A
3881375 Kelly May 1975 A
3885679 Swoboda, Jr. et al. May 1975 A
3901331 Djurovic Aug 1975 A
3913687 Gyongyosi et al. Oct 1975 A
3915244 Brown Oct 1975 A
3961399 Boyadjieff Jun 1976 A
3964552 Slator Jun 1976 A
3980143 Swartz et al. Sep 1976 A
4054332 Bryan, Jr. Oct 1977 A
4077525 Callegari et al. Mar 1978 A
4100968 Delano Jul 1978 A
4127927 Hauk et al. Dec 1978 A
4142739 Billingsley Mar 1979 A
4202225 Sheldon et al. May 1980 A
4221269 Hudson Sep 1980 A
4257442 Claycomb Mar 1981 A
4262693 Giebeler Apr 1981 A
4274777 Scaggs Jun 1981 A
4274778 Putnam et al. Jun 1981 A
4280380 Eshghy Jul 1981 A
4315553 Stallings Feb 1982 A
4320915 Abbott et al. Mar 1982 A
4377179 Giebeler Mar 1983 A
4401000 Kinzbach Aug 1983 A
4437363 Haynes Mar 1984 A
4440220 McArthur Apr 1984 A
4446745 Stone et al. May 1984 A
4449596 Boyadjieff May 1984 A
4472002 Beney et al. Sep 1984 A
4489794 Boyadjieff Dec 1984 A
4492134 Reinhldt et al. Jan 1985 A
4494424 Bates Jan 1985 A
4515045 Gnatchenko et al. May 1985 A
4529045 Boyadjieff et al. Jul 1985 A
4570706 Pugnet Feb 1986 A
4592125 Skene Jun 1986 A
4593584 Neves Jun 1986 A
4593773 Skeie Jun 1986 A
4604724 Shaginian et al. Aug 1986 A
4604818 Inoue Aug 1986 A
4605077 Boyadjieff Aug 1986 A
4613161 Brisco Sep 1986 A
4625796 Boyadjieff Dec 1986 A
4646827 Cobb Mar 1987 A
4649777 Buck Mar 1987 A
4652195 McArthur Mar 1987 A
4667752 Berry et al. May 1987 A
4676312 Mosing et al. Jun 1987 A
4681158 Pennison Jul 1987 A
4681162 Boyd Jul 1987 A
4683962 True Aug 1987 A
4686873 Lang et al. Aug 1987 A
4709599 Buck Dec 1987 A
4709766 Boyadjieff Dec 1987 A
4725179 Woolslayer et al. Feb 1988 A
4735270 Fenyvesi Apr 1988 A
4738145 Vincent et al. Apr 1988 A
4742876 Barthelemy et al. May 1988 A
4759239 Hamilton et al. Jul 1988 A
4762187 Haney Aug 1988 A
4765401 Boyadjieff Aug 1988 A
4765416 Bjerking et al. Aug 1988 A
4773689 Wolters Sep 1988 A
4781359 Matus Nov 1988 A
4791997 Krasnov Dec 1988 A
4793422 Krasnov Dec 1988 A
4800968 Shaw et al. Jan 1989 A
4813493 Shaw et al. Mar 1989 A
4813495 Leach Mar 1989 A
4821814 Willis et al. Apr 1989 A
4832552 Skelly May 1989 A
4836064 Slator Jun 1989 A
4843945 Dinsdale Jul 1989 A
4867236 Haney et al. Sep 1989 A
4875530 Frink et al. Oct 1989 A
4878546 Shaw et al. Nov 1989 A
4899816 Mine Feb 1990 A
4909741 Schasteen et al. Mar 1990 A
4921386 McArthur May 1990 A
4936382 Thomas Jun 1990 A
4962579 Moyer et al. Oct 1990 A
4962819 Bailey et al. Oct 1990 A
4971146 Terrell Nov 1990 A
4997042 Jordan et al. Mar 1991 A
5022472 Bailey et al. Jun 1991 A
5036927 Willis Aug 1991 A
5049020 McArthur Sep 1991 A
5060542 Hauk Oct 1991 A
5062756 McArthur et al. Nov 1991 A
5107940 Berry Apr 1992 A
5111893 Kvello-Aune May 1992 A
RE34063 Vincent et al. Sep 1992 E
5143154 Mody et al. Sep 1992 A
5152554 LaFleur et al. Oct 1992 A
5191939 Stokley Mar 1993 A
5207128 Albright May 1993 A
5233742 Gray et al. Aug 1993 A
5245265 Clay Sep 1993 A
5251709 Richardson Oct 1993 A
5255751 Stogner Oct 1993 A
5272925 Henneuse et al. Dec 1993 A
5282653 LaFleur et al. Feb 1994 A
5284210 Helms et al. Feb 1994 A
5294228 Willis et al. Mar 1994 A
5297633 Snider et al. Mar 1994 A
5297833 Willis et al. Mar 1994 A
5305839 Kalsi et al. Apr 1994 A
5332043 Ferguson Jul 1994 A
5340182 Busink et al. Aug 1994 A
5348351 LaFleur et al. Sep 1994 A
5351767 Stogner et al. Oct 1994 A
5354150 Canales Oct 1994 A
5368113 Schulze-Beckinghausen Nov 1994 A
5386746 Hauk Feb 1995 A
5388651 Berry Feb 1995 A
5433279 Tassari et al. Jul 1995 A
5441310 Barrett et al. Aug 1995 A
5461905 Penisson Oct 1995 A
5497840 Hudson Mar 1996 A
5501280 Brisco Mar 1996 A
5501286 Berry Mar 1996 A
5503234 Clanton Apr 1996 A
5509442 Claycomb Apr 1996 A
5535824 Hudson Jul 1996 A
5549165 Brooks Aug 1996 A
5575344 Wireman Nov 1996 A
5577566 Albright et al. Nov 1996 A
5584343 Coone Dec 1996 A
5588916 Moore Dec 1996 A
5645131 Travisani Jul 1997 A
5661888 Hanslik Sep 1997 A
5667026 Lorenz et al. Sep 1997 A
5682952 Stokley Nov 1997 A
5706894 Hawkins, III Jan 1998 A
5711382 Hansen et al. Jan 1998 A
5735348 Hawkins, III Apr 1998 A
5735351 Helms Apr 1998 A
5746276 Stuart May 1998 A
5765638 Taylor Jun 1998 A
5772514 Moore Jun 1998 A
5785132 Richardson et al. Jul 1998 A
5791410 Castille et al. Aug 1998 A
5803191 Mackintosh Sep 1998 A
5806589 Lang Sep 1998 A
5833002 Holcombe Nov 1998 A
5836395 Budde Nov 1998 A
5839330 Stokka Nov 1998 A
5842530 Smith et al. Dec 1998 A
5850877 Albright et al. Dec 1998 A
5890549 Sprehe Apr 1999 A
5909768 Castille et al. Jun 1999 A
5918673 Hawkins et al. Jul 1999 A
5931231 Mock Aug 1999 A
5960881 Allamon et al. Oct 1999 A
5971079 Mullins Oct 1999 A
5971086 Bee et al. Oct 1999 A
6000472 Albright et al. Dec 1999 A
6012529 Mikolajczyk et al. Jan 2000 A
6056060 Abrahamsen et al. May 2000 A
6065550 Gardes May 2000 A
6070500 Dlask et al. Jun 2000 A
6079509 Bee et al. Jun 2000 A
6119772 Pruet Sep 2000 A
6142545 Penman et al. Nov 2000 A
6161617 Gjedebo Dec 2000 A
6170573 Brunet et al. Jan 2001 B1
6173777 Mullins Jan 2001 B1
6199641 Downie et al. Mar 2001 B1
6202764 Ables et al. Mar 2001 B1
6217258 Yamamoto et al. Apr 2001 B1
6227587 Terral May 2001 B1
6237684 Bouligny, Jr. et al. May 2001 B1
6276450 Seneviratne Aug 2001 B1
6279654 Mosing et al. Aug 2001 B1
6309002 Bouligny Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6315051 Ayling Nov 2001 B1
6334376 Torres Jan 2002 B1
6349764 Adams et al. Feb 2002 B1
6360633 Pietras Mar 2002 B2
6378630 Ritorto et al. Apr 2002 B1
6390190 Mullins May 2002 B2
6412554 Allen et al. Jul 2002 B1
6415862 Mullins Jul 2002 B1
6431626 Bouligny Aug 2002 B1
6443241 Juhasz et al. Sep 2002 B1
6460620 LaFleur Oct 2002 B1
6527493 Kamphorst et al. Mar 2003 B1
6536520 Snider et al. Mar 2003 B1
8527047 Pietras Mar 2003
8553825 Boyd Apr 2003
6571876 Szarka Jun 2003 B2
6578632 Mullins Jun 2003 B2
6591471 Hollingsworth et al. Jul 2003 B1
6595288 Mosing et al. Jul 2003 B2
6604578 Mullins Aug 2003 B2
6622796 Pietras Sep 2003 B1
6637526 Juhasz et al. Oct 2003 B2
8651737 Bouligny Nov 2003
6668684 Allen et al. Dec 2003 B2
6668937 Murray Dec 2003 B1
6675889 Mullins et al. Jan 2004 B1
6679333 York et al. Jan 2004 B2
6688398 Pietras Feb 2004 B2
6691801 Juhasz et al. Feb 2004 B2
8688394 Ayling Feb 2004
6715542 Mullins Apr 2004 B2
6722425 Mullins Apr 2004 B2
6725938 Pietras Apr 2004 B1
6725949 Seneviratne Apr 2004 B2
6732819 Wenzel May 2004 B2
6732822 Slack et al. May 2004 B2
6742584 Appleton Jun 2004 B1
6742596 Haugen Jun 2004 B2
6779599 Mullins et al. Aug 2004 B2
6832658 Keast Dec 2004 B2
8832656 Cameron Dec 2004
6840322 Haynes Jan 2005 B2
6883605 Arceneaux et al. Apr 2005 B2
6892835 Shahin et al. May 2005 B2
6907934 Kauffman et al. Jun 2005 B2
6938697 Haugen Sep 2005 B2
6976298 Pietras Dec 2005 B1
7004259 Pietras Feb 2006 B2
7007753 Robichaux et al. Mar 2006 B2
7017671 Williford Mar 2006 B2
7028586 Robichaux Apr 2006 B2
7073598 Haugen Jul 2006 B2
7090021 Pietras Aug 2006 B2
7096948 Mosing et al. Aug 2006 B2
7096977 Juhasz et al. Aug 2006 B2
7100698 Kracik et al. Sep 2006 B2
7107875 Haugen et al. Sep 2006 B2
7117938 Hamilton et al. Oct 2006 B2
7140445 Shahin et al. Nov 2006 B2
7147254 Niven et al. Dec 2006 B2
7188686 Folk et al. Mar 2007 B2
7213656 Pietras May 2007 B2
7325610 Giroux et al. Feb 2008 B2
7370698 Mosing et al. May 2008 B2
20010042625 Appleton Nov 2001 A1
20020029878 Victor Mar 2002 A1
20020108748 Keyes Aug 2002 A1
20020170720 Haugen Nov 2002 A1
20030155159 Slack et al. Aug 2003 A1
20030164276 Snider et al. Sep 2003 A1
20030173073 Snider et al. Sep 2003 A1
20030221519 Haugen et al. Dec 2003 A1
20040003490 Shahin et al. Jan 2004 A1
20040069500 Haugen Apr 2004 A1
20040144547 Koithan et al. Jul 2004 A1
20040173358 Haugen Sep 2004 A1
20040216924 Pietras et al. Nov 2004 A1
20040251050 Shahin et al. Dec 2004 A1
20040251055 Shahin et al. Dec 2004 A1
20050000691 Giroux et al. Jan 2005 A1
20050051343 Pietras et al. Mar 2005 A1
20050096846 Koithan et al. May 2005 A1
20050098352 Beierbach et al. May 2005 A1
20060000600 Pietras Jan 2006 A1
20060124353 Juhasz et al. Jun 2006 A1
20060151181 Shahin Jul 2006 A1
20060180315 Shahin et al. Aug 2006 A1
20060278402 Mullins Dec 2006 A1
20070000668 Christensen Jan 2007 A1
20070181346 Swietlik et al. Aug 2007 A1
20080202751 Mosing et al. Aug 2008 A1
Foreign Referenced Citations (51)
Number Date Country
2 307 386 Nov 2000 CA
3 523 221 Feb 1987 DE
0 087 373 Aug 1983 EP
0 162 000 Nov 1985 EP
0 171 144 Feb 1986 EP
0 285 386 Oct 1988 EP
0 474 481 Mar 1992 EP
0 479 583 Apr 1992 EP
0 525 247 Feb 1993 EP
0 589 823 Mar 1994 EP
1148206 Oct 2001 EP
1 256 691 Nov 2002 EP
1 489 661 Apr 1977 GB
2 053 088 Feb 1981 GB
2 201 912 Sep 1988 GB
2 223 253 Apr 1990 GB
2 224 481 Sep 1990 GB
2 240 799 Aug 1991 GB
2 275 486 Apr 1993 GB
2 345 074 Jun 2000 GB
2 357 530 Jun 2001 GB
2001-173349 Jun 2001 JP
WO 90-06418 Jun 1990 WO
WO 92-18743 Oct 1992 WO
WO 93-07358 Apr 1993 WO
WO 95-10686 Apr 1995 WO
WO 9607009 Mar 1996 WO
WO 96-18799 Jun 1996 WO
WO 97-08418 Mar 1997 WO
WO 98-05844 Feb 1998 WO
WO 98-11322 Mar 1998 WO
WO 98-32948 Jul 1998 WO
WO 99-11902 Mar 1999 WO
WO 99-41485 Aug 1999 WO
WO 99-58810 Nov 1999 WO
WO 00-08293 Feb 2000 WO
WO 00-09853 Feb 2000 WO
WO 00-11309 Mar 2000 WO
WO 00-11310 Mar 2000 WO
WO 00-11311 Mar 2000 WO
WO 00-39429 Jul 2000 WO
WO 00-39430 Jul 2000 WO
WO 00-50730 Aug 2000 WO
WO 01-12946 Feb 2001 WO
WO 0133033 May 2001 WO
WO 01-94738 Dec 2001 WO
WO 2004-022903 Mar 2004 WO
WO 2004079155 Sep 2004 WO
WO 2005090740 Sep 2005 WO
WO 2007108703 Sep 2007 WO
WO 2007144597 Dec 2007 WO
Related Publications (1)
Number Date Country
20060151181 A1 Jul 2006 US
Provisional Applications (1)
Number Date Country
60643339 Jan 2005 US