One-step processing of hydrogels for mechanically robust and chemically desired features

Information

  • Patent Grant
  • 11890344
  • Patent Number
    11,890,344
  • Date Filed
    Friday, February 11, 2022
    2 years ago
  • Date Issued
    Tuesday, February 6, 2024
    9 months ago
Abstract
The application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels is described in the instant invention. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications. Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to the field of biopolymers and hydrogels, and more particularly to enhancing the handling properties and degradation rate of hydrogels by creating highly controlled micron-sized porosity in a one-step process.


INCORPORATION-BY-REFERENCE OF MATERIALS FILED ON COMPACT DISC

None.


REFERENCE TO A SEQUENCE LISTING

None.


BACKGROUND OF THE INVENTION

Without limiting the scope of the invention, its background is described in connection with methods of enhancing mechanical and degradation properties of hydrogels and biopolymers.


WIPO Patent Publication No. WO 2009/108760 A8 (Zawko and Schmidt, 2009) discloses a hydrogel and a method of making a porous hydrogel by preparing an aqueous mixture of an uncrosslinked polymer and a crystallizable molecule; casting the mixture into a vessel; allowing the cast mixture to dry to form an amorphous hydrogel film; seeding the cast mixture with a seed crystal of the crystallizable molecule; growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer; crosslinking the polymer around the crystal structure under conditions in which the crystal structure within the crosslinked polymer is maintained; and dissolving the crystals within the crosslinked polymer to form the porous hydrogel.


SUMMARY OF THE INVENTION

The present invention discloses the application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate of hydrogels by a simple one-step process involving the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material. This method of creating pores works with natural biopolymers such as hyaluronic acid and alginate. The features of the pores are very fine and intricate and cannot be made by any other technique. The crystal-templated hydrogels of the present invention can be used as materials for tissue engineering devices. The pores resemble the fine, intricate branching patterns found in natural tissues such as microvasculature and neuronal outgrowth. These hydrogels can guide the infiltration of cells, neurite outgrowth, and vascularization into biomimetic patterns.


In one embodiment the instant invention discloses a method of making a directed branched porous polymer comprising the steps of: i) preparing an aqueous mixture of one or more uncrosslinked polymers and a crystallizable molecule, ii) casting the aqueous mixture onto a vessel, a slide, a plate, tissue-culture dish or combinations and modifications thereof to form a cast mixture, iii) drying the cast mixture to form an amorphous polymer film, iv) seeding the cast mixture with a seed crystal of the crystallizable molecule, v) growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer, vi) exposing the cast mixture to ultraviolet light, wherein the exposure results in a gelling or a crosslinking of the polymer, vii) crosslinking the uncrosslinked polymer around the crystal structure by an addition of one or more crosslinking agents under conditions in which the crystal structure within the crosslinked polymer is maintained, viii) removing the one or more crystals of the crystallizable polymers by rinsing with water to form a branched porous polymer base film, ix) removing water from the porous polymer base film by controlled dessication under pressure, and x) diffusing one or more backfill materials into the one or more pores of the branched porous polymer, wherein the backfill materials can be same or different from the polymer base film material.


In one aspect the method comprises the additional step of simultaneously or separately crosslinking or covalently binding the backfill materials to itself or the branched porous polymer forming base film material. In another aspect the method comprises the optional step of forming a crosslink between the branched porous polymer base film material and the backfill material in the one or more pores of the branched porous polymer, wherein the base film materials and the backfill materials are different. In yet another aspect the directed branched porous polymer is a hydrogel, a film, a barrier or combinations and modifications thereof. In another aspect the polymer comprises nucleic acids, amino acids, saccharides, lipids and combinations thereof, in monomeric, dimeric, trimeric, oligomeric, multimeric or polymeric forms. In another aspect the polymer is selected from the group consisting of collagen, chitosan, gelatin, pectins, alginate, hyaluronic acid, heparin, and mixtures thereof.


In one aspect of the method disclosed hereinabove the one or more backfill materials comprise polymers, small molecules, drugs, hormones, proteins or combinations and modifications thereof. In another aspect the crystallizable molecule comprises a small organic molecule selected from a salt, urea, beta cyclodextrin, glycine, and guanidine. In another aspect an addition or a subtraction of the one or more backfill materials modify one or more bulk mechanical properties and a degradation rate of the branched porous polymer. In yet another aspect the mechanical properties are selected from the group consisting of moduli, elasticity, tensile strength, and compression strength. In another aspect the polymer is gelled by a chemical crosslink, a physical crosslink or a combination; wherein said crosslink is induced by an UV method, a temperature method, a pH method, an ion or ion-radical based method or combinations thereof. In one aspect the polymer comprises a biopolymer that maybe a synthetic or a non-synthetic polymer and is biodegradable, biocompatible, and hydrophilic.


In one aspect the aqueous mixture comprises alginate and hyaluronic acid. In a specific aspect the crystallizable molecule comprises urea and the backfill material is hyaluronic acid. In another aspect the crosslinking agent selected from group consisting of calcium chloride, p-Azidobenzoyl hydrazide, N-5-Azido-2-nitrobenzoyloxsuccinimide, disuccinimidyl glutamate, dimethyl pimelimidate-(2)HCl, dimethyl suberimidate-2 HCl, disuccinimidyl suberate, bis[sulfosuccinimidyl suberate], 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide-HCl, isocyanate, aldehyde, glutaraldehyde, paraformaldehyde, and derivatives thereof. In yet another aspect the method comprises the optional step of encapsulation one or more agents selected from drugs, growth factors, hormones, proteins or combinations thereof in the one or more pores or the matrix of the branched porous polymer.


Another embodiment of the instant invention relates to a directed branched porous polymer made by a method that comprises: i) preparing an aqueous mixture of one or more uncrosslinked polymers and a crystallizable molecule, ii) casting the aqueous mixture onto a vessel, a slide, a plate, tissue-culture dish or combinations and modifications thereof to form a cast mixture, iii) drying the cast mixture to form an amorphous polymer film, iv) seeding the cast mixture with a seed crystal of the crystallizable molecule, v) growing the crystallizable molecule into a crystal structure within the uncrosslinked polymer, vi) exposing the cast mixture to ultraviolet light, wherein the exposure results in a gelling or a crosslinking of the polymer, vii) crosslinking the uncrosslinked polymer around the crystal structure by an addition of one or more crosslinking agents under conditions in which the crystal structure within the crosslinked polymer is maintained, viii) removing the one or more crystals of the crystallizable polymers by rinsing with water to form a branched porous polymer base film, ix) removing water from the base film by controlled dessication under pressure, and x) diffusing one or more backfill materials into the one or more pores of the branched porous polymer, wherein the backfill materials can be same or different from the porous polymer base film material.


In one aspect of the method above comprises the additional step of simultaneously or separately crosslinking or covalently binding the backfill materials to itself or the porous polymer forming base film material. In another aspect the method comprises the optional step of forming a crosslink between the porous polymer base film material and the backfill material in the one or more pores of the porous polymer, wherein the base film materials and the backfill materials are different. In yet another aspect the directed branched porous polymer is a hydrogel, a film, a barrier or combinations and modifications thereof. In another aspect the polymer comprises nucleic acids, amino acids, saccharides, lipids and combinations thereof, in monomeric, dimeric, trimeric, oligomeric, multimeric or polymeric forms. In another aspect the polymer is selected from the group consisting of collagen, chitosan, gelatin, pectins, alginate, hyaluronic acid, heparin, and mixtures thereof.


In yet another aspect the one or more backfill materials comprise polymers, small molecules, drugs, hormones, proteins or combinations and modifications thereof. In one aspect the crystallizable molecule comprises a small organic molecule selected from a salt, urea, beta cyclodextrin, glycine, and guanidine. In another aspect an addition or a subtraction of the one or more backfill materials modify one or more bulk mechanical properties (selected from the group consisting of moduli, elasticity, tensile strength, and compression strength) and a degradation rate of the branched porous polymer. In another aspect the polymer is gelled by a chemical crosslink, a physical crosslink or a combination; wherein said crosslink is induced by an UV method, a temperature method, a pH method, an ion or ion-radical based method or combinations thereof. In a specific aspect the polymer comprises a synthetic or non-synthetic biopolymer that is non-cytotoxic, biodegradable, biocompatible, and hydrophilic. In other related aspects the aqueous mixture comprises alginate and hyaluronic acid, the crystallizable molecule comprises urea, and the backfill material is hyaluronic acid. An aspect includes an apparatus comprising: uncrosslinked hyaluronic acid included in a hydrogel film; and crosslinked alginate included in the hydrogel; wherein (a) the alginate is crosslinked around the uncrosslinked hyaluronic acid, (b) the hyaluronic acid and the alginate are formed around a network of pores that are filled with a material; and (c) the material includes at least one of hyaluronic acid and alginate.


In another aspect the crosslinking agent selected from group consisting of calcium chloride, p-Azidobenzoyl hydrazide, N-5-Azido-2-nitrobenzoyloxsuccinimide, disuccinimidyl glutamate, dimethyl pimelimidate-(2)HCl, dimethyl suberimidate-2 HCl, disuccinimidyl suberate, bis[sulfosuccinimidyl suberate], 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide-HCl, isocyanate, aldehyde, glutaraldehyde, paraformaldehyde, and derivatives thereof. In another aspect the method comprises the optional step of encapsulating one or more agents selected from drugs, growth factors, hormones, proteins or combinations thereof in the one or more pores or the matrix of the porous polymer. In yet another aspect the branched porous polymer prevents tissue adhesion following surgery, acts a tissue scaffold, promotes wound healing, delivers drug or growth factors to the support healing, inhibits or prevents infiltration of blood, blood protein, fibroblasts, and inflammatory responses in the surgical site.


In yet another embodiment the instant invention relates to a method of making a porous hydrogel comprising the steps of: preparing an aqueous mixture comprising hyaluronic acid, alginic acid, and urea, casting the aqueous mixture onto a vessel, a slide, a plate, tissue-culture dish or combinations and modifications thereof to form a cast mixture, drying the cast mixture to form an amorphous hydrogel film, seeding the cast mixture with one or more urea crystals, growing the urea into a crystal structure within the uncrosslinked alginate, exposing the cast mixture to ultraviolet light, wherein the exposure results in a gelling or a crosslinking of the alginate, crosslinking the uncrosslinked alginate around the urea crystal structure by an addition of calcium chloride under conditions in which the urea crystal structure within the crosslinked alginate is maintained, removing the one or more urea crystals by rinsing with water to form the porous hydrogel base film, removing water from the base film by controlled dessication under pressure, and diffusing hyaluronic acid into the one or more pores of the hydrogel.


In one aspect of the method described hereinabove the method comprises the optional step of encapsulating one or more agents selected from drugs, growth factors, hormones, proteins or combinations thereof in the one or more pores or the matrix of the porous hydrogel. In another aspect the hydrogel prevents tissue adhesion following surgery, acts a tissue scaffold, promotes wound healing, delivers drug or growth factors to the support healing, inhibits or prevents infiltration of blood, blood protein, fibroblasts, and inflammatory responses in the surgical site. In yet another aspect an addition or a subtraction of the one or more backfill materials modify one or more bulk mechanical properties and a degradation rate of the porous hydrogel. More specifically, the mechanical properties are selected from the group consisting of moduli, elasticity, tensile strength, and compression strength.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:



FIG. 1 is a schematic showing the techniques for fabricating the crystal-templated biopolymer hydrogels of the present invention;



FIGS. 2A-2D show the surface modification of templated alginate films: FIG. 2A fluorescent biotinylated HA crosslinked to surface labeled with FITC/Neutravadin. When not crosslinked, biotinylated HA washed away (4X), FIG. 2B is a glass slide for FIG. 2A, FIG. 2C is a SEM of the surface-modified film cross-sectional surface indicating pores filled, scale bar 2 μm, and FIG. 2D is a SEM of a templated film, no surface modification, cross-sectional surface indicating unfilled porous, scale bar 1 μm;



FIG. 3 is a plot showing the tensile strength (as measured by the Young's modulus) of Alginate/HA film patterned with an urea crystallization pattern;



FIGS. 4A and 4B show the ASTM D638 tensile testing of: FIG. 4A urea patterned alginate/HA film and FIG. 4B alginate/HA film with no patterning;



FIGS. 5A and 5B are examples of alginate/HA urea-templated films: FIG. 5A linear patterning with 4% urea, 5″ by 5″ film, and FIG. 5B radial patterning with 6% urea, 3″ by 3″ film; and



FIG. 6 is a plot showing the ASTM D638 tensile testing of alginate films with increased concentration of urea crystallization.





DETAILED DESCRIPTION OF THE INVENTION

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.


To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present invention. Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.


The instant invention describes the application of a highly controlled, micron-sized, branched, porous architecture to enhance the handling properties and degradation rate (either surface or bulk degradation), of hydrogels. A previously described pattern created through one-step nucleated crystallization in a hydrogel film creates tunable mechanical properties and/or chemical stability for use in tissue engineering applications. The simplicity of the process of the present invention is that bulk mechanical properties and the degradation rate of the material can be tuned easily by the addition or subtraction of crystalline structure or by the addition and subtraction of backfill material, making this useful for a variety of applications.


Relevant mechanical properties that can be tuned through the application of this unique porosity are moduli, elasticity, tensile strength, and compression strength. Processed hydrogels can hold a suture, be cut or be manipulated with surgical tools even when hydrated with biological fluids, and be rolled, squeezed, stretched, bent, folded or crumpled without compromising original shape. Hydrogels can be synthesized very thin to sponge bulk on the order of 30 microns to 2 millimeters. The method of the present invention can be applied to biopolymers and natural materials as well as synthetic materials.


The unique porous architecture may be backfilled by diffusion of material into the preserved, hierarchical porosity. Backfilled material is simultaneously or separately, crosslinked or covalently bound to itself and/or base film, maintaining the desired pattern. The complex, multiple-material construct may contain polymers/materials of different chi parameters, creating a phase-separated film with further tunable handling properties and degradation rate. The backfilled material may also contain small molecules available for growth factor release or drug release and could be used as materials for tissue engineering devices.


The hydrogel base material may also be degraded, leaving the hierarchically branched, crosslinked backfilled material as a scaffold or strengthening complex. The unique features of the invention are: i) a highly controlled, micron-sized porosity created in one step, can finely modulate the mechanical properties and degradation rate of hydrogels, ii) mechanical properties such as moduli, elasticity, tensile strength, and compression strength can be highly controlled into desired ranges, and iii) chemically desired crosslinks can be facilitated in one step by backfilling pores with another material.


The unique benefits are: i) the resulting hydrogel(s) can be manipulated in a surgically relevant manner and, subsequently, return or retain original shape, ii) this method works with biopolymers, iii) the resulting hydrogel(s) can persist throughout the appropriate duration for given use, and iv) the mechanical and/or chemical modulation may occur in one step. No other technology has this combination of features.


There are no existing methods in literature that are similar to the technique of the present invention. Currently employed methods to modulate mechanical and degradation properties in tissue engineering scaffolds are described herein below.


The most common current methods are increasing/decreasing crosslinking, blending, hydrogen bond creation, and colloidal particle addition. Very common to tissue engineering materials, crosslinking provides controllable covalent bonding shown to be directly proportional to mechanical integrity, with greater crosslinking being associated with higher strength. The advantage to this method is that no additional materials are required as a strengthening agent (as in a mesh or fibrous network). The disadvantage to this method is that increased crosslinking often leads to brittle structures and so other methods are required to provide elasticity and/or plastic deformation. Also increased crosslinking requires more crosslinking agents, which are often toxic.


Blending techniques are usually straightforward in that another material is added to the base material for the purpose of strengthening. Colloidal particle addition requires the introduction of a suspended material in the surface or bulk of the base material. These particles act as fillers or bulking agents. While these methods are straightforward, there may be advantages to being able to strengthen without additional materials. Also, blending can be non-isotropic or cause unwanted gradients or clumps, and does not lend itself to finely tuning.


Hydrogen bonds are very strong, creating significant changes in mechanical strength and degradation rates. Some techniques allow for specific hydrogen bond formation with fine tuning capability but require many steps and specific equipment. Other techniques are simplified without fine-tuning capabilities.


It is well known in tissue engineering that mechanical properties of scaffolds and implants directly influence cellular response, differentiation, proliferation, and signaling. Finely tuning the mechanical properties of biopolymers and hydrogels has proven to be a difficult task without the use of lasers, additional support materials or sophisticated crosslinking methods such as direct-write, lithography or microfabrication. The invention presented hereinabove provides a simple, one-step tuning method to significantly alter the mechanical properties of biopolymers or synthetic hydrogels. Furthermore, it is difficult to simultaneously produce a tunable degradation rate. The present invention may also be utilized to tune the degradation rate of the hydrogel construct.


Post-surgical adhesions tether tissues that should remain separate. Adhesions result from impaired autologous natural immune response. Surgical adhesions continue to plague the recovery period, with current technologies falling short of adhesion prevention. Incidence of adhesions following surgery is 80% (Yeo, 2007) resulting in chronic pain, limited motion, organ dysfunction, and even death (Cui et al, 2009). The healthcare costs associated with this are over $3.45 billion, annually (Wiseman, et al., 2010). Current approaches for preventing adhesions include better surgical practices (Holmdahl et al., 1997) (for e.g., powder free gloves, laparoscopic procedures, and reduction of dessication), biocompatible barrier devices (for e.g., polymer solutions, in situ crosslinkable hydrogels, pre-formed membranes), and pharmacotherapy agents like steroidal anti-inflammatory drugs (Dexamethasone; progesterone; hydrocortisone; prednisone), non-steroidal anti-inflammatory drugs (Ibuprofen; flurbiprofen; indomethacin; tolmetin; nimesulide), inhibitors of proinflammatory cytokines (Antibodies to transforming growth factor (TGF)-b1), antihistamine (Diphenhydramine; promethazine), free radical scavengers (Melatonin; vitamin E; superoxide dismutase), Anticoagulants (heparin), proteolytic agents (tissue-type plasminogen activator; streptokinase; urokinase; pepsin; trypsin; Neurokinin 1 receptor antagonist), and antiproliferative agents (mitomycin).


The most effective anti-adhesion barrier on the market reduces adhesion formation by only 50%. Many products are based on synthetic materials because of superior handling capabilities and low manufacturing costs. However, these synthetic materials are rendered ineffective in the presence of blood or blood proteins. The invention presented herein addresses the problems listed above and provides an effective method of blocking the infiltration of unwanted inflammatory response while maintaining robust mechanical properties for surgical handling. Because the present invention is constructed of natural materials, the risk of further aggravation is minimized, while blood and blood proteins will not adhere. Barriers on the market made from natural materials also degrade too quickly, allowing for adhesion formation. The present technology has a tunable degradation rate so that the barrier persists during the healing process.


Current products on the market that are most effective have poor handling properties. They are brittle when dry and are rendered inapplicable when wet. In an OR environment, a suitable solution would be able to maintain mechanical integrity when wet. The present invention offers superior handling properties when wet including in vivo repositioning capabilities and suturability.


The present invention describes the development of composite, dual-functioning materials to be placed at the interface between healing tissues and the surrounding tissues. The invention improves upon anti-adhesive biomaterial barriers, to aid in wound healing, and to modulate the inflammatory response. The present inventors have developed and characterize anti-adhesive hyaluronic acid HA-based material (biocompatible, non-immunogenic, non cell-adhesive, inhibits protein absorption, mechanically stable, cost effective, clinically sized, and appropriate degradation rate). In addition the present inventors have developed a bilayer biofunctionalized HA-based film that is biocompatible, bioabsorbable, non-immunogenic, dual functioning, regenerative, anti-adhesive, mechanically stable, cost effective, and clinically sized. Finally, they develop an injectable solution version of anti-adhesive film that is biocompatible, effective at reducing adhesions, encapsulates ibuprofen or tranexamic acid and has tunable release rates.


Hydrogels are generally polymer chain networks that are water-insoluble, but that absorb water. Often described as being “superabsorbent,” hydrogels are able to retain up to 99% water and can be made from natural or synthetic polymers. Often, hydrogels will have a high degree of flexibility due to their high water content. Common uses for hydrogels include: sustained drug release, as scaffolds (e.g., in tissue engineering), as a thickening agent, as a biocompatible polymer, in biosensors and electrodes and for tissue replacement applications. Natural hydrogels may be made from agarose, methylcellulose, hyaluronic acid (HA), and other naturally-derived polymers.


HA is a linear polysaccharide with repeating disaccharide units composed of sodium D-glucuronate and N-acetyl-D-glucosamine. This naturally occurring glycosaminoglycan is a component of skin, synovial fluid, and subcutaneous and interstitial tissues. HA is metabolically eliminated from the body, and plays a role in protecting and lubricating cells and maintaining the structural integrity of tissues. Anionic carboxylic groups immobilize water molecules giving HA its viscoelastic and anti cell-adhesive properties. HA has been used in a variety of material designs for the prevention of postsurgical tissue adhesion. HA has been used as a dilute solution, a crosslinked hydrogel or combined with CMC into sheets. HA is biocompatible, bioabsorbable/non-immunogenic (non-animal), very non-cell adhesive, polyanionic, hydrophilic, antifibrotic (1% HMW HA, Massie, 2005), pro-angiogenic and has been shown to reduce adhesion formation in animals and humans (Zawaneh, 2008; Diamond, 2006; Wiseman, 2010; Rajab, 2010). HA is clinically used to reduce adhesions: Seprafilm®, most effective and widely used anti-adhesion barrier on the market.


Alginic acid is biocompatible, bioabsorbable/non-immunogenic (non-animal) (Skjak-Braek, 1992), very non-cell adhesive, polyanionic, hydrophilic, cost effective, abundant (brown seaweed), mechanically viable for handling/suturing in ionically crosslinked form, and is shown to be significantly effective at adhesion prevention in animal models (Namba, 2006; Cho, 2010a; Cho, 2010b).


Attributes of alginate that statistically alter mechanical properties: (i) grade (Purification), (ii) gulcuronate to mannuronate ratio (High M ratio is pond-grown, primarily leaves, High G is deep sea harvested, primarily stems), and (iii) molecular weight/viscosity. However, highly purified alginate is very expensive ˜$100/g, lower grade (inexpensive) alginates are not tested for molecular weight or G:M ratio, and purification processes are not standardized.


Crystal templated hydrogels of alginate and HA were created by casting a droplet of solution containing a photocrosslinkable derivative of HA, a photocrosslinkable derivative of alginate with photoinitiator (PI) and urea (FIG. 1). The solvent is evaporated and a urea seed crystal is touched to the droplet to nucleate urea crystallization. After crystallization the alginate and HA are photocrosslinked by UV exposure. Alginate may be further crosslinked ionically and rinsed with water to remove the urea leaving behind an alginate/HA hydrogel templated with the pattern of the urea crystals. The hydrogel may then be dehydrated for further surface modification using crosslinking agents (such as water soluble carbodiimides in ethanol/deionized water mixtures).


The method for preparing the alginate/HA films as described in the present invention includes five steps: film casting, solvent evaporation, crystal growth, crosslinking, and rinsing. In the first step a syringe filter introduces a solution comprising alginate/GMHA/urea on a plate. The solution is then cast as a film at 25° C. at 70% relative humidity. Solvent evaporation is required to achieve the super-saturation conditions necessary for crystallization. Evaporation also greatly increases the biopolymer concentration and solution viscosity. The combination of high viscosity and hydrogen bonding suppresses spontaneous urea crystallization and facilitates super-saturation. Urea seed crystals are deposited on the tips of a fine pair of tweezers and is added to nucleate crystallization followed by exposure to UVA (500 mW/cm2) for 15 secs. Crystal growth began immediately and produced long dendritic branches that extended from the center to the edge of the film. Within seconds the entire volume of the hydrogel films were filled with urea crystals. These crystals comprised the urea crystal template. The films may optionally be crosslinked by an addition of one or more cross linking agents (for example an ionic crosslinking solution like CaCl2 is added to the film to crosslink the alginate). The urea crystals are then rinsed out with double distilled water. The film formed thus is subjected to controlled dessication under force to remove water at 50% relative humidity. The dehydrated film may be subjected to further surface modification by creating one or more ester or less hydrolysable bonds by a variety of techniques (e.g., soaking in a HA solution using water soluble carbodiimide for ester bonds).


Alginate films alone degraded too quickly in chelating environment. Calcium ions chelated by multiple salts and can degrade within a few hours. (Islam, 2010). Adding GMHA decreases degradation, but without compromising the mechanical strength provided by alginate. Alginate film, alone, is too brittle and breaks with little manipulation. Adding urea introduces micron-sized pores which provide flexibility because spaces accept forces first.



FIGS. 2A-2D show the surface modification of templated alginate films. FIG. 2A shows fluorescent biotinylated HA crosslinked to surface labeled with FITC/Neutravadin. When not crosslinked, biotinylated HA washed away (4X). FIG. 2B is a glass slide for FIG. 2A. FIG. 2C is a SEM of the surface-modified film cross-sectional surface indicating pores filled, scale bar 2 μm and of a templated film, no surface modification, cross-sectional surface indicating unfilled porous, scale bar 1 μm, respectively.


A plot showing the tensile strength (as measured by the Young's modulus) of Alginate/HA film patterned with an urea crystallization pattern is shown in FIG. 3. The modulus is significantly increased with surface modification and backfilling of HA. The films used were templated with 4% urea. The ASTM D638 tensile testing of urea patterned alginate/HA film and alginate/HA film with no patterning is shown in FIGS. 4A and 4B. The patterned film recoils in response to plastic deformation before failure. The non-patterned film breaks with a brittle fracture. Examples of alginate/HA urea-templated films are shown in FIGS. 5A and 5B, linear patterning with 4% urea, 5″ by 5″ film (FIG. 5A), and radial patterning with 6% urea, 3″ by 3″ film (FIG. 5B). FIG. 6 is a plot showing the ASTM D638 tensile testing of alginate films with increased concentration of urea crystallization. The trend indicates increased plasticity with increased crystallization patterning.


The instant invention provides significant advantages over existing methods. These include, (i) the resulting hydrogel(s) can be manipulated in a surgically relevant manner and, subsequently, return or retain original shape; (ii) this method works with biopolymers; (iii) the resulting hydrogel(s) can persist throughout the appropriate duration for given use; and (iv) the mechanical and/or chemical modulation may occur in one step.


It is contemplated that any embodiment discussed in this specification can be implemented with respect to any method, kit, reagent or composition of the invention, and vice versa. Furthermore, compositions of the invention can be used to achieve methods of the invention.


It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.


All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value or the variation that exists among the study subjects.


As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.


The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, MB, BBC, AAABCCCC, CBB AAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.


All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.


REFERENCES

WIPO Patent Publication No. WO 2009/107860 A8: Dendritic Macroporous Hydrogels Prepared by Crystal Templating.

Claims
  • 1. An apparatus comprising: hyaluronic acid included in a hydrogel; andalginate included in the hydrogel;wherein (a) the alginate is formed around the hyaluronic acid, (b) the hyaluronic acid and the alginate are formed around a network of pores that are filled with a material; (c) the material includes at least one of additional hyaluronic acid, additional alginate, a drug, a growth factor, a hormone, a protein, or combinations thereof;wherein the hydrogel is substantially dehydrated.
  • 2. The apparatus of claim 1, wherein the network is branched, the hydrogel includes a hydrogel film, the alginate is crosslinked with calcium, and the network is a crystal templated network.
  • 3. The apparatus of claim 1, wherein the material includes at least one of the additional hyaluronic acid, the additional alginate, or combinations thereof.
  • 4. The apparatus of claim 1, wherein the material includes the protein.
  • 5. The apparatus of claim 1, wherein the material is chemically bonded to at least one of the hyaluronic acid, the alginate, or combinations thereof.
  • 6. The apparatus of claim 1, wherein the material is crosslinked to at least itself.
  • 7. The apparatus of claim 1, wherein the hydrogel is configured to release the material when the hydrogel degrades.
  • 8. The apparatus of claim 7, wherein a degradation rate of the hydrogel is tunable by at least one of addition or subtraction of the material to the network of pores.
  • 9. The apparatus of claim 8, wherein mechanical properties of the hydrogel are tunable by at least one of addition or subtraction of the material to the network of pores, the mechanical properties including at least one of moduli, elasticity, tensile strength, compression strength, or combinations thereof.
  • 10. The apparatus of claim 1, wherein the hydrogel includes uncrosslinked alginate.
  • 11. The apparatus of claim 10, wherein the hyaluronic acid is uncrosslinked.
  • 12. An apparatus comprising: hyaluronic acid included in a hydrogel; andalginate included in the hydrogel;wherein (a) the alginate is formed around the hyaluronic acid, (b) the hyaluronic acid and the alginate are formed around a network of pores that is configured to be filled with a material; (c) the material includes at least one of additional hyaluronic acid, additional alginate, a drug, a growth factor, a hormone, a protein, or combinations thereof;wherein the hydrogel is substantially dehydrated.
  • 13. The apparatus of claim 12, wherein the network is branched, the hydrogel includes a hydrogel film, the alginate is crosslinked with calcium, and the network is a crystal templated network.
  • 14. The apparatus of claim 12, wherein a degradation rate of the hydrogel is tunable by at least one of addition or subtraction of the material to the network of pores.
  • 15. The apparatus of claim 14, wherein mechanical properties of the hydrogel are tunable by at least one of addition or subtraction of the material to the network of pores, the mechanical properties including at least one of moduli, elasticity, tensile strength, compression strength, or combinations thereof.
  • 16. The apparatus of claim 12, wherein the hydrogel includes uncrosslinked alginate and uncrosslinked hyaluronic acid.
  • 17. A method of making a hydrogel comprising: preparing an aqueous mixture of hyaluronic acid and alginate;casting the aqueous mixture to form a cast mixture;drying the cast mixture to form an amorphous hydrogel;tuning handling properties of the hydrogel in response to adding or removing any crystalline structure in the hydrogel, the handling properties including at least one of moduli, elasticity, tensile strength, compression strength, or combinations thereof;wherein: (a) the hydrogel includes the hyaluronic acid and the alginate; (b) the alginate is formed around the hyaluronic acid; and (c) the hydrogel is substantially dehydrated.
  • 18. The method of claim 17: wherein the tuning handling properties of the hydrogel in response to adding or removing any crystalline structure in the hydrogel includes adding the crystalline structure to the hydrogel and then removing at least a portion of the crystalline structure from the hydrogel to form a network of pores;wherein the method further comprises tuning the handling properties of the hydrogel in response to adding or removing any backfill material in the network of pores, the backfill material including at least one of additional hyaluronic acid, additional alginate, a drug, a growth factor, a hormone, a protein, or combinations thereof.
  • 19. The method of claim 18 wherein the tuning handling properties of the hydrogel in response to adding or removing any crystalline structure in the hydrogel includes avoiding any addition of the crystalline structure to the hydrogel.
  • 20. The method of claim 18 comprising tuning a degradation rate of the hydrogel in response to the adding or removing any crystalline structure in the hydrogel.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Utility patent application Ser. No. 16/358,948, filed Mar. 20, 2019 and titled “One-Step Processing of Hydrogels for Mechanically Robust and Chemically Desired Features”, which is a continuation of U.S. Utility patent application Ser. No. 14/604,298, filed Jan. 23, 2015 and titled “One-Step Processing of Hydrogels for Mechanically Robust and Chemically Desired Features”, which issued on Mar. 20, 2019 as U.S. Pat. No. 10,279,042, which is a continuation of U.S. Utility patent application Ser. No. 13/269,366 filed on Oct. 7, 2011 and entitled “One-Step Processing of Hydrogels for Mechanically Robust and Chemically Desired Features”, which issued on Feb. 3, 2015, as U.S. Pat. No. 8,946,194, which claims priority to U.S. Provisional Patent Application No. 61/391,410 filed on Oct. 8, 2010 and entitled “One-Step Processing of Hydrogels for Mechanically Robust and Chemically Desired Features.” The content of each of the above applications is hereby incorporated by reference.

STATEMENT OF FEDERALLY FUNDED RESEARCH

This invention was made with government support under Grant no. BES0201744 and BES0500969 awarded by the National Science Foundation. The government has certain rights in this invention.

US Referenced Citations (181)
Number Name Date Kind
4141973 Balazs Feb 1979 A
4196070 Chao et al. Apr 1980 A
4818542 DeLuca et al. Apr 1989 A
4937270 Hamilton et al. Jun 1990 A
5017229 Burns et al. May 1991 A
5266326 Barry et al. Nov 1993 A
5395383 Adams et al. Mar 1995 A
5415631 Churinetz May 1995 A
5531716 Luzio et al. Jul 1996 A
5531735 Thompson Jul 1996 A
5532221 Huang et al. Jul 1996 A
5563186 Thompson Oct 1996 A
5622707 Dorigatti et al. Apr 1997 A
5688775 Renn et al. Nov 1997 A
5714166 Tomalia Feb 1998 A
5750585 Park et al. May 1998 A
5760200 Miller et al. Jun 1998 A
5795584 Totakura Aug 1998 A
5863551 Woerly Jan 1999 A
5866554 Shalaby et al. Feb 1999 A
5874100 Mahoney et al. Feb 1999 A
5919442 Yin et al. Jul 1999 A
5925009 Mahoney et al. Jul 1999 A
5939323 Valentini et al. Aug 1999 A
5981821 Barikosky Nov 1999 A
5981825 Brekke Nov 1999 A
5984948 Hassan Nov 1999 A
5993661 Ruckenstein et al. Nov 1999 A
6007833 Chudzik Dec 1999 A
6030958 Burns et al. Feb 2000 A
6060534 Ronan et al. May 2000 A
6083930 Roufa et al. Jul 2000 A
6096018 Luzio et al. Aug 2000 A
6124273 Drohan et al. Sep 2000 A
6133325 Schwartz et al. Oct 2000 A
6150581 Jiang et al. Nov 2000 A
6156572 Bellamkonda Dec 2000 A
6165201 Sawhney et al. Dec 2000 A
6174999 Miller et al. Jan 2001 B1
6184266 Ronan et al. Feb 2001 B1
6235726 Burns et al. May 2001 B1
6271278 Park et al. Aug 2001 B1
6281341 Mares-Guia et al. Aug 2001 B1
6294202 Burns et al. Sep 2001 B1
6334968 Shapiro et al. Jan 2002 B1
6368356 Zhong et al. Apr 2002 B1
6372244 Antanavich Apr 2002 B1
6387978 Ronan et al. May 2002 B2
6410044 Chudzik Jun 2002 B1
6425918 Shapiro et al. Jul 2002 B1
6500777 Wiseman et al. Dec 2002 B1
6511650 Eiselt Jan 2003 B1
6521223 Calias et al. Feb 2003 B1
6548081 Sadozai et al. Apr 2003 B2
6566345 Miller et al. May 2003 B2
6599526 Dimitrijevich Jul 2003 B2
6600011 McDonnell et al. Jul 2003 B2
6608117 Gvozdic Aug 2003 B1
6610669 Calias et al. Aug 2003 B1
6630167 Zhang Oct 2003 B2
6630457 Aeschlimann et al. Oct 2003 B1
6638917 Li et al. Oct 2003 B1
6642363 Mooney et al. Nov 2003 B1
6653240 Crawford Nov 2003 B2
6653420 Domschke Nov 2003 B2
6656974 Renn et al. Dec 2003 B1
6693089 Li et al. Feb 2004 B1
6703041 Burns et al. Mar 2004 B2
6723709 Pressato et al. Apr 2004 B1
6750262 Hahnle Jun 2004 B1
6767928 Murphy et al. Jul 2004 B1
6793675 Shapiro Sep 2004 B2
6818018 Sawhney Nov 2004 B1
6841153 Chegini et al. Jan 2005 B1
6869938 Schwartz et al. Mar 2005 B1
6897271 Domschke May 2005 B1
6913765 Li et al. Jul 2005 B2
6924370 Chudzik Aug 2005 B2
6943154 Miller et al. Sep 2005 B2
6960617 Omidian Nov 2005 B2
6977231 Matsuda Dec 2005 B1
6991652 Burg Jan 2006 B2
7022313 O'Connor Apr 2006 B2
7060287 Hubbard et al. Jun 2006 B1
7083697 Dao et al. Aug 2006 B2
7201917 Malaviya Apr 2007 B2
7235295 Laurencin et al. Jun 2007 B2
7252832 Stone et al. Aug 2007 B1
7265098 Miller et al. Sep 2007 B2
7347850 Sawhney Mar 2008 B2
7347988 Hu et al. Mar 2008 B2
7459021 Bukshpan Dec 2008 B2
7504286 Cho Mar 2009 B2
7553903 Riegel Jun 2009 B2
7572894 Jin et al. Aug 2009 B2
7592418 Pathak et al. Sep 2009 B2
7629388 Mikos et al. Dec 2009 B2
7682540 Boyan et al. Mar 2010 B2
7741476 Lebreton Jun 2010 B2
7758654 Hoganson Jul 2010 B2
7833284 Lieberman Nov 2010 B2
7919542 Hudgins Apr 2011 B2
7968110 Hubbard Jun 2011 B2
7988992 Omidian Aug 2011 B2
7989505 Hu et al. Aug 2011 B2
7998204 Stone et al. Aug 2011 B2
7998380 Turng Aug 2011 B2
8025901 Kao et al. Sep 2011 B2
8075908 Delaney Dec 2011 B2
8097273 Fukuhira et al. Jan 2012 B2
8110242 Hawkins Feb 2012 B2
8133840 Mika et al. Mar 2012 B2
8277831 Young et al. Oct 2012 B2
8323675 Greenawalt Dec 2012 B2
8324184 Prestwich et al. Dec 2012 B2
8455001 Ito et al. Jun 2013 B2
8460695 Greenawalt Jun 2013 B2
8551136 Lu Oct 2013 B2
8802115 Altschuler et al. Aug 2014 B2
8809301 Athanasiadis et al. Aug 2014 B2
8927521 Jackson Jan 2015 B2
8946194 Mayes Feb 2015 B2
9034357 Stopek May 2015 B2
9421221 McKay et al. Aug 2016 B2
9770539 Parakka et al. Sep 2017 B2
9987130 Weber Jun 2018 B2
10279042 Mayes May 2019 B2
10786595 Zimnitsky et al. Sep 2020 B2
10940229 Saito et al. Mar 2021 B2
11246937 Mayes Feb 2022 B2
11541075 Gooding et al. Jan 2023 B2
20020131933 Delmotte Sep 2002 A1
20030134132 Winterton Jul 2003 A1
20040091605 Bayer et al. May 2004 A1
20040138329 Hubbell et al. Jul 2004 A1
20040241436 Hsieh et al. Dec 2004 A1
20050107868 Nakayama May 2005 A1
20050282148 Warren et al. Dec 2005 A1
20060173394 Stroock et al. Aug 2006 A1
20070015136 Sanchez-Schmitz et al. Jan 2007 A1
20070031498 Zhong et al. Feb 2007 A1
20070051630 Larsson et al. Mar 2007 A1
20070202084 Sadozai et al. Aug 2007 A1
20080069857 Yeo Mar 2008 A1
20080182012 Fisher et al. Jul 2008 A1
20080254091 Lee et al. Oct 2008 A1
20080264793 Vigh et al. Oct 2008 A1
20080292664 Giammona et al. Nov 2008 A1
20090062233 Ji et al. Mar 2009 A1
20090081265 Peppas Mar 2009 A1
20090170973 Mattiasson et al. Jul 2009 A1
20090181074 Makower et al. Jul 2009 A1
20090294049 Udipi et al. Dec 2009 A1
20100055158 Vitaris et al. Mar 2010 A1
20100062232 Schauer et al. Mar 2010 A1
20100114313 Lack May 2010 A1
20100121261 Kablik et al. May 2010 A1
20100217403 Champion et al. Aug 2010 A1
20100273667 Kotov Oct 2010 A1
20110008442 Zawko et al. Jan 2011 A1
20110029003 Lavigne et al. Feb 2011 A1
20120039959 Tessmar et al. Feb 2012 A1
20120088832 Mayes et al. Apr 2012 A1
20120239063 Lee Sep 2012 A1
20120244107 Heckroth et al. Sep 2012 A1
20120282302 McCanless Nov 2012 A1
20130034592 Yamamoto et al. Feb 2013 A1
20130052236 Tessmar et al. Feb 2013 A1
20130095143 Font et al. Apr 2013 A1
20130195789 Lu Aug 2013 A1
20130211320 Alkhamesi et al. Aug 2013 A1
20130252921 Lee et al. Sep 2013 A1
20130316007 Ma et al. Nov 2013 A1
20140256831 Ito et al. Sep 2014 A1
20140322351 Gawande et al. Oct 2014 A1
20150010490 Kim et al. Jan 2015 A1
20150010636 Delaney Jan 2015 A1
20210269638 Kim et al. Sep 2021 A1
20220168334 Dowling Jun 2022 A1
20230095832 Ng Mar 2023 A1
20230101687 Traverso et al. Mar 2023 A1
Foreign Referenced Citations (35)
Number Date Country
108969392 Dec 2018 CN
109294002 May 2021 CN
113813448 Dec 2022 CN
116019973 Apr 2023 CN
114984300 Aug 2023 CN
1806367 Sep 1997 EP
1105094 Aug 1999 EP
1778144 Aug 2005 EP
202011004849 Aug 2021 IN
H04235124 Aug 1992 JP
H06100468 Apr 1994 JP
2001212224 Aug 2001 JP
2003062057 Mar 2003 JP
3805654 May 2006 JP
3796165 Jul 2006 JP
20020027747 Apr 2002 KR
20020032351 May 2002 KR
20030055102 Jul 2003 KR
101507301 Apr 2015 KR
101985368 Sep 2019 KR
102078334 Feb 2020 KR
1997039737 Oct 1997 WO
2002064192 Aug 2002 WO
2002092678 Nov 2002 WO
2005020849 Mar 2005 WO
2009108760 Sep 2009 WO
2013174661 Nov 2013 WO
2014093489 Jun 2014 WO
2018056937 Mar 2018 WO
2020051920 Mar 2020 WO
2022025229 Feb 2022 WO
2022038213 Feb 2022 WO
2022265367 Dec 2022 WO
2022265368 Dec 2022 WO
2023019143 Feb 2023 WO
Non-Patent Literature Citations (63)
Entry
Cho, W.J., S.H. Oh, and J.H. Lee, “Alginate Film as a Novel Post-Surgical Tissue Adhesion Barrier,” Journal of Biomaterials Science-Polymer Edition, 2010, 14 pages total.
Chang, J.-J., et al., “Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions,” Carbohydrate Polymers, 2012, 9 pages total.
Hirasaki, Y., et al., “Development of a Novel Antiadhesive Material, Alginate Flakes, Ex Vivo and In Vivo,” Surgery Today, 2011, 8 pages total.
Xu, J.B., J.P. Bartley, and R.A. Johnson, “Preparation and characterization of alginate hydrogel membranes crosslinked using a water-soluble carbodiimide,” Journal of Applied Polymer Science, 2003, 7 pages total.
Oerther, S., et al., “Hyaluronate-alginate gel as a novel biomaterial: Mechanical properties and formation mechanism,” 1999, Biotechnology Bioeng, pp. 206-215.
Oerther, S., et al., “High interaction alginate-hyaluronate associations by hyaluronate deacetylation for the preparation of efficient biomaterials,” 2000, Biopolymers, pp. 273-281.
Ceana, H. Nezhat, et al., “Adhesion Prevention and Management,” Prevention & Management of Laparoendoscopic Surgical Complications, 3rd edition, Society of Laparoendoscopic Surgeons, 2011, 11 total pages.
Zhang, Y., et al., “Thermosensitive methyl cellulose-based injectable hydrogels for post-operation anti-adhesion,” Jan. 30, 2014, 8 total pages.
Wiseman, D.M., et al., “Metaanalysis of the safety and efficacy of an adhesion barrier (Interceed TC7) in laparotomy,” Apr. 1999, 3 total pages.
Dania Al-Jaroudi, MD and Togas Tulandi MD et al., “Adhesion prevention in gynecologic surgery,” Aug. 2005, 9 total pages.
Ten Broek, R.P., et al., “Efficacy of polyethylene glycol adhesion barrier after gynecological laparoscopic surgery: results of a randomized controlled pilot study,” 2012, 7 pages total.
Ten Broek, R.P., et al., “Benefits and harms of adhesion barriers for abdominal surgery: a systematic review and meta-analysis,” The Lancet, Jan. 4, 2014, 12 pages total.
Yang, B., et al., “Prevention of abdominal adhesion formation by thermosensitive PECE-hydrogel in a rat uterine horn model,” Jan. 2011, 10 pages total.
Mettler, L., et al., “A safety and efficacy study of a resorbable hydrogel for reduction of post-operative adhesions following myomectomy,” May 2008, 8 pages total.
Lauder, C.I., et al., “Use of a modified chitosan-dextran gel to prevent peritoneal adhesions in a porcine hemicolectomy model,” Aug. 2012, 7 pages total.
Johns, D.A., et al., “Initial feasibility study of a sprayable hydrogel adhesion barrier system in patients undergoing laparoscopic ovarian surgery,” Aug. 2003, 5 pages total.
Tjandra, J.J., et al., “A sprayable hydrogel adhesion barrier facilitates closure of defunctioning loop ileostomy: a randomized trial,” Jun. 2008, 5 pages total.
Diamond, M.P., “Reduction of adhesions after uterine myomectomy by Seprafilm membrane (HAL-F): a blinded, prospective, randomized, multicenter clinical study; Seprafilm Adhesion Study Group,” Dec. 1996, 7 pages total.
Falabella, C.A., et al., “Novel Macromolecular Crosslinking Hydrogel to Reduce Intra-Abdominal Adhesions,” Journal of Surgical Research, Apr. 2010, 7 total pages.
Becker, J.M., et al., “Prevention of postoperative abdominal adhesions by a sodium hyaluronate-based bioresorbable membrane: a prospective, randomized, double-blind multicenter study,” Oct. 1996, 2 total pages.
Li, T.C., et al., “The value of an absorbable adhesion barrier, Interceed, in the prevention of adhesion reformation following microsurgical adhesiolysis,” Apr. 1994, 5 total pages.
Luo, Y., et al., “Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery,” Journal of Controlled Release, Oct. 3, 2000, 16 total pages.
Xiao Zheng Shu, et al., “In situ crosslinkable hyaluronan hydrogels for tissue engineering,” Biomaterials, Mar.-Apr. 2004, 10 total pages.
Vrijland, W.W., et al., “Fewer intraperitoneal adhesions with use of hyaluronic acid-carboxymethylcellulose membrane: a randomized clinical trial,” Feb. 2002, 7 total pages.
Bennett, S.L., et al., “Next-Generation HydroGel Films as Tissue Sealants and Adhesion Barriers,” Nov./Dec. 2003, 7 total pages.
European Patent Office, Examination Report dated Jul. 29, 2020 in European patent application No. 19 156 162.0, 9 pages total.
F. Shen, et al., “A Study on the Fabrication of Porous Chitosan/Gelatin Network Scaffold for Tissue Engineering,” Polymer International, 2000, 4 pages total.
K. Lindenhayn, et al., “Retention of Hyaluronic Acid in Alginate Beads: Aspects for In Vitro Cartilage Engineering,” Dec. 23, 1997, 7 pages total.
West et al., “Efficacy of adhesion barriers. Resorbable hydrogel, oxidized regenerated cellulose and hyaluronic acid,” Journal of Reproductive Medicine, Mar. 1996, 41(3), pp. 149-154.
U.S. Patent and Trademark Office, Office Action dated Jun. 25, 2013 in U.S. Appl. No. 13/269,344, (“Schmidt”) (pp. 7-8 describing how Schmidt includes a hydrogel having hyaluronic acid and crosslinked alginate).
U.S. Appl. No. 13/269,344, filed Oct. 7, 2011, entitled “Anti-Adhesive Barrier Membrane Using Alginate and Hyaluronic Acid for Biomedical Application,” by Sarah Mayes.
U.S. Appl. No. 12/919,667, filed Aug. 26, 2010, entitled “Dendritic Macroporous Hydrogels Prepared by Crystal Templating,” by Scott Zawko.
Yang, Shoufeng, et al., “The Design of Scaffolds of Use in Tissue Engineering. Part II. Rapid Prototyping Techniques,” Tissue Engineering, vol. 8, No. 1, (2002), 11 pages.
Xu, An-Wu, et al., “Biomimetic Mineralization,” J. Mater. Chem., (2007), 17, pp. 415-449.
Uludag, Hasan, et al., “Technology of Mammalian Cell Encapsulation,” Advanced Drug Delivery Reviews, (2000), 42: pp. 29-64.
Tsang, Valerie Liu, et al., “Fabrication of 3D Hepatic Tissues by Additive Photopatterning of Cellular Hydrogels,” The FASEB Journal, 21, (2007), pp. 790-801.
Shah, Mita M., et al., “Branching Morphogenesis and Kidney Disease,” Development 131, (2004) pp. 1449-1462.
Peppas, N.A., et al., “Hydrogels in Pharmaceutical Formulations,” European Journal of Pharmaceutics and Biopharmaceutics, (2000), 50, pp. 27-46.
Oaki, Yuya, et al., “Experimental Demonstration for the Morphological Evolution of Crystals Grown in Gel Media,” Crystal Growth & Design, vol. 3, No. 5, Jun. 27, 2003, pp. 711-716.
Ma, Peter X., et al., “Biodegradable polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network,” Tissue Engineering, vol. 7, No. 1, (2001), pp. 22-39.
Leach, Jennie Baier, et al., “Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds,” Biotechnol. Bioeng. 82: pp. 578-259.
Larina, Olga, et al., “Ca2+ Dynamics in Salivary Acinar Cells: Distinct Morphology of the Acinar Lumen Underlies Near-Synchronous Global Ca2+ Responses,” Journal of Cell Science, 118: pp. 4131-4139.
King, Kevin R., et al., “Biodegradable Microfluidics,” Adv. Mater, vol. 16, No. 16, Nov. 18, 2004, pp. 2007-2012.
Khademhosseini, Ali, et al., “Microscale Technologies for Tissue Engineering and Biology,” PNAS, vol. 103, No. 8, Feb. 21, 2006, pp. 2480-2487.
International Search Report and Written Opinion in PCT/US2009/035257, dated Oct. 12, 2009, 12 pages.
Chung, Cindy, et al., “Effects of Auricular Chondrocyte Expansion on Neocartilage Formation in Photocrosslinked Hyaluronic Acid Networks,” Tissue Eng., Sep. 2006, 12(9): pp. 2665-2673.
Brisken, Catherin, et al., “Alveolar and Lactogenic Differentiation,” J. Mammary Gland Biol. Neoplasia, (2006), 11: pp. 239-248.
Bekkers, John M., et al., “Targeted Dendrotomy Reveals Active and Passive Contributions of the Dendritic Tree to Synaptic Integration and Neuronal Output,” PNAS, vol. 104, No. 27, Jul. 3, 2007, pp. 11447-11452.
Seidel, Juliana Matos, et al., “Synthesis of PolyHEMA Hydrogels for Using as Biomaterials. Bulk and Solution Radical-Initiated Polymerization Techniques,” Materials Research, vol. 3, No. 3, Jul. 2000, 8 pages.
Duffy, David C., et al., “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)” Analytical Chemistry, vol. 70, No. 23, Cambridge, Massachusetts, Dec. 1, 1998, pp. 4974-4984.
International Search Report and Written Opinion in PCT/US2011/055461, dated Dec. 1, 2011, 10 pages.
Huang, Jen-Huang, et al., “Rapid Fabrication of 3-D Branched Microvascular Flow Networks,” Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Diego, California, Oct. 12-16, 2008, pp. 1435-1437.
Masters, Kristyn S., et al., “Designing Scaffolds for Valvular Interstitial Cells: Cell Adhesion and Function on Naturally Derived Materials,” J. Biomed. Mater Res. 71A, (2004) pp. 172-180.
Miralles, G., et al., “Sodium Alginate Sponges With or Without Sodium Hyaluronate: In Vitro Engineering of Cartilage,” J. Biomed. Mater Res., vol. 57, (2001), pp. 268-278.
Zawko, Scott A., et al., “Crystal Templating Dendritic Port Networks and Fibrillar Microstructure into Hydrogels,” Acta Biomaterials, vol. 6, (2010), pp. 2415-2421.
Huang, Jen-Huang, et al., “Rapid Fabrication of Bio-inspired 3D Microfluidic Vascular Networks,” Advanced Materials, vol. 21, Wiley-VCH, Weinheim, Jul. 10, 2009, p. 3567.
Depierro, Michael A., et al., “Influence of Polymerization Conditions on Nanostructure and Properties of Polyacrylamide Hydrogels Templated from Lyotropic Liquid Crystals,” Chemical Materials, vol. 18, No. 23, American Chemical Society, Iowa City, Iowa, Oct. 18, 2006, pp. 5609-5617.
“Halobarrier Gel by Anika”, Anika.com, downloaded Sep. 6, 2023, https://anika.com/medical/products/surgical-solutions/#:˜:text=Hyalobarrier%C2%AE%20Gel%20and%20Hyalobarrier,in%20the%20abdomino%2Dpelvic%20area.
“SUPRO Adhesion Barrier Gel”, ansermedical.com, downloaded Sep. 6, 2023, https://www.ansermedical.com/products/adhesion-barrier-supro-gel.
“An Absorbable Gel for Adhesion Prevention”, fziomed.com, downloaded Sep. 6, 2023, https://www.fziomed.com/products/peritoneal-surgery/.
Froelich et al. “Alginate-Based Materials Loaded with Nanoparticles in Wound Healing”, Pharmaceutics, Apr. 223; 15(4): 1142, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143535/.
Bovone et al. “Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction”, pubs.acs.org., ACS Biomater. Sci. Eng. 2021, 7, 9, 4048-4076, https://pubs.acs.org/doi/10.1021/acsbiomaterials.0c01677.
Andersen et al. “In Situ Gelation for Cell Immobilization and Culture in Alginate Foam Scaffolds”, ncbi.nlm.nih.gov., Tissue Eng Part A., Feb. 1, 2014; 20(3-4): 600-610, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926177/.
Related Publications (1)
Number Date Country
20220160877 A1 May 2022 US
Provisional Applications (1)
Number Date Country
61391410 Oct 2010 US
Continuations (3)
Number Date Country
Parent 16358948 Mar 2019 US
Child 17669455 US
Parent 14604298 Jan 2015 US
Child 16358948 US
Parent 13269366 Oct 2011 US
Child 14604298 US