Packers are installed in petroleum industry wellbores to isolate adjacent zones or regions from one another. Particularly, packers are used in petroleum production installations to isolate the annulus between a string of production tubing and a cased borehole to prevent the unwanted escape of production fluids.
Packers typically function by expanding one or more elastomeric packer elements to fill any gaps between the production tube (or a through bore of the packer) and the wellbore (either cased or open). The packer element can be expanded either by “inflating” the elastomeric elements with pressurized fluid or by upsetting flexible elements through axial compression. Additionally, packers may also include anchor devices to “bite” into the tubing or wellbore in which they are to be set. Slips of the anchor mechanism are often set and ratcheted in place to prevent the packer from displacing axially up or down the bore once it is set. Irrespective of construction or the deployment method used, packers effectively create fluid seals between an inner tubular member and an outer tubular member.
Furthermore, packers can be constructed to be either retrievable or permanent. Retrievable packers are preferably constructed so they can be set or retrieved into or out of a borehole with special tools and procedures. In contrast, permanent packers are not so easily retrieved. Because of their design and intent for long-term emplacement, most “permanent” packers must be destructively cut to release them from the location in which they are installed. This cutting operation typically severs mechanical devices that engage the bore to make the packer's engagement therewith permanent. Because slips of packer anchors are typically configured with one-way ratchet profiles, they cannot be easily released once engaged. As such, a cutting operation will be undertaken to cut and disengage the slips of the anchor mechanism so the packer assembly can be retrieved.
Currently, operations to remove a permanent packer or anchor involve running of a cutter assembly downhole to the location of the device to be cut. Next, a chemical or mechanical cutter head is activated and severs the critical components of the device to be released. The cutter assembly is then retrieved (leaving the crippled packer or anchor behind) so that a retrieving, or fishing, apparatus could be run into the hole to remove the severed packer assembly. Because a minimum of two trips downhole is required, an operation using this procedure can take considerable time and cause significant delays in downhole operations. Furthermore, because the cut packer is left in place while the cutter assembly is retrieved from and the fishing assembly is run into the hole, there is a chance the packer can fall deeper into the wellbore. As such, it is desirable that the cutting operations to retrieve packers and other anchor components to run as quickly as possible. Any apparatus or methods to improve cutting and retrieval operations for anchored downhole components would be well received in the industry.
The deficiencies of the prior art are addressed by an apparatus to cut and release a downhole anchor. The apparatus preferably includes a housing deployed upon a string of tubing in a well bore, wherein the housing includes an engagement adapter at its distal end. The apparatus preferably includes a cutter assembly in a recessed position within the distal end of the housing. Preferably, the engagement adapter corresponds with an engagement profile of the downhole anchor. Preferably, the cutter assembly is configured to extend longitudinally from the recessed position to an extended position when the string of tubing is axially loaded. Preferably, the cutter assembly is configured to cut and release the downhole anchor when activated in the extended position. Preferably, the engagement adapter is configured to retain the downhole anchor and retrieve it from the well bore after the cutter assembly is activated. Preferably, the cutter assembly is positioned below the housing when in the extended position.
The deficiencies of the prior art are also addressed in part by a method to remove an anchor device from a wellbore. The method preferably includes deploying a string of tubing down the wellbore to the anchor device, wherein the string of tubing has a housing having an engagement adapter and a recessed cutter at a distal end thereof The method preferably includes engaging the engagement adapter within an engagement profile of the anchor device. The method preferably includes extending the recessed cutter longitudinally below the housing. The method preferably includes activating the extended cutter and cutting the anchor device with the activated cutter. The method preferably includes retrieving the string of tubing from the well bore to remove the cut anchor device attached thereto.
The deficiencies of the prior art are also addressed in part by a cut and release tool to retrieve an engaged downhole anchor. The cut and release tool preferably includes a main body disposed at a distal end of a string of tubing disposed within a wellbore. The cut and release tool preferably includes an explosive cutter recessed within the string of tubing and within the main body and an engagement adapter connected to the main body and configured to securely engage with a corresponding profile of the downhole anchor. Preferably, the cutter is configured to longitudinally extend from a recessed position to an extended position when the string of tubing is axially loaded. Preferably, the explosive cutter is positioned below the main body when in the extended position. Preferably, the cutter is configured to cut and release the downhole anchor when detonated. Preferably, the threaded adapter is configured to retain the downhole anchor and retrieve it from the well bore after the cutter is detonated.
Referring to
Cut to release tool 100 is preferably deployed downhole upon a distal end of a string of tubing (not shown) and connected at coupling 102. A string of thrust tubing 104 connects coupling to a main body 106 of cut to release tool assembly 100. A lower string of tubing 108 extends from main body 106 to an engagement adapter 110 that is configured to engage within a corresponding engagement profile of a downhole packer or anchor. An internal string of activation tubing 112 extends from within thrust tubing 104 to main body 106, terminating at a sliding mandrel 114. A hydraulic inlet 116 allows fluid from inside thrust tubing 104 to communicate with activation tubing 112. Optionally, a hydraulic line (not shown) can extend from a surface station to hydraulic inlet 116 through the bore of thrust tubing 104 to allow more direct control of cut to release tool 100. Activation tubing 112 and mandrel 114 are preferably configured to be slidably engaged within lower tubing 108 when shear screws 118 are ruptured and thrust tubing 104 is thrust downward.
A hydraulically activated cutter assembly 120 is connected to activation tubing 112 at a distal end of mandrel 114. Cutter assembly 120 includes a cutter head 122 carrying a shape charge 124 capable of severing a downhole anchor, a downhole packer, or any other downhole well tool. Shape charge 124 is preferably configured to be hydraulically detonated but can be detonated through any means known in the art. While a shape charge detonation cutter 120 is shown, it should be understood that other types of cutters 120 including hydraulic cutters and chemical cutters, may be used. A thick-walled line 126 extends from cutter head 122 through tubing 108 to a union 128 with activation tubing 112. To activate and fire shape charge 124 of cutter head 122, hydraulic pressure is increased in activation tubing 112 through hydraulic inlet 116 until a detonation device 130 is activated and sends a detonation shock to shape charge 124 through thick walled line 126.
To release an emplaced downhole anchor or packer, the one trip cut to release assembly 100 is deployed and activated to sever components that maintain a grip on the inner wall of the bore in which the device is retained. Cut to release assembly 100 is deployed upon the distal end of a string of tubing connected at coupling 102. The string of tubing can be a string of drill pipe, coiled tubing, slickline, or any other structural conduit capable of transmitting axial loads and hydraulic pressure downhole. Furthermore, safety plugs 134 prevent any premature detonation of cutter head 122 while cut to release tool 100 is on the rig floor or before it is run downhole. Therefore, safety plugs 134 must be removed prior to running cut to release assembly 100 downhole.
Cut to release assembly 100 is run downhole until adapter 110 engages within a corresponding profile of the device to be cut. Preferably, the engagement profile is located above the point of severance to ensure the one-trip cut to release assembly 100 is not damaged by the detonation. With one-trip cut to release assembly 100 engaged within the device to be cut, cutter assembly 120 is extended and detonated. Cutter assembly 120 is delivered downhole in a retracted (shown) position to prevent premature detonation of shape charge 124 from contact with downhole components. Furthermore, a shroud 132 below engagement adapter 110 protects firing head 122 from incidental damage and provides a portal through which cutter assembly 120 extends.
Before cutter assembly 120 can be extended beyond shroud 132 and detonated, shear screws 118 must first be ruptured. Shear screws 118 retain mandrel 114 within main body 106 and thereby prevent the extension of cutter assembly 120. Each shear screw 118 is preferably designed as a screw or pin manufactured out of a material having known shear strength. With the shear strength known, the cross-sectional area of each shear screw 118 can be sized such that screws 118 will rupture and allow relative movement between mandrel 114 and main body 106 when a pre-defined tension load limit is exceeded. Shear screws 118 shown in
Once shear screws 118 are ruptured, tubing 104 is thrust downward to extend cutter assembly 120 downhole through shroud 132 and clear of engagement adapter 110. Thrust tubing 104 is preferably designed to have a downward stroke equal to the distance cutter head 122 is required to be extended below shroud 132. Because each anchor device to be cut will have a unique “weak point” where it is to be severed, the stroke of thrust tubing 104 is preferably selected such that cutter head 122 is positioned adjacent to that weak point when thrust tubing 104 is fully displaced. Bow springs 136 are engaged through ratchet profiles 138 of thick-walled hydraulic line 126 to stabilize and hold cutter assembly 120 in position once cutter head 122 is extended and detonated.
Furthermore, when thrust tubing 104 is fully displaced, coupling 102 is seated within a sealing profile 142 at a distal end of main body 106. Sealing profile 142 provides a pair of hydraulic seals 144, 146, so that a hydraulic port 148 of coupling 102 is no longer exposed. Prior to full displacement of tubing 104 and engagement of coupling 102 into profile 142, hydraulic port 148 acts as a safety measure to prevent the build up of hydraulic pressure within bore of thrust tubing 104 or hydraulic tubing 112. When coupling 102 is not sealed within profile 142, any build up of pressure in bore of tubing strings 104 and 112 is released through port 148. Because detonation device 130 is pressure activated, port 148 assists in preventing the premature firing of cutter assembly 120. With thrust tubing 104 fully displaced, port 148 of coupling 102 is isolated by seals 144 and 146 so pressure within hydraulic tubing 112 is allowed to increase.
When cutter head 122 is properly aligned with an anchor device and coupling 102 seated within profile 142, hydraulic pressure is increased within tubing 112 until detonation device 130 is activated. Once activated, detonation device 130 transmits energy to detonate shape charge 124 of cutting head 122 and sever the critical components of the anchor device. Detonation can be instant or delayed, depending on the particular configuration of detonation device 130. Furthermore, detonation device 130 can be constructed to detonate shape charge 124 through electrical, hydraulic, mechanical, or shock energy once activated. Additionally, detonation device 130 can be omitted and an electrical line extended to firing head 122 through bore of tubing 104 from the surface, if desired.
If firing head is properly aligned within the downhole anchor device when fired, the anchor device should be released from engagement with the wellbore and can be retrieved upon the distal end of one-trip cut to release assembly 100. Engagement adapter 110 is preferably configured to retain engagement of the downhole anchor device after detonation so the device can be severed and retrieved in a single trip downhole. In the event cutting head 122 does not sever the downhole anchor device completely, one-trip cut to release assembly 100 can be configured to be released from the anchor device and retrieved from the wellbore, allowing for a second attempt to be made.
Alternatively, one-trip cut to release assembly 100 can be constructed to allow a second detonation. Shear screws 140 holding main body 106 and lower string of tubing 108 together can be sheared through increased axial tension to allow a new cutter assembly 120 to be delivered and fired. This arrangement is particularly useful when engagement adapter 110 and corresponding profile of the downhole anchor is not easily separated. Particularly, it is important that the rupture shear strength of screws 140 is higher than that of screws 118 to prevent accidental separation of lower tubing 108 from main body 106 when attempting to release mandrel 114 as mentioned above. A replacement cutter assembly 120 can be constructed such that anchor device is severed at a different location than before. Preferably, the replacement cutter assembly 120 engages main body 106 or lower tubing 108 in such a way as to allow the anchor device to be retrieved after a successful firing.
Referring now to
Referring specifically to
With engagement adapter 210 secured within profile 304, cut to release tool 200 is ready to be extended and activated. First, as with cut to release tool 100 of
Referring now to
Furthermore, the stroke, or length of displacement of thrust tubing 204 between retracted position (
To detonate shape charge 224 of cutting head 222, pressure in the bore of thrust tube 204 is increased until an activation pressure is reached. With hydraulic port 248 of coupling 202 securely isolated within profile 242 of main body 206, increases in pressure in thrust tubing 204 result in increased pressures through hydraulic inlet 216 thereby acting upon detonation device 230. When sufficient pressure acts upon detonation device 230 for a sufficient amount of time, shape charge 224 is detonated and packer 302 is severed. Following severance, tension is applied to coupling 202 and thrust tubing 204 to retrieve cut to release tool assembly 200, packer 302, and the rest of downhole anchor assembly 300 in one return trip. If cutting head 222 is not successful in severing anchor components of packer 302, additional attempts can be made at deploying additional cutting heads 122 with new shape charges 124 thereon to make successive detonations.
Numerous embodiments and alternatives thereof have been disclosed. While the above disclosure includes the best mode belief in carrying out the invention as contemplated by the inventors, not all possible alternatives have been disclosed. For that reason, the scope and limitation of the present invention is not to be restricted to the above disclosure, but is instead to be defined and construed by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2934147 | Baker | Apr 1960 | A |
5054555 | Lalande et al. | Oct 1991 | A |
5720343 | Kilgore et al. | Feb 1998 | A |
5810083 | Kilgore | Sep 1998 | A |
6478093 | Hilts et al. | Nov 2002 | B1 |
6702031 | Doane et al. | Mar 2004 | B2 |
6789627 | Leismer | Sep 2004 | B2 |
6860901 | Baker | Mar 2005 | B1 |
6868848 | Boland | Mar 2005 | B2 |
7178598 | Lund et al. | Feb 2007 | B2 |
20050006102 | Cho | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
2372767 | Sep 2002 | GB |
2407337 | Apr 2005 | GB |
2002029203 | Apr 2002 | WO |
2003093624 | Nov 2003 | WO |
WO 03104608 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060243445 A1 | Nov 2006 | US |