1. Field of the Invention
This invention relates to a one way check valve to be coupled between a fire hydrant water meter connected to a fire hydrant and a fire hose connected to a water holding tank (e.g., a fire engine tanker truck) to prevent the backflow of non-potable water from the holding tank and the water hose to the fire hydrant so as to prevent a possible contamination of the municipal water supply with which the fire hydrant is associated.
2. Background Art
Water meters have long been employed to measure the volume of water that is consumed at a source. For example, a tanker truck employed by fire departments and construction companies alike must have an available water supply to be transported from place to place. Because of the large volume of water required to meet their demands, such tanker trucks are typically filled at a fire hydrant via a fire hose, or the like. A water meter is coupled to the fire hydrant so as to measure the volume of water that is withdrawn from the water supply of a local municipality. Once the truck is filled, an indication of water use is recorded so that the municipality can issue a charge to the user in order to request reimbursement for its water consumption at the fire hydrant.
During the process of filling the tanker truck, a rupture in the water main of the municipality to which the fire hydrant is linked has been known to cause the water stored within the tanker truck to be suctioned therefrom and introduced back to the municipal water supply. Such backflow of water from the tanker truck is often characterized by potentially harmful bacteria. That is to say, by the time the water main has been repaired, the water supply of the municipality may be contaminated by the backflow of water from the tanker truck via the fire hose and the fire hydrant such that the public could be placed at risk to potential illness. In this same regard, water-borne microbes are known to reside in the fire hose connected between the water meter and the tanker truck. Such a fire hose provides an additional source of contamination in the event of water backflow from the truck to the fire hydrant.
To reduce the possibility of the backflow of non-potable water from a tanker truck and/or a fire hose to a municipal water supply at a fire hydrant, water meters have incorporated therein unidirectional flow control devices. Reference in this regard may be made to U.S. Pat. No. 6,363,782 issued Apr. 2, 2002 to Arthur A. Hendey for an example of a reliable fire hydrant water meter in which one way check valve means are included. However, a fire hydrant water meter having a unidirectional flow control device may not be readily available at the time or place during which the tanker truck must be filled with water from a municipal fire hydrant.
Therefore, what is needed is a compact, portable and easy-to-connect unidirectional flow control means that is adapted to be coupled between a fire hydrant water meter and a fire hose to permit a tanker truck to be filled with water from a municipal water supply, but without subjecting the public to possible illness as a consequence of water backflow from the truck and the fire hose towards the fire hydrant.
In general terms, a one way check valve is disclosed to be coupled between a fire hydrant water meter that is connected to a fire hydrant and a fire hose that is connected to a water holding tank (e.g., a fire engine tanker truck) so that the holding tank can be filled with water from a municipal water supply to which the fire hydrant is linked. The one way check valve prevents water backflow from the holding tank and the fire hose to the fire hydrant so as to avoid a possible contamination of the municipal water supply as a consequence of potentially harmful bacteria and microbes that reside within the holding tank and/or the fire hose. The check valve includes a fire hose nipple having first and opposite screw threaded ends that are adapted to be rotated into respective mating engagement with the fire hydrant water meter and the fire hose.
A check valve actuator is located inwardly of the fire hose nipple. A plurality of water flow passages run through the check valve actuator between the first and opposite ends of the nipple. The check valve actuator includes a stationary spring shaft support having a shaft guide. A spring shaft is slidably received by the shaft guide. At one end of the spring shaft is a water blocking head that is movable relative to the stationary spring shaft support between a first position, at which to lie against and close the plurality of water flow passages through the check valve actuator, to a second position spaced from the water flow passages, at which to open a fluid path through the check valve from the fire hydrant to the fire hose by way of the water flow passages. At the opposite end of the spring shaft is a spring support head. A coil spring in a normally relaxed and expanded condition is wound around the spring shaft between the shaft guide and the spring support head.
In its relaxed and expanded condition, the coil spring exerts a pulling force against the spring support head of the spring shaft to urge the water blocking head to the first position at which to close the plurality of water flow passages through the check valve actuator so as to block the fluid path and thereby prevent the backflow of water from the holding tank and the fire hose to the fire hydrant. However, when water flows from the fire hydrant through the water flow passages, a water pressure is generated to push the water blocking head to the second position at which to open the plurality of water flow passages through the check valve actuator and thereby establish the fluid path from the fire hydrant to the holding tank via the fire hose. At the same time, the spring shaft connected to the water blocking head slides in a first direction through the shaft guide of the stationary spring shaft support and the coil spring wound around the spring shaft is compressed to store energy. When water stops flowing from the fire hydrant through the water flow passages of the check valve actuator and the water pressure is eliminated, the spring is allowed to expand and release its stored energy, whereby to cause the spring shaft to slide in an opposite direction through the shaft guide. Accordingly, the water blocking head is pulled by the spring shaft back to its first position against the water flow passages to once again block the flow path to water backflow.
Referring initially to
A (e.g., stainless steel) strainer screen 10 is received inwardly of the threaded end 8 of the hollow valve body of fire hose nipple 3. The strainer screen 10 functions to keep out loose tooling and filter out debris that is carried by a water supply flowing through the fire hydrant water meter (designated 62 in
The check valve 1 includes a check valve actuator 16 to be positioned inwardly of the threaded end 7 of fire hose nipple 3. A movable seal retaining head 20 is located at one end of the check valve actuator 16. A seal 22 is seated within a groove formed around the seal retaining head 20 to prevent the leakage of water past head 20 and through actuator 16 when the check valve 1 is in a closed configuration (of
As an important detail of the one way check valve 1 of this invention, a spring shaft 24 is coextensively connected at one end thereof to the seal retaining head 20 of check valve actuator 16. The opposite end of the spring shaft 24 is coextensively connected to a spring support head 28. A normally relaxed and expanded coil spring 30 is wound around and extends along the spring shaft 24.
The check valve actuator 16 also includes a hollow, cylindrical spring shaft support 32 which, in the assembled configuration of the check valve 1 shown in
A shaft guide channel 40 runs axially through the cylindrical shaft guide 34 to slidably receive therewithin the spring shaft 24. A recess 42 is formed along the shaft guide 34 to engage one end of the coil spring 30. The opposite end of the coil spring 30 is received against the spring support head 28 at the end of spring shaft 24. As will soon be explained, the spring shaft 24 around which the coil spring 30 is wound slides axially through the shaft guide channel 40 of the shaft guide 34 in response to the pressure generated by water flowing against the seal retaining head 20 of check valve actuator 16 from the fire hydrant (designated 60 in
The spring shaft support 32 of check valve actuator 16 is held in place within the threaded end 7 of fire hose nipple 3 by means of a retaining ring 44. As is best shown in
FIGS. 3 to 6 of the drawings show the one way check valve 1 in the assembled configuration. As is best shown in
Referring in this regard to
Referring now to
When the seal retaining head 20 is moved to its open position relative to the stationary spring shaft support 32 as shown in
The check valve 1 will remain in the open configuration shown in
Next, the one way check valve 1 is coupled between the fire hydrant water meter 62 and a conventional fire hose 64. More particularly, a rotational force is applied to the hex fitting 5 of fire hose nipple 3 to cause one threaded end 7 thereof to be mated to the water meter 62 and the opposite threaded end 8 to be mated to the fire hose 64. The fire hose 64 is now connected to the fire truck to be filled with water from the municipal water supply. However, by virtue of the one way check valve 1 herein disclosed, the backflow of contaminated water from the fire truck and the fire hose 64 to the municipal water supply (by way of the water meter 62 and the fire hydrant 60) will be blocked so as to avoid potentially life threatening water-borne microbes and disease from entering the municipal supply.