1. Field of the Invention
The present invention related to a one-way valve. Particularly, it relates to a one-way valve having vacuum breaking and flow-guiding functions. In this invention, the vacuum hole can provide air into the receiving space. The one-way valve saves space. The one-way valve can quickly rotate. And, the one-way valve does not influence the normal water supply.
2. Description of the Prior Art
A typical conventional vacuum breaking device (not shown; for example Pub. No. M240504 in TAIWAN) comprises a three-way pipe, a slidable blocker, and a sealing part. The three-way pipe has a central space communicating with an inlet pipe (extending downward and toward the ground), an outlet pipe (extending horizontally) and an air-supplying pipe (extending upward). The sealing part is disposed on the slidable blocker. The slidable blocker can move up or slide down. When there is no water from the inlet pipe. The slidable blocker will stay at a lower position that can block the inlet pipe due to it own weight. Also, it allows the external air flows into the central space and communicates with the outlet pipe all the time (for vacuum breaking). When water is supplied from the inlet pipe, this slidable blocker will be pushed up to a higher position. At this moment, the water can flow to the outlet pipe (for normal water supply). And, the air-supplying portion is blocked, so the external air cannot flow in.
However, there are some disadvantages and problems:
[1] The slidable blocker cannot slide smoothly. The water usually contains some dirty particles. These particles will influence the smooth movement of the slidable blocker. Thus, it is hard to move the slidable blocker (even it cannot move).
[2] It occupies more space. The slidable blocker occupies space so the entire volume becomes larger.
[3] It cannot work properly if the water pressure in the inlet pipe is small. If the water pressure in the inlet pipe is too small, the slidable blocker cannot work properly.
[4] It will influence the total volume of water supplying. Usually there is an 0-ring (not shown, just a prior art) to prevent water leakage. However, for a long-term use, the O-ring might wear out. Therefore, a water leakage problem occurs. Thus, it will influence the total volume of water supplying.
However, it is desired to design new device to overcome the above-mentioned disadvantages.
The primary object of the present invention is to provide a one-way valve having vacuum breaking and flow-guiding functions. The vacuum hole is always opened for supplying air. That is, the vacuum hole can provide air into the receiving space.
The next object of the present invention is to provide a one-way valve having vacuum breaking and flow-guiding functions. The one-way valve saves space.
Another object of the present invention is to provide a one-way valve having vacuum breaking and flow-guiding functions. The one-way valve can quickly rotate.
The other object of the present invention to provide a one-way valve having vacuum breaking and flow-guiding functions. The one-way valve does not influence the normal water supply.
In order to achieve above objects, this invention provides a one-way valve having vacuum breaking and flow-guiding functions comprising:
a water supplier having at least one first inlet, an outlet and a vacuum valve; said first inlet being disposed on said water supplier to provide water from said outlet; said outlet being disposed on said water supplier and extending to an interior of a vacuum valve; said vacuum valve having two ends, one end of said vacuum valve allowing said water supplier protruding, the other end of said vacuum valve connecting with a water guiding element; said vacuum valve having a receiving space and a vacuum hole communicating with said receiving space;
a circular wing having a channel, a circular flange and a pivoting element; said circular wing being disposed in said receiving space of said vacuum valve, said channel communicating with said outlet, said circular flange mounted on said circular wing and extending outward from said channel and disposed between said water guiding element and said receiving space, a gap being disposed between one end of said circular flange and a wall of said receiving space; and a pivoting portion for pivoting with said one-way valve;
said one-way valve being facing said channel of said circular wing, said one-way valve being pivotable so as to open or close said channel.
This invention is a one-way valve having vacuum breaking and flow-guiding functions. Referring to FIGS. 1 to 3, the first preferred embodiment of this invention mainly comprises a water supplier 10, a circular wing 20, and a one-way valve 30.
About this water supplier 10 (for example a faucet body or the like), it has one first inlet 11, a second inlet 12, an outlet 13 and a vacuum valve 14. The first inlet 11 is disposed on the water supplier 10 to provide water (such as cold water) from the outlet 13. The second inlet 12 is disposed on the water supplier 10 to provide water (such as hot water) from the outlet 13.
The outlet 13 is disposed on the water supplier 10 for providing cold water and hot water. And, it extends to an interior of a vacuum valve 14. This vacuum valve 14 has two ends. One end of the vacuum valve 14 allows the water supplier 10 protruding. The other end of the vacuum valve 14 connects with a water guiding element 141 (for example, a water pipe or a hose). This vacuum valve 14 has a receiving space 142 and a vacuum hole 143 that communicates with the receiving space 142.
With regard to the circular wing 20, it has a channel 21, a circular flange 22 and a pivoting element 23. The circular wing 20 is disposed in the receiving space 142 of the vacuum valve 14.
Furthermore, this channel 21 communicates with the outlet 13 for providing hot water and cold water. The circular flange 22 is mounted on the circular wing 20 and extending outward from the channel 21 and disposed between the water guiding element 141 and the vacuum hole 143. In addition, there is a gap D (as shown in
For the one-way valve 30, it is similar to a plate structure that faces the channel 21 of the circular wing 20. The one-way valve 30 includes at least one pivoting element 31 for pivoting with the pivoting portion 23 so that it can open or close the channel 21. The rotational angle of this one-way valve 30 is substantially less than 90 degrees.
Referring to FIGS. 2 and FIGS. 4 to 6, when water is supplied under a normal condition, the cold water and hot water are provided from the first inlet 11 and the second inlet 12 respectively. Then they are mixed inside the water supplier 10 and then flow through the outlet 13.
Then, the mixed water flows into the channel 21 of the circular wing 20 and push on the one-way valve 30. Therefore, the one-way valve 30 is opened so that the mixed water flows into the receiving space 142 of the vacuum valve 14.
After the mixed water arrives the receiving space 142, it is guided by the water guiding element 141 and then flows out. Usually, the water guiding element 141 is extended, connected or guided to a container 91 (such as a bathtub, sink, or the like). Thus, the mixed water can be provided to a desired place for a user to use it. And, the end of the water guiding element 141 will be positioned at the bottom of the container 91.
However, if cold water and hot water provided from the first and second inlets 11, 12 are suddenly terminated and the position of the outlet 13 is higher than the position of the container 91, the siphon phenomenon will occur. At this moment, because there is no water supply, the one-way valve 30 will be rotated to close the channel 21 (also to block the outlet 13). Thus, it avoids the used (or dirty) water stored in the container 91 flowing back to the outlet 13. Therefore, it also avoids contaminating the public water source due to such unexpected siphon phenomenon.
Meanwhile, the receiving space 142 of the vacuum valve 14 becomes almost vacuum. So, the mixed water will be suck and temporarily stay in the receiving space 142 and the water guiding element 141, until the external air enters the receiving space 142 via the vacuum hole 143. At that time, the vacuum condition in the receiving space 142 is terminated. Then, the mixed water will flow down to container 91 via this water guiding element 141. Thus, it can avoid the mixed water stay in the water guiding element 141.
Moreover, as illustrated in
If the public water supply system is suddenly out of order and the position of the outlet 13 is higher than the position of the container 91, the one-way valve 30 becomes closed. Hence, it will block the outlet 13 and the channel 21. But, there is some water still staying in the water guiding element 141. Due to the water's own weight, the water tends to flow down and then forces the pressure inside the receiving space 142 decreasing.
As shown in
Once the air flows into the receiving space 142 via the gap D, it breaks the vacuum condition in the receiving space 142. Then, the water inside the water guiding element 141 will gradually flow down to the container 91. At this moment, the one-way valve 30 still close the outlet 13 and the channel 21. Once the public water supply system is normal, the one-way valve 13 can be pushed to open and continue the normal operation.
Due to this special design of the present invention, the used water (even contaminated water) in the container 91 is impossible to flow back into the public water supply system, when the public water supply system is suddenly out of order and the siphon phenomenon occurs. In addition, the used water stored in water guiding element 141 will flow down to the container 91.
Practically, the rotatable one-way valve 30 also can be integrally formed on the circular wing 20. It is just an equivalent modification.
The advantages and functions can be summarized as follows:
[1] The vacuum hole can provide air into the receiving space. Based on the design of the circular wing, once pressure in the receiving space is lower then the pressure outside, the external air can be supplied through the vacuum hole. Thus, it immediately generates the vacuum breaking effect.
[2] The one-way valve saves space. In this invention, the one-way valve is just a thin plate that just can cover the outlet and the channel. It just occupies a very small volume. Therefore, it can minimize the total volume of the present invention, specially the size of the vacuum valve.
[3] The one-way valve can quickly rotate. This one-way valve is just a thin plate that can rotate to open or close the outlet and the channel. There is no extra positioning structure. Thus, this one-way vale can swiftly work to avoid the used (or contaminated) water to flow back and then contaminate the public water supply system.
[4] The one-way valve does not influence the normal water supply. Because the one-way valve is just a thin plate without any complicated positioning structure, this one-way valve will be opened by a small mount of water (from the water supply system). It will not influence the normal water supplying.
The above embodiments are only used to illustrate the present invention, not intended to limit the scope thereof. Many modifications of the above embodiments can be made without departing from the spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
093219707 | Dec 2004 | TW | national |