Opaque, electrically nonconductive region on a medical sensor

Information

  • Patent Grant
  • 7869849
  • Patent Number
    7,869,849
  • Date Filed
    Tuesday, September 26, 2006
    17 years ago
  • Date Issued
    Tuesday, January 11, 2011
    13 years ago
Abstract
A medical sensor may be adapted to prevent unwanted light and electrical interference from corrupting physiological measurements. Sensors are provided with features that reduce the amount of outside light or shunted light that impinge the detecting elements of the sensor. The sensor is adapted to reduce crosstalk between electrical signals, increasing the accuracy of measurements. The sensor is also adapted to reduce the effect of outside light or shunted light on pulse oximetry measurements.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.


2. Description of the Related Art


This section is intended to introduce the reader to various aspects of art that may be related to certain aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring many such characteristics of a patient. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.


One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry measures various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient. In fact, the “pulse” in pulse oximetry refers to the time varying amount of arterial blood in the tissue during each cardiac cycle.


Pulse oximeters typically utilize a non-invasive sensor that emits light into a patient's tissue and that photoelectrically detects the absorption and/or scattering of the transmitted light in such tissue. One or more of the above physiological characteristics may then be calculated based upon the amount of light absorbed or scattered. More specifically, the light passed through the tissue is typically selected to be of one or more wavelengths that may be absorbed or scattered by the blood in an amount related to the amount of a particular constituent present in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of the blood constituent in the tissue using various algorithms.


The pulse oximetry measurement depends in part on the assumption that the contribution of light that has not passed through a patient's tissue is negligible. However, outside light may leak into a sensor, causing detection of light that is not related to the amount of blood constituent present in the blood. Additionally, shunted light or light from a sensor's emitter, may be reflected around the exterior of the tissue and may be sensed by the detector without traveling first through the tissue. These light sources may cause measurement variations that result in erroneous blood constituent readings.


Some outside light infiltration into the sensor may be avoided by fitting the sensor snugly against the patient's tissue. However, such a conforming fit may be difficult to achieve over a broad range of patient physiologies without adjustment or excessive attention on the part of medical personnel. Additionally, an overly tight fit may cause local exsanguination of the tissue around the sensor. Exsanguinated tissue, which is devoid of blood, may shunt the sensor light through the tissue, which may also result in increased measurement errors.


External light and shunted light may also be prevented from reaching the sensor by certain coatings applied to the pulse oximetry device. For example, some sensors incorporate reflective coating on the tissue contacting surface to reflect shunted light away from the detector. However, these reflective materials are metal-based, and thus conductive, which may result in capacitive coupling between the emitter and detector. In particular, conductive reflective materials may provide electrical paths between the pulse oximeter's light emitter and the detector. These electrical paths may cause corruption of the detector's measurement signal, resulting in an incorrect reading of more or less absorption of light than is actually transmitted through the patient's tissue. Therefore, noise added to the signal by crosstalk can lead to erroneous physiological measurements.


SUMMARY

Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms that the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.


There is provided a sensor that includes: a sensor body; an emitter disposed on the sensor body, wherein the emitter is adapted to transmit light into tissue; a detector disposed on the sensor body, wherein the detector is adapted to detect the light; and at least one opaque region disposed on a tissue-contacting surface of the sensor body, the opaque region including a substantially electrically nonconductive material.


There is also provided a pulse oximetry system that includes a pulse oximetry monitor and a pulse oximetry sensor adapted to be operatively coupled to the monitor. The sensor includes: a sensor body; and at least one opaque region, the opaque region disposed on a tissue-contacting surface of the sensor body, including a substantially electrically nonconductive material.


There is also provided a method that includes: emitting light into tissue with an emitter; detecting the emitted light with a detector; absorbing light that has not been transmitted from the emitter through the tissue with at least one opaque region, wherein the at least one opaque region includes a substantially electrically nonconductive material; and measuring a physiological characteristic based on the detected light.


There is also provided a method of manufacturing a sensor that includes: providing a sensor body on which at least one sensing element is disposed; and providing at least one opaque region disposed on a tissue-contacting surface of the sensor body, the opaque region includes a nonconductive material.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 illustrates a perspective view of an embodiment of an exemplary bandage-style sensor with an opaque, electrically nonconductive region in accordance with the present invention;



FIG. 2 illustrates a cross-sectional view of an embodiment of an exemplary bandage-style sensor with an opaque, electrically nonconductive region applied to the patient's digit;



FIG. 3 illustrates an exploded view of the sensor of FIG. 1;



FIG. 4 illustrates a perspective view of an embodiment of an exemplary bandage-style sensor with an opaque, electrically nonconductive region disposed between the emitter and detector, in accordance with the present invention;



FIG. 5 illustrates a perspective view of an embodiment of an exemplary bandage-style sensor with an opaque, electrically nonconductive region in accordance with the present invention;



FIG. 6 illustrates a side view of an embodiment of an exemplary clip-style reflectance sensor with an opaque, electrically nonconductive region in accordance with the present invention;



FIG. 7 illustrates a perspective view of an embodiment of an exemplary bandage-style reflectance sensor with an opaque, electrically nonconductive region in accordance with the present invention;



FIG. 8 illustrates a perspective view of an embodiment of an exemplary bandage-style reflectance sensor with an opaque, electrically nonconductive region in accordance with the present invention; and



FIG. 9 illustrates a pulse oximetry system coupled to a multi-parameter patient monitor and a sensor according to embodiments of the present invention.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


It is desirable to eliminate or reduce the possible influence of light sources which may cause errors in pulse oximetry measurements. In accordance with the present techniques, pulse oximetry sensors are provided that reduce the amount of outside light that impinges the detecting elements of a sensor. Such sensors also reduce the amount of “shunted” light, i.e., light originating from light emitting elements of the sensor that impinges the detecting elements of a sensor without first passing through tissue. Sensors according to the present techniques incorporate features, such as a region of opaque material, on or near the tissue-contacting surface of the sensor, to prevent the undesired light from reaching the detecting elements of the sensor. Such regions may absorb, refract, or diffract the light from these undesired light sources before such light can impinge the detecting elements of the sensor.


The present sensors minimize the detection of unwanted external or shunted light to the sensor by application of an opaque, electrically nonconductive material to the body of the sensor. A substantially electrically nonconductive material may reduce electrical paths, interference and crosstalk between electrical signals. An opaque material is one that is substantially impenetrable by light and is not translucent. The opaque characteristics prevent external light from penetrating the region covered by opaque material while also absorbing shunted light.


Pulse oximetry sensors are typically placed on a patient in a location that is normally perfused with arterial blood to facilitate measurement of the desired blood characteristics, such as arterial oxygen saturation measurement (SpO2). The most common sensor sites include a patient's fingertips, toes, earlobes or forehead. Regardless of the placement of a sensor used for pulse oximetry, the reliability of the measurement depends upon accurate detection of transmitted light that has passed through the perfused tissue which has not been supplemented by undesired light sources, such as external light or shunted light. Such supplementation or modulation of the light detected by the sensor can cause errors in the resulting pulse oximetry measurements.


In many cases, light from undesired light sources propagates along an optical path that is distinguishable from the optical path of the emitted light or signal light that is related to a blood constituent. Two common pulse oximetry sensors are the transmission-type sensor and the reflectance-type sensor. In a transmission-type sensor, the sensor's emitter and detector are positioned on opposing sides of the tissue when the sensor is applied to a patient. The optical path of the signal light, which is light originating from the emitter that properly passes through perfused tissue, is substantially in-line with an imaginary axis connecting the emitter and the detector. For reflectance-type sensors, the sensor's emitter and detector generally lie on the same side of the patient's tissue when applied. In reflectance-type sensors, the optical path of the emitted signal light is somewhat more complicated, as the light first enters the perfused tissue and then is scattered back to the detector. In both transmission-type and reflectance-type sensors, shunted light and ambient light generally propagate at angles substantially off-axis from the optical path of the signal light.


The exemplary sensors provided herein include opaque nonconductive regions that act to prevent shunted or external light from impinging on the light detecting elements of a sensor. In certain embodiments, those regions may be disposed on the sensor as layers, patterns, designs or a combination thereof. Specifically, FIG. 1 illustrates a perspective view of an embodiment of an exemplary bandage-style sensor 10A with an opaque, electrically nonconductive region 12 disposed on the sensor body 14. As one with skill in the art understands, the opaque, electrically nonconductive region 12 may be actually touching a patient's tissue, or may be almost touching the patient's tissue, depending on the closeness of the sensor's fit. As depicted, the region 12 is disposed on the entire tissue contacting surface of the sensor body 14, surrounding the emitter 20 and the detector 18. The sensor 10A may be applied to a patient's tissue with adhesive bandages 11. In certain embodiments, the opaque, electrically nonconductive region 12 may also include an adhesive layer configured to couple the region 12 to the patient.


Generally, it is envisioned that the opaque, electrically nonconductive region 12 will cover at least 75% of the tissue contacting surface of sensor body 14. In other embodiments, the opaque, electrically nonconductive region 12 may cover at least 25-65% of the surface area of the sensor body 14. The opaque, electrically nonconductive region 12 may be of variable size and configuration in relation to its placement on the sensor body 14 so as to optimize shielding from unwanted shunted and ambient light. In one embodiment, where the opaque, electrically nonconductive region 12 covers a portion of the tissue contacting surface, it is placed between emitter 20 and detector 18.


Turning to FIG. 2, a cross-sectional view of the sensor 10A is depicted, in which a sensor body 14 including substantially opaque, electrically nonconductive region 12 is applied to a patient's digit 28. As depicted, the region 12 is disposed on a tissue-contacting surface of the sensor body 14. The optical path of signal light originating from the emitter 20 and through a patient's tissue is substantially in-line with an imaginary axis 26 connecting the emitter 20 and the detector 18. The detector 18 detects light and transmits the light measurement in the form of an electrical signal. A small percentage of the light emitted by the emitter 20 may not enter the perfused digit 28. Instead, this light may be shunted around the space between the digit 28 and the sensor body 14. The shunted light, depicted by wavy arrow 38, impinges the opaque, electrically nonconductive region 12, which absorbs the light, thus preventing it from reflecting around the gap between the sensor body 14 and the digit 28 and impinging on the detector 18. External light, depicted by wavy arrow 44, is similarly absorbed by the opaque, electrically nonconductive region 12. It should be understood that the gap between the sensor body 14 and the digit 28 may be very small for a sensor body 14 that conforms closely to the digit 28. Further, the gap may be discontinuous when interrupted by points where the sensor body 14 is touching the digit 28. The opaque region 12 reduces the overall reflectivity of the sensor body 14 on the tissue-contacting surface, which may reduce the amount of shunted light that reaches the detector 18. In addition, the substantially electrically nonconductive characteristic of region 12 reduces electrical interference and crosstalk between signals from the emitter 20 and detector 18, which may result in a reduction of measurement errors.


In certain embodiments, the opaque, electrically nonconductive region 12 as provided herein may include a material that may absorb at least about 90% to at least 95% of one or more wavelengths of visible light and near-infrared light. An opaque material may also absorb at least 50% of one or more wavelengths of light from the emitter, or may absorb a range of 50% to 95% of one or more wavelengths of light from the emitter. Examples of materials that may be used for the opaque, electrically nonconductive region 12 include nonconductive polymers, pigments, epoxy, fabrics (e.g. polyester-based materials) and silicone-based materials. The region 12 may be black or substantially dark in color. However, a thick light-colored region may also be sufficiently opaque. An opaque, electrically nonconductive region 12 may be applied to the sensor body 14 by painting, printing, or impregnating a film on the sensor body 14, or by adhesively applying the region 12 as a layer to the sensor body 14. The opaque, electrically nonconductive region 12 can be of variable thickness and may be one or more layers, depending upon the materials or application technique selected. The opaque, electrically nonconductive region 12 may be generally flexible, so as to allow the sensor 10 to conform to the patient's tissue. In certain embodiments, the opaque, electrically nonconductive region 12 is approximately 0.5 to 2.5 mils thick.


For example, FIG. 3 illustrates an exploded view of an embodiment of the bandage-style sensor 10A with an opaque, electrically nonconductive region 12 disposed on the sensor body 14. In certain embodiments, the emitter 20 and the detector 18 may be placed between the sensor body 14 and the opaque, electrically nonconductive region 12, protruding through holes in the opaque, electrically nonconductive region 12. The emitter 20 and detector 18 have leads 19 which connect the sensor 10A to the pulse oximetry system. As depicted, leads 19 are positioned near the center of sensor body 14, connecting the emitter 20 and detector 18 to a monitoring device. The opaque, electrically nonconductive region 12 is disposed to shield the leads 19, the emitter 20 and the detector 18, reducing crosstalk between signals.


In certain embodiments, it may be advantageous to place opaque regions of differing patterns or designs on the sensor body. For example, FIG. 4 and FIG. 5 illustrate perspective views of bandage-style sensors with opaque nonconductive regions disposed on the sensor body. FIG. 4 illustrates a sensor 10B where the opaque, electrically nonconductive region 13 is disposed on the sensor body 14 between the emitter 20 and the detector 18. In an alternative embodiment, FIG. 5 illustrates a sensor 10C where the opaque, electrically nonconductive region 15, disposed on the sensor body 14, surrounds the emitter 20 and the detector 18. FIGS. 4 and 5 both depict adhesive bandages 11 for affixing the sensor to the patient's digit.



FIG. 6 illustrates a side view of an embodiment of an exemplary clip-style reflectance sensor 50 with the opaque, electrically nonconductive region 54 disposed on the sensor body 52. In certain embodiments, the opaque, electrically nonconductive region 54 may be disposed on the entire tissue-contacting surface of the portion of the sensor body 52 where an emitter 58 and a detector 56 are disposed. As the emitted light, depicted by wavy arrow 55, strikes the opaque region 54, it is absorbed, preventing the unwanted light from impinging the detector 56. As stated above, it is desirable to avoid detection of the emitted light 55 as it has not traveled through the patient's tissue. The opaque, electrically nonconductive region 54 is disposed to shield the wire leads (not shown) to the emitter 58 and detector 56, reducing crosstalk between signals that may be transmitted to a downstream monitoring device, discussed below.


In another embodiment, FIG. 7 illustrates a perspective view of an exemplary bandage-style forehead sensor 60A with an opaque, electrically nonconductive region 64 disposed on a sensor body 62. The opaque, electrically nonconductive region 64 may be disposed on the entire tissue-contacting surface of the sensor body 62, surrounding emitter 68 and the detector 66. Alternatively, FIG. 8 illustrates an embodiment of an exemplary bandage-style reflectance sensor 60B with an opaque, electrically nonconductive region 84 disposed on a portion of the sensor body 82. As shown, the opaque, electrically nonconductive region 84 surrounds an emitter 88 and a detector 86. FIGS. 7 and 8 depict adhesive bandages 61 and 81, respectively, for affixing the sensor to the patient's tissue.


A sensor as provided herein, illustrated generically as a sensor 10, may be used in conjunction with a pulse oximetry monitor 116, as illustrated in FIG. 9. It should be appreciated that the cable 118 of the sensor 10 may be coupled to the monitor 116 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the sensor 10 and the monitor 116. The monitor 116 may be any suitable pulse oximeter, such as those available from Nellcor Inc. Furthermore, to upgrade conventional pulse oximetry provided by the monitor 116 to provide additional functions, the monitor 116 may be coupled to a multi-parameter patient monitor 120 via a cable 122 connected to the sensor input port or via a cable 124 connected to a digital communication port.


The sensor 10 includes an emitter 128 and a detector 126 that may be of any suitable type. For example, the emitter 128 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light in the red to infrared range, and the detector 126 may be a photodetector selected to receive light in the range or ranges emitted from the emitter 128. For pulse oximetry applications using either transmission or reflectance type sensors, the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other applications, a tissue water fraction (or other body fluid related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light, most commonly near infrared wavelengths between about 1,000 nm to about 2,500 nm. It should be understood that, as used herein, the term “light” may refer to one or more of infrared, visible, ultraviolet, or even X-ray electromagnetic radiation, and may also include any wavelength within the infrared, visible, ultraviolet, or X-ray spectra.


The emitter 128 and the detector 126 may be disposed on a sensor body 130, which may be made of any suitable material, such as plastic, rubber, silicone, foam, woven material, or paper. Alternatively, the emitter 128 and the detector 126 may be remotely located and optically coupled to the sensor 10 using optical fibers. In the depicted embodiments, the sensor 10 is coupled to a cable 118 that is responsible for transmitting electrical and/or optical signals to and from the emitter 128 and detector 126 of the sensor 10. The cable 118 may be permanently coupled to the sensor 10, or it may be removably coupled to the sensor 10—the latter alternative being more useful and cost efficient in situations where the sensor 10 is disposable.


The sensor 10 may be a “transmission type” sensor. Transmission type sensors include an emitter 128 and detector 126 that are typically placed on opposing sides of the sensor site. If the sensor site is a fingertip, for example, the sensor 10 is positioned over the patient's fingertip such that the emitter 128 and detector 126 lie on either side of the patient's nail bed. In other words, the sensor 10 is positioned so that the emitter 128 is located on the patient's fingernail and the detector 126 is located 180° opposite the emitter 128 on the patient's finger pad. During operation, the emitter 128 shines one or more wavelengths of light through the patient's fingertip and the light received by the detector 126 is processed to determine various physiological characteristics of the patient. In each of the embodiments discussed herein, it should be understood that the locations of the emitter 128 and the detector 126 may be exchanged. For example, the detector 126 may be located at the top of the finger and the emitter 128 may be located underneath the finger. In either arrangement, the sensor 10 will perform in substantially the same manner.


Reflectance type sensors generally operate under the same general principles as transmittance type sensors. However, reflectance type sensors include an emitter 128 and detector 126 that are typically placed on the same side of the sensor site. For example, a reflectance type sensor may be placed on a patient's fingertip or forehead such that the emitter 128 and detector 126 lay side-by-side. Reflectance type sensors detect light photons that are scattered back to the detector 126.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Indeed, the present techniques may not only be applied to measurements of blood oxygen saturation, but these techniques may also be utilized for the measurement and/or analysis of other blood constituents using principles of pulse oximetry. For example, using the same, different, or additional wavelengths, the present techniques may be utilized for the measurement and/or analysis of carboxyhemoglobin, met-hemoglobin, total hemoglobin, intravascular dyes, and/or water content. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims
  • 1. A sensor comprising: a sensor body supporting respective electrical connectors connected to an emitter and a detector, wherein the emitter and the detector are disposed on a tissue-contacting surface of the sensor body; andat least one opaque member disposed on the sensor body and spanning only a portion of the sensor body between the emitter and the detector, the opaque member comprising a substantially electrically nonconductive material, and wherein the opaque member does not surround the emitter and detector.
  • 2. The sensor, as set forth in claim 1, wherein the sensor comprises at least one of a pulse oximetry sensor or a sensor for measuring a water fraction.
  • 3. The sensor, as set forth in claim 1, wherein the at least one opaque member comprises a polyester-based material.
  • 4. The sensor, as set forth in claim 1, wherein the at least one opaque member comprises a silicone-based material.
  • 5. The sensor, as set forth in claim 1, wherein the at least one opaque member is conformable to the tissue.
  • 6. The sensor, as set forth in claim 1, wherein the emitter comprises at least one light emitting diode and the detector comprises at least one photodetector.
  • 7. The sensor, as set forth in claim 1, wherein the at least one opaque member is substantially dark in color.
  • 8. The sensor, as set forth in claim 1, wherein the at least one opaque member is substantially light in color.
  • 9. A pulse oximetry system comprising: a pulse oximetry monitor; anda pulse oximetry sensor adapted to be operatively coupled to the monitor, the sensor comprising:a sensor body; andat least one opaque member disposed on the sensor body and covering at least a portion of the sensor body supporting respective electrical leads coupled to an emitter and a detector, the opaque member comprising a substantially electrically nonconductive material, and wherein the opaque member does not surround the emitter and detector.
  • 10. The system, as set forth in claim 9, wherein the pulse oximetry sensor transmits an electrical signal, wherein the electrical signal comprises at least one measurement.
  • 11. The system, as set forth in claim 9, wherein the at least one opaque member is disposed on at least 90% the sensor body.
  • 12. The system, as set forth in claim 9, wherein the at least one opaque member is adhesively disposed on the sensor body.
  • 13. The system, as set forth in claim 9, wherein the at least one opaque member comprises a polyester-based material.
  • 14. The system, as set forth in claim 9, wherein the at least one opaque member comprises a silicone-based material.
  • 15. The system, as set forth in claim 9, wherein the at least one opaque member comprises an adhesive material adapted to contact the tissue.
  • 16. The system, as set forth in claim 9, wherein the at least one opaque member is conformable to patient tissue.
  • 17. The system, as set forth in claim 9, wherein the emitter comprises at least one light emitting diode and the detector comprises at least one photodetector.
  • 18. The system, as set forth in claim 9, wherein the pulse oximetry system comprises a multi-parameter monitor.
  • 19. A method comprising: emitting light into tissue with an emitter;detecting the emitted light with a detector;absorbing light that has not been transmitted from the emitter through the tissue with at least one opaque member disposed on a sensor body and covering at least a portion of the sensor body supporting respective electrical leads coupled to the emitter and the detector, wherein the at least one opaque member comprises a substantially electrically nonconductive material and wherein the opaque member does not surround the emitter and detector; andmeasuring a physiological characteristic based on the detected light.
  • 20. The method, as set forth in claim 19, wherein the at least one opaque member is adhesively disposed on the sensor body.
  • 21. The method, as set forth in claim 20, wherein the at least one opaque member is disposed on a tissue-contacting surface of the sensor body.
  • 22. The method, as set forth in claim 19, wherein the sensor comprises at least one of a pulse oximetry sensor or a sensor for measuring a water fraction.
  • 23. The method, as set forth in claim 19, wherein the at least one opaque member comprises a polyester-based material.
  • 24. The method, as set forth in claim 19, wherein the at least one opaque member comprises a silicone-based material.
  • 25. A method of manufacturing a sensor, comprising: providing a sensor body supporting respective electrical connectors coupled to an emitter and a detector, wherein the emitter and the detector are disposed on the sensor body; andproviding at least one opaque member disposed on the sensor body and spanning only a portion of the sensor body in a region between the emitter and the detector, the opaque member comprising a substantially electrically nonconductive material, and wherein the opaque member does not surround the emitter and detector.
  • 26. The method, as set forth in claim 25, wherein providing the emitter comprises providing one or more light emitting diodes and providing the detector comprises providing one or more photodetectors.
  • 27. The method, as set forth in claim 25, wherein the sensor comprises at least one of a pulse oximetry sensor or a sensor for measuring a water fraction.
  • 28. The method, as set forth in claim 25, wherein providing the at least one opaque member comprises adhesively disposing the opaque region on the sensor body.
  • 29. The method, as set forth in claim 25, wherein providing the at least one opaque member comprises providing a polyester-based material.
  • 30. The method, as set forth in claim 25, wherein providing the at least one opaque member comprises providing a silicone-based material.
  • 31. The method, as set forth in claim 25, comprising providing an adhesive material on the opaque member adapted to contact the tissue.
US Referenced Citations (881)
Number Name Date Kind
3403555 Versaci et al. Oct 1968 A
3536545 Traynor et al. Oct 1970 A
D222454 Beeber Oct 1971 S
3721813 Condon et al. Mar 1973 A
4098772 Bonk et al. Jul 1978 A
D250275 Bond Nov 1978 S
D251387 Ramsay et al. Mar 1979 S
D262488 Rossman et al. Dec 1981 S
4334544 Hill et al. Jun 1982 A
4350165 Striese Sep 1982 A
4353372 Ayer Oct 1982 A
4380240 Jobsis et al. Apr 1983 A
4406289 Wesseling et al. Sep 1983 A
4510551 Brainard, II Apr 1985 A
4586513 Hamaguri May 1986 A
4603700 Nichols et al. Aug 1986 A
4621643 New, Jr. et al. Nov 1986 A
4653498 New, Jr. et al. Mar 1987 A
4677528 Miniet Jun 1987 A
4685464 Goldberger et al. Aug 1987 A
4694833 Hamaguri Sep 1987 A
4697593 Evans et al. Oct 1987 A
4700708 New, Jr. et al. Oct 1987 A
4714080 Edgar, Jr. et al. Dec 1987 A
4714341 Hamaguri et al. Dec 1987 A
4722120 Lu Feb 1988 A
4726382 Boehmer et al. Feb 1988 A
4759369 Taylor Jul 1988 A
4770179 New, Jr. et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4776339 Schreiber Oct 1988 A
4781195 Martin Nov 1988 A
4783815 Buttner Nov 1988 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hansmann et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE033643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5035243 Muz Jul 1991 A
5040539 Schmitt et al. Aug 1991 A
5041187 Hink et al. Aug 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5086229 Rosenthal et al. Feb 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H1039 Tripp et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
D326715 Schmidt Jun 1992 S
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5158082 Jones Oct 1992 A
5170786 Thomas et al. Dec 1992 A
5188108 Secker et al. Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218207 Rosenthal Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246002 Prosser Sep 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Friedman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5267566 Choucair et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5278627 Aoyagi et al. Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Friedman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5323776 Blakely et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5348005 Merrick et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5402779 Chen et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5465714 Scheuing Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE035122 Corenman et al. Dec 1995 E
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5511546 Hon Apr 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz et al. Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619991 Sloane Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645060 Yorkey et al. Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5664270 Bell et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
5724967 Venkatachalam Mar 1998 A
5727547 Levinson et al. Mar 1998 A
5730124 Yamauchi Mar 1998 A
5731582 West Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743260 Chung et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5752914 Delonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5766125 Aoyagi et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5774213 Trebino et al. Jun 1998 A
5776058 Levinson et al. Jul 1998 A
5776059 Kaestle Jul 1998 A
5779630 Fein et al. Jul 1998 A
5779631 Chance Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5782758 Ausec et al. Jul 1998 A
5786592 Hök Jul 1998 A
5788634 Suda et al. Aug 1998 A
5790729 Pologe et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5795292 Lewis et al. Aug 1998 A
5797841 DeLonzor et al. Aug 1998 A
5800348 Kaestle Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5807248 Mills Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5813980 Levinson et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827179 Lichter et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5829439 Yokosawa et al. Nov 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE036000 Swedlow et al. Dec 1998 E
5842979 Jarman et al. Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5957840 Terasawa et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983120 Groner et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6055447 Well Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078829 Uchida Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6104939 Groner Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6151107 Schöllermann et al. Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6159147 Lichter et al. Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6179159 Gurley Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllermann et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6213952 Finarov et al. Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6223064 Lynn Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter et al. May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab et al. May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grinblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6263223 Sheperd et al. Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6342039 Lynn Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
D455834 Donars et al. Apr 2002 S
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6371921 Caro Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377829 Al-Ali et al. Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddar et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenster May 2002 B1
6393311 Edgar, Jr. et al. May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6400973 Winter Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6421549 Jacques Jul 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6434408 Heckel et al. Aug 2002 B1
6438396 Cook Aug 2002 B1
6438399 Kurth Aug 2002 B1
6449501 Reuss Sep 2002 B1
6453183 Walker Sep 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6456862 Benni Sep 2002 B2
6461305 Schnall Oct 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6480729 Stone Nov 2002 B2
6490466 Fein et al. Dec 2002 B1
6493568 Bell Dec 2002 B1
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6510331 Williams et al. Jan 2003 B1
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6546267 Sugiura et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6554788 Hunley Apr 2003 B1
6556852 Schulze et al. Apr 2003 B1
6560470 Pologe May 2003 B1
6564077 Mortara May 2003 B2
6564088 Soller et al. May 2003 B1
6571113 Fein et al. May 2003 B1
6571114 Koike et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587703 Cheng et al. Jul 2003 B2
6587704 Fine et al. Jul 2003 B1
6589172 Williams et al. Jul 2003 B2
6591122 Schmitt Jul 2003 B2
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6594512 Huang Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6597931 Cheng et al. Jul 2003 B1
6597933 Kiani et al. Jul 2003 B2
6600940 Fein et al. Jul 2003 B1
6606510 Swedlow et al. Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6606512 Muz et al. Aug 2003 B2
6608562 Kimura et al. Aug 2003 B1
6609016 Lynn Aug 2003 B1
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6618602 Levin Sep 2003 B2
6622034 Gorski et al. Sep 2003 B1
6628975 Fein et al. Sep 2003 B1
6631281 Kästle Oct 2003 B1
6632181 Flaherty Oct 2003 B2
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6643531 Katarow Nov 2003 B1
6647279 Pologe Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650916 Cook Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6650918 Terry Nov 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654623 Kästle Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6658277 Wassermann Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668182 Hubelbank Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6675031 Porges et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694160 Chin Feb 2004 B2
6697653 Hanna Feb 2004 B2
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE038476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6699199 Asada et al. Mar 2004 B2
6701170 Stetson Mar 2004 B2
6702752 Dekker Mar 2004 B2
6707257 Norris Mar 2004 B2
6708049 Berson et al. Mar 2004 B1
6709402 Dekker Mar 2004 B2
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6712762 Lichter Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE038492 Diab et al. Apr 2004 E
6719686 Coakley et al. Apr 2004 B2
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725074 Kästle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6731962 Katarow May 2004 B1
6731963 Finarov et al. May 2004 B2
6731967 Turcott May 2004 B1
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 O'Neill et al. Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6760609 Jacques Jul 2004 B2
6760610 Tscupp et al. Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6763256 Kimball et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6791689 Weckstrom Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6802812 Walker et al. Oct 2004 B1
6805673 Dekker Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6839659 Tarassenko et al. Jan 2005 B2
6842635 Parker Jan 2005 B1
6845256 Chin et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6850789 Schweitzer, Jr. et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6863652 Huang et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6879850 Kimball Apr 2005 B2
6882874 Huiku Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6909912 Melker et al. Jun 2005 B2
6912413 Rantala et al. Jun 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931269 Terry Aug 2005 B2
6934570 Kiani et al. Aug 2005 B2
6941162 Fudge et al. Sep 2005 B2
6947781 Asada et al. Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6954664 Sweitzer Oct 2005 B2
6968221 Rosenthal Nov 2005 B2
6979812 Al-Ali Dec 2005 B2
6983178 Fine et al. Jan 2006 B2
6985763 Boas et al. Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6990426 Yoon et al. Jan 2006 B2
6992751 Okita et al. Jan 2006 B2
6992772 Block Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6993372 Fine et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7006856 Baker, Jr. et al. Feb 2006 B2
7016715 Stetson Mar 2006 B2
7020507 Scharf et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7024235 Melker et al. Apr 2006 B2
7025728 Ito et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7027850 Wasserman Apr 2006 B2
7039449 Al-Ali May 2006 B2
7043289 Fine et al. May 2006 B2
7047055 Boas et al. May 2006 B2
7060035 Wasserman Jun 2006 B2
7062307 Norris et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7072701 Chen et al. Jul 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
7079880 Stetson Jul 2006 B2
7085597 Fein et al. Aug 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7123950 Mannheimer Oct 2006 B2
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7133711 Chernoguz et al. Nov 2006 B2
7139559 Kenagy et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7127278 Melker et al. Dec 2006 B2
7162288 Nordstrom et al. Jan 2007 B2
7190987 Kindekugel et al. Mar 2007 B2
7198778 Achilefu et al. Apr 2007 B2
7215984 Diab et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
7228161 Chin Jun 2007 B2
7236811 Schmitt et al. Jun 2007 B2
7248910 Li et al. Jul 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7280858 Al-Ali et al. Oct 2007 B2
7295866 Al-Ali Nov 2007 B2
7305262 Brodnick et al. Dec 2007 B2
7313427 Benni Dec 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
7369886 DeLonzor et al. May 2008 B2
7373188 DeLonzor et al. May 2008 B2
7373189 DeLonzor et al. May 2008 B2
7373190 DeLonzor et al. May 2008 B2
7373191 DeLonzor et al. May 2008 B2
7389130 DeLonzor et al. Jun 2008 B2
7561905 DeLonzor et al. Jul 2009 B2
20020016537 Muz et al. Feb 2002 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Shepherd et al. Mar 2002 A1
20020038078 Ito Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020068859 Knopp Jun 2002 A1
20020072681 Schnall Jun 2002 A1
20020103423 Chin et al. Aug 2002 A1
20020116797 Modgil et al. Aug 2002 A1
20020128544 Diab et al. Sep 2002 A1
20020133067 Jackson, III Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020173706 Takatani Nov 2002 A1
20020190863 Lynn Dec 2002 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030073889 Keilbach et al. Apr 2003 A1
20030073890 Hanna Apr 2003 A1
20030100840 Sugiura et al. May 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030197679 Ali et al. Oct 2003 A1
20030212316 Leiden et al. Nov 2003 A1
20030225323 Kiani et al. Dec 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040024326 Yeo et al. Feb 2004 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040039273 Terry Feb 2004 A1
20040054291 Schulz et al. Mar 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040092805 Yarita May 2004 A1
20040097797 Porges et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040117891 Hannula et al. Jun 2004 A1
20040147824 Diab et al. Jul 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040167381 Lichter Aug 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204865 Lee et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040215085 Schnall Oct 2004 A1
20040236196 Diab et al. Nov 2004 A1
20050004479 Townsend et al. Jan 2005 A1
20050014999 Rahe-Meyer Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050033131 Chen Feb 2005 A1
20050043599 O'Mara Feb 2005 A1
20050043600 Diab et al. Feb 2005 A1
20050049468 Carlson Mar 2005 A1
20050070773 Chin Mar 2005 A1
20050075546 Samsoondar Apr 2005 A1
20050075550 Lindekugel Apr 2005 A1
20050085704 Schulz Apr 2005 A1
20050090720 Wu Apr 2005 A1
20050197548 Dietiker Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050256386 Chan Nov 2005 A1
20050272986 Smith Dec 2005 A1
20050277819 Kiani et al. Dec 2005 A1
20060020179 Anderson Jan 2006 A1
20060030764 Porges Feb 2006 A1
20060058594 Ishizuka et al. Mar 2006 A1
20060074280 Martis Apr 2006 A1
20060084852 Mason et al. Apr 2006 A1
20060084878 Banet Apr 2006 A1
20060089547 Sarussi Apr 2006 A1
20060106294 Maser et al. May 2006 A1
20060122517 Banet Jun 2006 A1
20060129039 Lindner Jun 2006 A1
20060155198 Schmid Jul 2006 A1
20060173257 Nagai Aug 2006 A1
20060229508 Kermani et al. Oct 2006 A1
20070032710 Raridan et al. Feb 2007 A1
20070032712 Raridan et al. Feb 2007 A1
20070032715 Eghbal et al. Feb 2007 A1
20070060808 Hoarau Mar 2007 A1
20070073117 Raridan Mar 2007 A1
20070073121 Hoarau et al. Mar 2007 A1
20070073122 Hoarau Mar 2007 A1
20070073123 Raridan Mar 2007 A1
20070073125 Hoarau et al. Mar 2007 A1
20070073126 Raridan Mar 2007 A1
20070073128 Hoarau Mar 2007 A1
20070078315 Kling et al. Apr 2007 A1
20070078316 Hoarau Apr 2007 A1
20070260129 Chin Nov 2007 A1
20070260130 Chin Nov 2007 A1
20070260131 Chin Nov 2007 A1
20070299328 Chin et al. Dec 2007 A1
Foreign Referenced Citations (193)
Number Date Country
3405444 Aug 1985 DE
3516338 Nov 1986 DE
3703458 Aug 1988 DE
3938759 May 1991 DE
4210102 Sep 1993 DE
4423597 Aug 1995 DE
19632361 Feb 1997 DE
69123448 May 1997 DE
19703220 Jul 1997 DE
19640807 Sep 1997 DE
19647877 Apr 1998 DE
10030862 Jan 2002 DE
20318882 Apr 2004 DE
0127947 May 1984 EP
00194105 Sep 1986 EP
00204459 Dec 1986 EP
0262779 Apr 1988 EP
0315040 Oct 1988 EP
0314331 May 1989 EP
00352923 Jan 1990 EP
0360977 Apr 1990 EP
00430340 Jun 1991 EP
0435500 Jul 1991 EP
0572684 May 1992 EP
00497021 Aug 1992 EP
0529412 Aug 1992 EP
0531631 Sep 1992 EP
0566354 Apr 1993 EP
0587009 Aug 1993 EP
00630203 Sep 1993 EP
0572684 Dec 1993 EP
00615723 Sep 1994 EP
00702931 Mar 1996 EP
00724860 Aug 1996 EP
00793942 Sep 1997 EP
0864293 Sep 1998 EP
01006863 Oct 1998 EP
01006864 Oct 1998 EP
0875199 Nov 1998 EP
00998214 Dec 1998 EP
0898933 Mar 1999 EP
01332713 Aug 2003 EP
01469773 Aug 2003 EP
1502529 Jul 2004 EP
01491135 Dec 2004 EP
2685865 Jan 1992 FR
2259545 Mar 1993 GB
63275325 Nov 1988 JP
2013450 Jan 1990 JP
2111343 Apr 1990 JP
02191434 Jul 1990 JP
2237544 Sep 1990 JP
3170866 Jul 1991 JP
03173536 Jul 1991 JP
3245042 Oct 1991 JP
4174648 Jun 1992 JP
4191642 Jul 1992 JP
4332536 Nov 1992 JP
3124073 Mar 1993 JP
5049624 Mar 1993 JP
5049625 Mar 1993 JP
3115374 Apr 1993 JP
2005200031 Aug 1993 JP
05200031 Aug 1993 JP
5212016 Aug 1993 JP
06014906 Jan 1994 JP
6016774 Mar 1994 JP
3116255 Apr 1994 JP
6029504 Apr 1994 JP
6098881 Apr 1994 JP
06154177 Jun 1994 JP
6269430 Sep 1994 JP
6285048 Oct 1994 JP
7001273 Jan 1995 JP
7124138 May 1995 JP
7136150 May 1995 JP
3116259 Jun 1995 JP
3116260 Jun 1995 JP
7155311 Jun 1995 JP
7155313 Jun 1995 JP
3238813 Jul 1995 JP
7171139 Jul 1995 JP
3134144 Sep 1995 JP
7236625 Sep 1995 JP
7246191 Sep 1995 JP
8256996 Oct 1996 JP
9192120 Jul 1997 JP
10216113 Aug 1998 JP
10216114 Aug 1998 JP
10216115 Aug 1998 JP
10337282 Dec 1998 JP
11019074 Jan 1999 JP
11155841 Jun 1999 JP
11188019 Jul 1999 JP
11244268 Sep 1999 JP
20107157 Apr 2000 JP
20237170 Sep 2000 JP
21245871 Sep 2001 JP
22224088 Aug 2002 JP
22282242 Oct 2002 JP
23153881 May 2003 JP
23153882 May 2003 JP
23169791 Jun 2003 JP
23194714 Jul 2003 JP
23210438 Jul 2003 JP
23275192 Sep 2003 JP
23339678 Dec 2003 JP
24008572 Jan 2004 JP
24089546 Mar 2004 JP
24113353 Apr 2004 JP
24135854 May 2004 JP
24148069 May 2004 JP
24148070 May 2004 JP
24159810 Jun 2004 JP
24166775 Jun 2004 JP
24194908 Jul 2004 JP
24202190 Jul 2004 JP
24248819 Sep 2004 JP
24248820 Sep 2004 JP
24261364 Sep 2004 JP
24290412 Oct 2004 JP
24290544 Oct 2004 JP
24290545 Oct 2004 JP
24329406 Nov 2004 JP
24329607 Nov 2004 JP
24329928 Nov 2004 JP
24337605 Dec 2004 JP
24344367 Dec 2004 JP
24351107 Dec 2004 JP
25034472 Feb 2005 JP
WO 9001293 Feb 1990 WO
WO 9004352 May 1990 WO
WO 9101678 Feb 1991 WO
WO 9111137 Aug 1991 WO
WO 9200513 Jan 1992 WO
WO 9221281 Dec 1992 WO
WO 9309711 May 1993 WO
WO 9313706 Jul 1993 WO
WO 9316629 Sep 1993 WO
WO 9403102 Feb 1994 WO
WO 9423643 Oct 1994 WO
WO 9502358 Jan 1995 WO
WO 9512349 May 1995 WO
WO 9516970 Jun 1995 WO
WO 9613208 May 1996 WO
WO 9639927 Dec 1996 WO
WO 9736536 Oct 1997 WO
WO 9736538 Oct 1997 WO
WO 9749330 Dec 1997 WO
WO 9809566 Mar 1998 WO
WO 9817174 Apr 1998 WO
WO 9818382 May 1998 WO
WO 9843071 Oct 1998 WO
WO 9851212 Nov 1998 WO
WO 9857577 Dec 1998 WO
WO 9900053 Jan 1999 WO
WO 9932030 Jul 1999 WO
WO 9947039 Sep 1999 WO
WO 9963884 Dec 1999 WO
WO 0021438 Apr 2000 WO
WO 0028888 May 2000 WO
WO 0059374 Oct 2000 WO
WO 0113790 Mar 2001 WO
WO 0116577 Mar 2001 WO
WO 0117421 Mar 2001 WO
WO 0147426 Mar 2001 WO
WO 0140776 Jun 2001 WO
WO 0167946 Sep 2001 WO
WO 0176461 Oct 2001 WO
WO 0214793 Feb 2002 WO
WO 0235999 May 2002 WO
WO 02062213 Aug 2002 WO
WO 02074162 Sep 2002 WO
WO 02085202 Oct 2002 WO
WO 03000125 Jan 2003 WO
WO 03001180 Jan 2003 WO
WO 03009750 Feb 2003 WO
WO 03011127 Feb 2003 WO
WO 03020129 Mar 2003 WO
WO 03039326 May 2003 WO
WO 03063697 Aug 2003 WO
WO 03073924 Sep 2003 WO
WO 04000114 Dec 2003 WO
WO 2004006748 Jan 2004 WO
WO 2004069046 Aug 2004 WO
WO 2004075746 Sep 2004 WO
WO 2005002434 Jan 2005 WO
WO 2005009221 Feb 2005 WO
WO 2005010567 Feb 2005 WO
WO 2005010568 Feb 2005 WO
WO 2005020120 Mar 2005 WO
WO 2005065540 Jul 2005 WO
WO 2006104790 Oct 2006 WO
Related Publications (1)
Number Date Country
20080076982 A1 Mar 2008 US