Multiple-spool control valves generally comprise a plurality of directional control valve sections, each provided with a shiftable control spool controlling fluid flow to one or more hydraulic actuators. The valve sections are sandwiched between inlet and outlet end sections having ports connectable with a source of fluid and a low pressure reservoir. Open-center type assemblies permit continuous open-center flow transversely through the valve assembly from the inlet to the outlet when all the spools are in neutral non-operative positions. Upon shifting a control spool to divert the fluid to actuate the associated actuator, the spool variably restricts or shuts off the open-center flow.
Pressure drop across a valve assembly as fluid flows through the valve is associated with power loss. An improved design that reduces pressure drop may thus be desirable.
In examples, the valve assembly may be placed on a vehicle to control various actuators of the vehicle. Various hoses and plumbing components are connected to the various valve sections. Orientation of the workports of the valve assembly that are connected to the actuators affects the complexity of plumbing and thus affects reliability and failure rates. Thus, orientating the workports in a particular direction may reduce complexity of plumbing. However, such change in orientation of workports affects layout of fluid passages and coring design inside the valve sections.
Another concern with spool valves involves spool bore distortion. Valve sections may have longitudinal bores therein to accommodate spools that are shiftable in the bores. When high pressure fluid flows through the internal passages of the valve section, the longitudinal bore that accommodates the spool may be distorted under pressure. Such distortion may cause the spool to bind and may thus hinder actuation of the spool. It may thus be desirable to design the valve sections and layout of internal passages in a manner that reduces impact of high pressure fluid on internal walls of the valve section so as to reduce distortion.
In examples, valve sections are equipped with pressure relief valves that are normally closed, but are configured to open a fluid path to a reservoir when pressure level associated with a given workport exceeds a predetermined pressure value. In this manner, the actuators controlled by the valve assembly are protected from high pressure levels that could cause damage. In examples, a respective relief valve is associated with each workport. For instance, if there are two workports in each valve section communicating fluid to and from respective chambers of a hydraulic actuator, two relief valves are installed in the valve, one relief valve for each workport. Having a relief valve for each workport is costly, and it may thus be desirable to have a single relief valve protecting both chambers of the actuators.
The present disclosure describes implementations that relate to an open center control valve. In a first example implementation, the present disclosure describes a valve section. The valve section includes a housing having: (i) a longitudinal bore, (ii) a first and second workport passages intercepting the longitudinal bore and configured to be fluidly coupled to an actuator, (iii) a first and second return passages intercepting the longitudinal bore, where the first and second workport passages are disposed between the first and second return passages, (iv) an open-center passage intercepting the longitudinal bore and configured to be fluidly coupled to a source of fluid, and (v) a supply passage intercepting the longitudinal bore and disposed between the first and second workport passages, where the supply passage, the first and second workport passages, and the first and second return passages are disposed on one side of the open-center passage. The valve section also includes a spool movable in the longitudinal bore to shift between: (i) a neutral position that allows the open-center passage to permit fluid flow therethrough, and (ii) a shifted position that allows fluid to be diverted from the open-center passage to the supply passage, and connects the supply passage to either the first or second workport passage while connecting the other workport passage to a corresponding return passage of the first and second return passages.
In a second example implementation, the present disclosure describes a valve assembly. The valve assembly includes a first end section having: (i) an inlet port configured to be fluidly coupled to a source of fluid, and (ii) a first outlet port configured to be fluidly coupled to a reservoir. The valve assembly also includes a second end section having a second outlet port configured to be fluidly coupled to the reservoir. The valve assembly further includes a plurality of valve sections positioned between the first end section and the second end section. Each valve section of the plurality of valve sections includes a housing having: (i) a longitudinal bore, (ii) a first and second workport passages intercepting the longitudinal bore and configured to be fluidly coupled to an actuator, (iii) a first and second return passages intercepting the longitudinal bore and connected to the first outlet port and the second outlet port, where the first and second workport passages are disposed between the first and second return passages, (iv) an open-center passage intercepting the longitudinal bore and configured to be connected to the inlet port of the first end section, and (v) a supply passage intercepting the longitudinal bore and disposed between the first and second workport passages, where the supply passage, the first and second workport passages, and the first and second return passages are disposed on one side of the open-center passage. Each valve section of the plurality of valve sections also includes a spool movable in the longitudinal bore to shift between: (i) a neutral position that allows the open-center passage to permit fluid flow from the inlet port through the open-center passage, and (ii) a shifted position that allows fluid to be diverted from the open-center passage to the supply passage, and connects the supply passage to either the first or second workport passage while connecting the other workport passage to a corresponding return passage of the first and second return passages.
In a third example implementation, the present disclosure describes a hydraulic system. The hydraulic system includes: (i) a hydraulic actuator having a first chamber and a second chamber; (ii) a source of fluid; (iii) a reservoir; and (iv) a valve assembly. The valve assembly includes: (i) a first end section having an inlet port configured to be fluidly coupled to the source of fluid and a first outlet port configured to be fluidly coupled to the reservoir, (ii) a second end section having a second outlet port configured to be fluidly coupled to the reservoir, and (iii) a plurality of valve sections positioned between the first end section and the second end section. Each valve section of the plurality of valve sections includes a housing having: (i) a longitudinal bore, (ii) a first and second workport passages intercepting the longitudinal bore and configured to be fluidly coupled respectively to the first and second chambers of the hydraulic actuator, (iii) a first and second return passages intercepting the longitudinal bore and connected to the first outlet port and the second outlet port, where the first and second workport passages are disposed between the first and second return passages, (iv) an open-center passage intercepting the longitudinal bore and configured to be connected to the inlet port, and (v) a supply passage intercepting the longitudinal bore and disposed between the first and second workport passages, where the supply passage, the first and second workport passages, and the first and second return passages are disposed on one side of the open-center passage. Each valve section of the plurality of valve sections also includes a spool movable in the longitudinal bore to shift between: (i) a neutral position that allows the open-center passage to permit fluid flow from the inlet port through the open-center passage, and (ii) a shifted position that allows fluid to be diverted from the open-center passage to the supply passage, and connects the supply passage to either the first or second workport passage while connecting the other workport passage to a corresponding return passage of the first and second return passages.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, implementations, and features described above, further aspects, implementations, and features will become apparent by reference to the figures and the following detailed description.
Disclosed herein are systems and valves that, among other features, reduce pressure drop across a valve, enable orientating workports in a manner that reduces complexity of plumbing associated with the valve, reduce spool bore distortion, and enable designing the valve with a single pressure relief valve for each valve section protecting both chambers of an actuator.
The second end section 112 includes a second outlet port 120 that is also configured to be fluidly coupled to the tank or reservoir having the low pressure fluid. Further, each of the end sections 110 and 112 includes exhaust fluid passages having longitudinally extending bight portions 122 and 124, respectively connecting with transverse leg portions 126, 128, 130, and 132 located at opposite sides of the end sections 110 and 112. The end section 112 also includes another bight portion 134 that connects the bight portion 124 and leg portion 130 to another leg portion 136. The outlet port 116 is connected to the bight 122 and leg portion 128 of the end section 110, whereas the outlet port 120 is connected to the bight portion 124 and the leg portion 132.
The valve section 108 is described next. The other valve sections 102-106 are similar and therefore reference numbers assigned to features of the valve section 108 can also be used to refer to corresponding features of the valve section 102-106.
The valve section 108 includes a housing 137 that defines therein a longitudinal bore 138 configured to receive a spool 140 that is axially movable in the longitudinal bore 138. The housing 137 includes an open-center passage intercepting the longitudinal bore 138 and including a dual-wing passage 142 straddling a center passage 144. The open-center passage, and specifically the dual wing passage 142, is connected to an inlet passage 146 disposed in the end section 110 and connected to the inlet port 114.
The housing 137 further includes a transversely extending first return passage 148 intercepting the longitudinal bore 138 and a transversely extending second return passage 150 intercepting the longitudinal bore 138. The first return passage 148 is annular, and therefore fluid traversing the first return passage 148 flows about the spool 140 and continues to an adjacent valve section. Respective first return passages 148 of the valve sections 102-108 form a first fluid path that connects the leg portion 126 of the end section 110 to the leg portion 130 of the end section 112. Similarly, respective second return passages 150 of the valve sections 102-108 form a second fluid path that connects the leg portion 128 of the end section 110 to the leg portion 132 of the end section 112. With this configuration, the bight 122, the leg portion 126, the first fluid path formed by the respective first return passages 148, the leg portion 130, the bight 124, the leg portion 132, the second fluid path formed by the respective second return passages 150, and the leg portion 128 form a race-track fluid path for fluid received at the inlet port 114 as described below. The race-track fluid path is illustrates by thick lines tracing the fluid path as shown in
The housing 137 further includes a transversely extending first workport passage 152 intercepting the longitudinal bore 138 and a transversely extending second workport passage 154 intercepting the longitudinal bore 138. The workport passages 152 and 154 are connected via respective ducts to workports configured to be fluidly coupled to an actuator controlled by the valve section 108 (see
The spool 140 varies in diameter along its length to form lands of variable diameters capable of selectively interconnecting the various passages intercepting the longitudinal bore 138 to control flow of fluid to and from the actuator. When the spool 140 is in a neutral (e.g., unactuated, centered, or unbiased) position as shown in
The fluid entering the end section 112, and specifically the passage 158, may then flow through any of multiple paths. For example, the fluid may flow through the bight 134 and then through a passage 159 intercepting the longitudinal bore of the valve section 102. The fluid is then communicated to passages(s) 159 of the valve sections 104, 106, and 108. The fluid going through the passage(s) 159 is a low pressure fluid, and thus the seals of the spool(s) 140 of the valve sections 102-108 are not subjected to high pressure levels.
The fluid entering the end section 112 through the open-center passage may also flow through the bight 124 and through the outlet port 120 to the reservoir. Rather than flowing through the outlet port 120 to the reservoir, the fluid may also traverse the above mentioned race-track fluid path down the leg portion 130 or the leg portion 132. The fluid may then flow through the respective first return passages 148 or the respective second return passages 150, through the leg portion 126 or the leg portion 128, and through the outlet port 116 to the reservoir.
Alternatively, some of the fluid may circulate through the race-track path back to the end section 112 and through the outlet port 120 to the reservoir. This race-track configuration provides multiple paths for the fluid to flow therethrough and may thus reduce the pressure drop across the valve assembly 100 when the spool(s) 140 are in the neutral position. Further, the race-track configuration may reduce backpressure for applications that involve large return flow rates (e.g., flow rates generated when using telescopic hydraulic cylinders).
Further, the end section 112 may have a “power beyond” port 160 that might be connected to other functions of a machine or vehicle to provide flow thereto.
Upon shifting the spool 140 to actuate its associated actuator (e.g., hydraulic cylinder or motor), the shifted spool restricts or blocks fluid flow through the open-center passage (the dual-wing passage 142 and the center passage 144).
Fluid in the passage 202 is initially blocked by a spring-loaded check valve 204. Particularly, the spring-loaded check valve 204 has a poppet 206 that initially blocks the fluid flowing through the passage 202. The poppet 206 defines therein an internal longitudinal channel 208 that operates as a guide for a spring 210. The spring 210 pre-loads and supports the poppet 206 to block the fluid flowing through the passage 202. Because the fluid is blocked at both the open-center passage by the spool 140 and at the passage 202 by the spring-loaded check valve 204, fluid pressure level increases.
Pressure level of the fluid builds up until the pressure level exceeds a predetermined threshold pressure level determined by the spring rate of the spring 210. When the pressure level of the fluid in the passage 202 exceeds the predetermined threshold pressure level, the fluid pushes the poppet 206 against the spring 210 and flows through a passage 212. The passage 202 and the passage 212 form a fluid diversion passage used to divert fluid from the open-center passage to the supply passage 164.
Referring back to
Further, when the spool 140 is shifted, fluid flowing through the supply passage 164 flows to either the workport passage 152 or the workport passage 154 based on direction of travel of the spool 140. For instance, as shown in
On the other hand, as shown in
As shown and described with respect to
Further, a single supply passage 164 is disposed between, and configured to feed, both workport passages 152 and 154, rather than having two distinct supply passages, one for each workport passage on either side of the open-center passage. Having a single, large supply passage rather than two smaller more restricted supply passages may reduce pressure drop across the supply passage, and render the valve assembly 100 more efficient.
This configuration of having the workports 302 and 304 on the same side of the valve section facing in the same direction is enabled by the construction described in
As an example for illustration, the workport 302 may be coupled to a chamber 306 of a hydraulic cylinder 308 via a hydraulic line 310, and the workport 304 may be coupled to a chamber 312 of the hydraulic cylinder 308 via a hydraulic line 314. The workport 302 may further be fluidly coupled via a duct within the valve section 300 to the workport passage 152, and the workport 304 may be fluidly coupled via a respective duct within the valve section 300 to the workport passage 154.
Thus, when the spool 140 is shifted to the right as shown in
If the spool 140 is shifted to the left as shown in
In examples, a hydraulic system may have two actuators (e.g., two hydraulic cylinders) that are actuated in the same direction in tandem. In these examples, flow of the pressurized fluid exiting a valve section is split to be delivered to both actuators. Such split could be implemented externally via additional blocks or manifolds that add to the complexity and cost of the system. Thus, to reduce cost and complexity, the valve section described next incorporates four workports to enable an internal flow split, rather than an externally-implemented flow split.
This configuration of having the workports 402-408 on the same side of the valve section is enabled by the construction described in
Further, the configuration shown in
Further, the workport passage 154 is fluidly coupled via ducts 419A and 419B to the workports 406 and 408. Thus, when the hydraulic actuators 410 and 412 extend, fluid flowing from the workport passage 154 is split between the workports 406 and 408. Fluid exiting the workports 406 and 408 is then communicated via respective hydraulic lines to chambers 420 and 422 of the hydraulic actuators 410 and 412, respectively. When the hydraulic actuators 410 and 412 retract, fluid discharged from the chambers 420 and 422 is communicated via hydraulic lines to the workports 406 and 408 respectively. Fluid is then combined in the duct 419A and delivered to the workport passage 154.
With this configuration, flow split is implemented internally in the valve section rather than by adding external blocks or manifolds.
The valve section 400 includes a tube member or sleeve 436 that separates flow through the ducts 414A-414B from flow through the ducts 419A-419B. Particularly, flow is communicated between the ducts 414A and 414B about a circumferential groove disposed on an exterior peripheral surface of the sleeve 436. Further, flow associated with the workports 402-404 and the ducts 414A-414B is communicated to the first shuttle inlet 430 of the shuttle valve 426 through channel 438. The sleeve 436 also defines therein a longitudinal channel 439, which communicates fluid in the ducts 419A-419B to the second shuttle inlet 432. Thus, flow associated with the workports 406 and 408 is communicated to the second shuttle inlet 432 via the longitudinal channel 439.
The shuttle valve 426 further includes a movable member 440 (e.g., spool, ball, poppet, etc.) movable within the shuttle valve body 428. The movable member 440 is configured to shift between a first position adjacent to the first shuttle inlet 430 and a second position adjacent to the second shuttle inlet 432. In the first position, the movable member 440 blocks the first shuttle inlet 430 while connecting the channel 439 to the shuttle outlet 433 through the second shuttle inlet 432. Thus, in the first position, flow associated with the workport passage 154, the ducts 419A-419B, and the workports 406-408 is communicated to the relief valve 424.
In the second position, the movable member 440 blocks the second shuttle inlet 432 while connecting the channel 438 to the shuttle outlet 433 through the first shuttle inlet 430. Thus, in the second position, flow associated with the workport passage 152, the ducts 414A-414B, and the workports 402-404 is communicated to the relief valve 424.
With is configuration, the relief valve 424 operates to relieve any pair of workports 402-404 or 406-408 that has the higher pressure level. This contrasts with using a separate relief valve for each pair of workports. The configuration of
It should be understood that any combination of features shown and discussed with respect to
As illustrated in
With this configuration, the entrance, e.g., the opening 502, to the open-center passage is lowered to enhance management of stresses resulting from pressurized fluid acting on the walls or surfaces that define the longitudinal bore 138. This configuration may reduce impact of high pressure fluid on these surfaces so as to reduce distortion of the longitudinal bore 138. With a reduced distortion of the longitudinal bore 138, better valve performance may be achieved as the probability of the spool 140 binding within the longitudinal bore 138 is reduced. As a result, the amount of diametrical clearance between the spool 140 and the longitudinal bore 138 may be reduced, thus enhancing valve performance (e.g., reducing leakage, improving efficiency, etc.).
Each valve section or end section may have holes therein such as holes 516A, 516B, 516C, and 516D shown in
The valve sections 602-606 and the end sections 110-112 are mounted adjacent to each other and tie-bolts are used to secure them to each other as mentioned above. Further, the end section 110 may be coupled to a first mounting bracket or plate 608 and the end section 112 may be coupled to a second mounting bracket or plate 610. The mounting plates 608 and 610 are coupled to the valve assembly 600 via the tie-bolts and are used to couple or affix the valve assembly 600 to a machine or vehicle.
The valve sections 602-606 and the end sections 110 and 112 are thus clamped to each other via tie-bolts such as the tie-bolt 612. The tie-bolts are pre-loaded so as to preclude leakage of hydraulic fluid between the sections abutted to each other.
In examples, the valve assembly or 600 may operate throughout a wide range of temperatures (e.g., between −40° F. and 180° F.). Further, the valve sections 602-606 and the end sections 110 and 112 may be made of a material that is different from the material of the tie-bolts. For instance, the valve sections 602-606 and the end sections 110 and 112 may be made of aluminum, whereas the tie-bolts, e.g., the tie-bolt 612, may be made of steel. Therefore, the valve sections 602-606 and the end sections 110 and 112 may have different thermal coefficient of expansion and contraction compared to the tie-bolts.
Thus, as the operating temperature varies, the valve sections 602-606 and the end sections 110 and 112 may expand or contract at a different rate compared to the tie-bolts. Such discrepancy in the expansion or contraction rate may cause plastic deformation of the tie-bolts or distortion of the valve sections 602-606 and end section 110-112, resulting in spool bind at high temperatures. Further, if plastic deformation of the tie-bolts occurs at high operating temperatures, loss of pre-load may result. Subsequent operation at low temperatures may cause an increased likelihood of inter-section seal failure and fluid leakage.
In some examples, to accommodate the discrepancy in the expansion or contraction rate of the valve sections 602-606 and end section 110-112 compared to the tie-bolts throughout the range of operating temperatures, the tie-bolt 612 may interface with the mounting plate 608 via a Bellville spring washer 618 that facilitates maintaining the pre-load of the tie-bolts. The Belleville spring washer 618 is oriented such that a crown 620 of the Belleville spring washer 618 faces toward the jam nut 614, which is used to couple the tie-bolt 612 to the mounting plate 608.
The Belleville spring washer 618 is used herein as an example for illustration. In other examples, any type of a compliant or elastic washer (e.g., a washer made of an elastic material) could be used to accommodate displacements of components of the valve assembly 600 relative to each other.
A flat washer 622 may also be disposed adjacent to the Belleville spring washer 618 so as to distribute the pressure of the Belleville spring washer 618 evenly over its surface facing the washer 622. The washer 622 may also ensure that the Belleville spring washer 618 is pressed against a smooth surface of the washer 622. This configuration may reduce the likelihood that the Belleville spring washer 618 could loosen. The configuration shown in
The mounting plate 608 may include holes such as hole 624 that facilitate attaching the mounting plate 608, and thus attaching the valve assembly 600, to the vehicle or machine. Bolts or any type of fasteners could be used to affix the mounting plate 608 to the machine. The other mounting plate 610 may have similar holes as well.
Although
As an example for illustration, if 24 valve sections are used, an overall length of the valve assembly may be over 41.5 inches. If the valve sections are misaligned when stacking such a high number of valve sections together, valve sag may occur, thereby causing problems with spool bore distortion and spool bind. Misalignment of the stacked valve sections may also cause fretting corrosion and other issues inside the tie-bolt holes arising from the vibratory movement between tie-bolts and the valve sections.
As shown in
For instance, if the pilot valve 802 is electrically actuated, pressurized fluid is provided through cross drill holes (not shown) in a housing 808 of the valve section 800 to a first end of the spool 806, thereby causing the spool 806 to shift in a first direction. On the other hand, if the pilot valve 804 is electrically actuated, pressurized fluid is provided through cross drill holes (not shown) in the housing 808 to a second end of the spool 806 opposite its first end, thereby causing the spool 806 to shift in a second direction longitudinally-opposite to the first direction.
As shown in
The detailed description above describes various features and operations of the disclosed systems with reference to the accompanying figures. The illustrative implementations described herein are not meant to be limiting. Certain aspects of the disclosed systems can be arranged and combined in a wide variety of different configurations, all of which are contemplated herein.
Further, unless context suggests otherwise, the features illustrated in each of the figures may be used in combination with one another. Thus, the figures should be generally viewed as component aspects of one or more overall implementations, with the understanding that not all illustrated features are necessary for each implementation.
Additionally, any enumeration of elements, blocks, or steps in this specification or the claims is for purposes of clarity. Thus, such enumeration should not be interpreted to require or imply that these elements, blocks, or steps adhere to a particular arrangement or are carried out in a particular order.
Further, devices or systems may be used or configured to perform functions presented in the figures. In some instances, components of the devices and/or systems may be configured to perform the functions such that the components are actually configured and structured (with hardware and/or software) to enable such performance. In other examples, components of the devices and/or systems may be arranged to be adapted to, capable of, or suited for performing the functions, such as when operated in a specific manner.
By the term “substantially” it is meant that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to skill in the art, may occur in amounts that do not preclude the effect the characteristic was intended to provide
The arrangements described herein are for purposes of example only. As such, those skilled in the art will appreciate that other arrangements and other elements (e.g., machines, interfaces, operations, orders, and groupings of operations, etc.) can be used instead, and some elements may be omitted altogether according to the desired results. Further, many of the elements that are described are functional entities that may be implemented as discrete or distributed components or in conjunction with other components, in any suitable combination and location.
While various aspects and implementations have been disclosed herein, other aspects and implementations will be apparent to those skilled in the art. The various aspects and implementations disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope being indicated by the following claims, along with the full scope of equivalents to which such claims are entitled. Also, the terminology used herein is for the purpose of describing particular implementations only, and is not intended to be limiting.
The present application claims priority to U.S. Provisional patent application Ser. No. 62/506,751, filed on May 16, 2017, and entitled “Open Center Control Valve,” the entire contents of which are herein incorporated by reference as if fully set forth in this description.
Number | Name | Date | Kind |
---|---|---|---|
2651324 | Hodgson | Sep 1953 | A |
2745433 | Schneider | May 1956 | A |
2873762 | Tennis | Feb 1959 | A |
3216443 | Schmiel | Nov 1965 | A |
3216446 | Schmiel | Nov 1965 | A |
3718159 | Tennis | Feb 1973 | A |
3757823 | Knutson | Sep 1973 | A |
3771558 | Ailshie | Nov 1973 | A |
3967640 | Bianchetta | Jul 1976 | A |
4061159 | Brakel | Dec 1977 | A |
4139021 | Ailshie et al. | Feb 1979 | A |
4167197 | Maki | Sep 1979 | A |
4198822 | Miller | Apr 1980 | A |
4463819 | Becker | Aug 1984 | A |
5394903 | Tominaga | Mar 1995 | A |
5915409 | Kaneko | Jun 1999 | A |
6152172 | Christianson | Nov 2000 | A |
6269733 | Reust | Aug 2001 | B1 |
6408876 | Nishimura | Jun 2002 | B1 |
6505645 | Pack et al. | Jan 2003 | B1 |
6877417 | Shimada | Apr 2005 | B2 |
6964281 | Pieper | Nov 2005 | B2 |
7021332 | Greenwood | Apr 2006 | B2 |
8899034 | Ballweg | Dec 2014 | B2 |
9482352 | West et al. | Nov 2016 | B2 |
10024443 | Sensabaugh | Jul 2018 | B2 |
20080223026 | Schuh | Sep 2008 | A1 |
20110132473 | Rinaldi | Jun 2011 | A1 |
20120199770 | Alessandro | Aug 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20180335057 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62506751 | May 2017 | US |