Electronic ballasts are used to start and drive lamps, such as fluorescent lamps and high intensity discharge (HID) lamps, in artificial lighting applications. In general, the ballast converts input AC power to an intermediate DC and an output stage inverter generates an AC output to drive the lamp, and the conversion of the input AC to the intermediate DC in certain ballasts involves power factor correction. During normal operation, the ballast operates in closed-loop fashion to regulate the amplitude of the AC signals driving the lamp load. However, when the lamp load is removed from such a ballast, the inverter output voltages (open-circuit voltage) can be as high as the intermediate DC voltage level. In certain situations, such high open-circuit voltage levels may be undesirable, and there remains a need for improved HID ballast designs to provide regulated AC drive currents to HID lamps without excessive open-circuit voltages.
An electronic high intensity discharge (HID) ballast is provided for driving a high intensity discharge (HID) lamp. The ballast includes a rectifier circuit that receives an AC input and provides a rectified DC voltage output. The ballast also includes a buck DC-DC converter and certain embodiments include an initial boost type DC-DC converter to receive the rectified DC voltage from the rectifier and to provide a first converter DC output voltage. The buck converter receives the first converter DC output and provides a second converter DC output voltage, and an inverter circuit with one or more switching devices converts the buck converter output to provide an AC output to a HID lamps. Certain embodiments include a boost converter circuit receiving the rectifier output and providing an intermediate DC voltage to the input of the buck converter. The boost converter in certain implementations includes a power factor correction component that controls the ballast power factor.
The buck converter includes forward and return circuit paths between the buck converter input and the buck converter output, one of which including an inductance coupled in series with a switching device driven by a buck converter switch control signal to selectively couple the buck converter input and the buck converter output, as well as a freewheeling diode coupled between the node connecting the switch and the inductance and the other circuit path. A buck control circuit in the ballast controls the converter switching device according to a mode control input signal. When the mode control input signal is at a first level, the control circuit provides the buck converter switch control signal so as to regulate the second converter DC output voltage to a first value, such as a rated voltage level of a given lamp load. When the mode control input signal is at a different second level, however, the control circuit modifies the buck converter switch control signal in order to prevent the second converter DC output voltage from exceeding a second value, where the second value is lower than the first converter DC output voltage.
The disclosed ballast further includes a clamp circuit to regulate the buck converter output by selectively providing the mode control signal to the buck converter control circuit. The clamp circuit senses the buck converter output voltage and provides the mode control signal at the first level when the sensed voltage is below a reference value. If the buck converter output voltage exceeds the threshold, however, the clamp circuit provides the mode control signal at the second level to override the normal power control loop and thereby cause the control circuit to prevent the second converter DC output voltage from exceeding the second value.
In certain embodiments, the buck converter control circuit turns the switching device off when the mode control input signal is at the second level. The buck control circuit, moreover, may include a timer and attempts to restart the buck converter switch control signal a predetermined time period after the switching device is turned off.
In certain embodiments, the buck converter control circuit includes a Critical Conduction Mode (CRM) controller and the clamp circuit provides the mode control input signal to a disable input of the CRM controller. In this case, when the mode control input signal is at the first level, the CRM controller provides the buck converter switch control signal to the switching device to regulate the second converter DC output voltage to the first value, and when the mode control input signal is at the second level, the CRM controller turns the switching device off.
Certain embodiments or the clamp circuit include a feedback circuit to provide a feedback signal representative of the second converter DC output voltage, as well as a reference circuit, a comparator, and a clamp circuit switching device. The reference circuit provides a reference voltage signal which represents a reference value at which an open circuit output voltage of the buck converter output is to be limited, and the comparator circuit compares the feedback signal to the reference voltage signal. The clamp circuit switch is coupled a comparator output and provides the mode control input signal at the first level when the feedback signal is less than the reference voltage signal and at the second level when the feedback signal is greater than the reference voltage signal.
One or more exemplary embodiments are set forth in the following detailed description and the drawings, in which:
Referring now to the drawings, like reference numerals are used in the figures to refer to like elements throughout, and the various features are not necessarily drawn to scale. The present disclosure relates to HID ballasts and will be illustrated in connection with certain exemplary low frequency square wave electronic HID ballasts that can be operated by fixed or universal AC input voltages.
As shown in
As shown in
In the embodiments of
The buck switching control signal 130 is provided by a buck converter control circuit 130. The buck converter controller 130 can be any suitable hardware, processor-executed software, processor-executed firmware, configurable/programmable logic, or combinations thereof by which suitable switching control signals 132 may be generated for driving the switching device S to implement a desired conversion of the input voltage Vin to generate the second converter DC output (Vout). The control circuit 130 receives a mode control input signal 136 from a clamp circuit 134 and operates when the mode control input signal 136 is at a first level to provide the buck converter switch control signal 132 to regulate the second converter DC output voltage to a first value. For example, for a certain type of HID lamp load 108 rated for nominal 90 volt operation, the buck converter nominal regulation point may be a first value of around 100 volts DC such that the subsequent AC regulation of the lamp output 106 by the inverter 140 has enough headroom to accommodate the load 108. Other first regulating point values may be used by the control circuit 130 depending on the requirements of the inverter 140 and load 108. The inverter circuit 140 receives the second converter DC output voltage from the output 122 and employs a plurality of inverter switching devices (e.g., Q3-Q6 in
When the mode control input signal 136 is at a second level, the control circuit 130 modifies the buck converter switch control signal 132 to prevent the second converter DC output voltage from exceeding a second value, where the second value is lower than the first converter DC output voltage (lower than Vin). For instance, in the case where the lamp 108 undergoes a hot restrike or the lamp 108 is removed from the system 100, the AC output voltage 106 across the lampholder terminals can be advantageously limited by controlling the buck converter output 122 to the second value that is lower than the boost converter output. In one example, a 120 volt AC input may be converted by the boost converter 114 to provide a first converter DC output voltage of about 300 volts DC. However, in cases in which a boost PFC converter 114 is used to improve both the power factor and total harmonic distortion (THD) with high efficiency, the PFC circuit 114a may require the first converter output voltage 116 be greater than the maximum peak input voltage, and the ballast 102 may need to have a universal input 104. For a universal input voltage range, a typical output of the boost PFC is approximately 450 Vdc. For instance, the ballast 102 may accommodate 120V, 230V, or 277V AC input levels, and the boost converter can provide Vin to the buck converter 120 at up to about 450 volts DC. In this case, it may be desired to limit the lamp output terminal voltage to 300 volts or some other value when the lamp 108 is removed. In this situation, the clamp circuit limits buck converter output to the second level (e.g., 300 VDC) such that the AC output (e.g., square wave output) from the inverter 140 remains at or below 300 volts peak-peak. Thus, the electronic HID ballast 102 can accommodate a variety of different input power levels and still ensure that the AC output 106 remains at or below a desired maximum voltage level, such as when the lamp 1008 is removed, through the dual mode control provided by the buck converter control circuit 130.
Referring in particular to
In this embodiment, the clamp circuit 134 includes a feedback circuit including R1 and R2 that provides a feedback signal Vfb representing the second converter DC output voltage (relative to ‘Com_in’ in
In normal operation (with Q1 off), the controller U2 provides critical conduction mode operation of the buck converter switch Q2 to reduce the input voltage Vin down to the proper lamp voltage at Vout (e.g., 85-110V in one implementation) while regulating the power provided to the lamp. The inverter 140 uses Vout to generate a square wave AC output 106 to the lamp 108, with the maximum value of the square wave being equal to the DC output voltage Vout of the CRM buck converter 120b. The CRM controller U2 knows when the current through the diode D1 reaches zero via transformer winding T1b and resistor R7 to control the Zero Current Detect (ZCD) input. The clamp circuit 134 monitors the voltage difference Vin−Vout via resistors R1 and R2 and selectively clamps Vout at the desired level set by Vref by selective actuation of Q1. The comparator circuit includes U1, which can be either an op-amp, a comparator, or a discrete component version. As shown, U1 is a comparator with an open collector output, which uses R6 as a pull-up resistor. The desired set point Vref is established by the values of divider resistors R3 and R4 and the level of Vcc, and the reference signal Vref will be a square wave with a DC offset, with an amplitude based on hysteresis resistor R5 in combination with R3 and R4.
Referring also to
The above examples are merely illustrative of several possible embodiments of various aspects of the present disclosure, wherein equivalent alterations and/or modifications will occur to others skilled in the art upon reading and understanding this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, systems, circuits, and the like), the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component, such as hardware, software, or combinations thereof, which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the illustrated implementations of the disclosure. In addition, although a particular feature of the disclosure may have been illustrated and/or described with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, references to singular components or items are intended, unless otherwise specified, to encompass two or more such components or items. Also, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in the detailed description and/or in the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”. The invention has been described with reference to the preferred embodiments. Modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations.
Number | Name | Date | Kind |
---|---|---|---|
3792310 | Crawford | Feb 1974 | A |
4097777 | Bacharowski | Jun 1978 | A |
4143304 | Hitchcock et al. | Mar 1979 | A |
4207497 | Capewell et al. | Jun 1980 | A |
4258288 | Michael et al. | Mar 1981 | A |
4323821 | Day | Apr 1982 | A |
4415837 | Sodini | Nov 1983 | A |
4870327 | Jorgensen | Sep 1989 | A |
4932615 | Frazier et al. | Jun 1990 | A |
4959593 | Joanino | Sep 1990 | A |
5118994 | Byszewski et al. | Jun 1992 | A |
5289084 | Nuckolls et al. | Feb 1994 | A |
5339005 | Byszewski et al. | Aug 1994 | A |
5498936 | Smith | Mar 1996 | A |
5731667 | Luchetta et al. | Mar 1998 | A |
5808450 | Chula et al. | Sep 1998 | A |
5909089 | Deurloo | Jun 1999 | A |
5962981 | Okude et al. | Oct 1999 | A |
6049177 | Felper | Apr 2000 | A |
6127782 | Flory, IV et al. | Oct 2000 | A |
6194843 | Moisin | Feb 2001 | B1 |
6232727 | Chee et al. | May 2001 | B1 |
6294880 | Deurloo et al. | Sep 2001 | B1 |
6429597 | Flory, IV et al. | Aug 2002 | B1 |
6534988 | Flory, IV | Mar 2003 | B2 |
6570341 | Padilla | May 2003 | B2 |
6646392 | Slegers | Nov 2003 | B2 |
6717565 | Kurosawa et al. | Apr 2004 | B1 |
6819063 | Nemirow | Nov 2004 | B2 |
7067987 | Powers, Jr. et al. | Jun 2006 | B2 |
7098606 | Yu et al. | Aug 2006 | B2 |
7098607 | Yu et al. | Aug 2006 | B2 |
7098608 | Yu et al. | Aug 2006 | B2 |
7170235 | Van Casteren | Jan 2007 | B2 |
7193368 | Chen et al. | Mar 2007 | B2 |
7239092 | Mason | Jul 2007 | B2 |
7282869 | Mayer et al. | Oct 2007 | B1 |
7355354 | Rust et al. | Apr 2008 | B2 |
7391165 | Lee et al. | Jun 2008 | B2 |
7400100 | Takezawa | Jul 2008 | B2 |
7521876 | Keith et al. | Apr 2009 | B2 |
20020047547 | Flory, IV et al. | Apr 2002 | A1 |
20020047618 | Padilla | Apr 2002 | A1 |
20020190720 | Flory | Dec 2002 | A1 |
20060097665 | Haruna | May 2006 | A1 |
20060175984 | Okamoto | Aug 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20110304279 A1 | Dec 2011 | US |