Field of the Disclosure
This disclosure relates generally to information handling systems and more particularly to an Open Compute Project network mezzanine card that may be converted to a PCIe riser.
Description of the Related Art
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
Many instances of information handling include a motherboard which may be installed in server chassis, such as in data centers. Examples of a chassis include a rack chassis or a tower chassis. A motherboard generally includes connection points for Peripheral Component Interconnect (PCI) cards or PCI express (PCIe) cards. PCI cards are used to connect peripheral devices such as modems, sound cards, or other hardware devices to the information handling system. PCIe connectors situated at the rear of the motherboard are arranged to allow a series of vertical PCIe cards to be connected in a tower chassis, or to utilize vertical riser boards that allow for horizontal PCIe cards in low profile rack chassis. By way of non-limiting example, an example motherboard may include as many as six PCIe connection points for connecting PCIe cards.
Newer servers however have begun to implement Open Compute Project (OCP) network mezzanine cards as the industry standard network form factor. A typical OCP mezzanine card has the width of three PCIe connector slots on a server motherboard, and the connectors required to adopt this mezzanine card take the space of and eliminate three possible connection points for additional PCIe cards.
While the OCP network mezzanine card is becoming the industry standard network form factor, a large percentage of server customers use only a lower bandwidth (e.g., 1 Gb) networking solution. An example motherboard server may come pre-populated with a LAN on Motherboard (LOM) low bandwidth networking solution, and the OCP network mezzanine card is not necessary. For this set of customers, the OCP connection points that would be used for higher bandwidth networking solutions would not only go unutilized, but would create wasted space where PCIe lanes would have existed in older servers.
There is a need for a method for repurposing the connectivity of an OCP network mezzanine card for use as one or more general purpose PCIe lanes by utilizing an OCP mezzanine riser with connection points for PCIe cards.
The disclosed invention includes an information handling system (IHS).
In certain embodiments, the IHS may include a motherboard and a chassis which is configured to house one or more components of the information handling system. The IHS may further include one or more connection points attached to the motherboard, where the connection points are designated for a mezzanine card. By way on non-limiting example, these connection points may be Open Compute Project (OCP) connection points designated for an OCP mezzanine card. Alternatively, these connection points may be designated for another form of mezzanine card, including but not limited to Dell's Network Daughter Card (NDC).
In one aspect, the IHS may further include a mezzanine riser which connects to the OCP or other connection points, and repurposes connectivity to allow for increased PCIe card count on the server motherboard. By way of non-limiting example, the mezzanine riser may be an OCP mezzanine riser.
In certain embodiments, the OCP mezzanine riser can include a circuit board, where at least one connector is mounted on the first side of the circuit board and configured to mate with at least one OCP connection point of a server motherboard. The OCP mezzanine riser can further include one or more PCIe lanes mounted on the second side of the circuit board, where a PCIe card may be inserted into the one or more PCIe lanes of the mezzanine riser card.
In certain embodiments, the OCP mezzanine riser may include an additional connector, where the additional connector may be mounted on one side of the circuit board of the mezzanine riser card and is configured to connect to a power pin on the server motherboard. The additional connector provides increased power capability and sideband signals as required for a typical PCIe card.
In certain embodiments, the OCP mezzanine riser may be horizontally oriented, parallel to the motherboard of a server. Alternatively, in other embodiments, the OCP mezzanine riser may be vertically oriented, perpendicular to the motherboard of a server.
In certain embodiments, the OCP mezzanine riser may be connected to only one of the available OCP connection points on a server mother board, the OCP connection point being an OCP type A connection point and providing connectivity for one x8 PCIe lane. Alternatively, in other embodiments, the OCP mezzanine riser may be connected to at least two OCP connection points on a server mother board, the connection points being OCP type A and type B connection points, where the connection points act separately to provide connectivity for two x8 PCIe lanes. Alternatively, in other embodiments, the OCP mezzanine riser may be connected to at least two OCP connection points on a server mother board, the connection points being OCP type A and type B connection points, where the connection points act contiguously to provide connectivity for one x16 PCIe lane.
In certain embodiments, the IHS may further include a SERDES network card, the network card being implemented to allow for a Ethernet upgrade path (e.g., 10 Gb). In such embodiments, the SERDES network card may be connected to an unpopulated OCP connection point on a server motherboard, the unpopulated connection point being an OCP type C connection point.
In certain embodiments, the OCP mezzanine riser may be connected to at least three OCP connection points on the server mother board, wherein the three OCP connection points comprise an OCP type A connection point, an OCP type B connection point, and an OCP type C SERDES connection point, wherein the SERDES connection point allows for an upgraded Ethernet pathway.
For a more complete understanding of the present invention and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
In the following description, details are set forth by way of example to facilitate discussion of the disclosed subject matter. It should be apparent to a person of ordinary skill in the field, however, that the disclosed embodiments are exemplary and not exhaustive of all possible embodiments.
For the purposes of this disclosure, an information handling system may include an instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize various forms of information, intelligence, or data for business, scientific, control, entertainment, or other purposes. For example, an information handling system may be a personal computer, a PDA, a consumer electronic device, a network storage device, or another suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include memory, one or more processing resources such as a central processing unit (CPU) or hardware or software control logic. Additional components or the information handling system may include one or more storage devices, one or more communications ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communication between the various hardware components.
For the purposes of this disclosure, computer-readable media may include an instrumentality or aggregation of instrumentalities that may retain data and instructions for a period of time. Computer-readable media may include, without limitation, storage media such as a direct access storage device (e.g., a hard disk drive or floppy disk), a sequential access storage device (e.g., a tape disk drive), compact disk, CD-ROM, DVD, random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), and flash memory (SSD); as well as communications media such wires, optical fibers, microwaves, radio waves, and other electromagnetic or optical carriers; or any combination of the foregoing.
Particular embodiments of an information handling system and the disclosed subject matter are best understood by reference to
Turning now to the drawings,
As shown in
Referring now to
In some new server systems, there has been a desire to implement an industry standard network form factor known as the Open Compute Project (OCP) network mezzanine card. The OCP generally, is an organization which openly shares designs of data center products among several companies. As part of this initiative, an OCP mezzanine card has been developed which may be installed on a motherboard in order to provide extended functionality. This extended functionality may for example include support for 10 GbE PCIe devices. As part of this initiative, many new server motherboards have been created with the appropriate connectors to facilitate adoption of these OCP network mezzanine cards.
Particular embodiments of an OCP network mezzanine card are best understood by reference to
In certain embodiments, a base level OCP mezzanine card is equipped for a x8 PCIe device that utilizes only OCP connection point 301 on the server motherboard. To utilize 1 Gb or 10 Gb Ethernet, the x8 PCIe from OCP connection point 301 is all that is necessary. However, in other embodiments, as shown in
While the OCP mezzanine card is becoming the industry standard network form factor, some customers use only a low bandwidth (e.g., 1 Gb) networking solution. An example motherboard server may come pre-populated with a LAN on Motherboard (LOM) low bandwidth networking solution. For this set of customers, the OCP connection points 301-303 that would be used for higher Gb networking solutions would not only go unutilized, but would create wasted space where PCIe lanes that typically would be used for PCIe I/O cards in older servers could be located. As will be described in further detail, the present disclosure provides a method for repurposing OCP connection points for use as one or more general purpose PCIe slots by utilizing an OCP mezzanine riser with connection points for PCIe cards. A mezzanine riser card may be provided that utilizes one or more of the OCP connection points 301-303 on a server motherboard 300. In order for a PCIe riser to be connected to the OCP connection points 301-303 on a server motherboard 300, the riser may be equipped with OCP compatible connectors that mate with the OCP connection points 301-303 on the motherboard 300. By way of non-limiting example, the OCP compatible connectors may include FCI type connectors.
In order for a riser to be used for PCIe devices, there should be an adequate power supply to provide the current necessary for a PCIe card. OCP connection point 301 generally has the capability to supply power to a typical OCP mezzanine network card 304, but its power pins are unable to supply the higher current that is required for a PCIe card. OCP connection point 303 has no defined power pins at all. Additionally, a typical PCIe input/output card includes sideband signals that are not included in an example OCP network mezzanine card definition. In order to supply the increased power and sideband signals required to run a typical PCIe input or output card, particular embodiments of the disclosed invention may implement an additional connector that can be connected to power pin 309. This additional connector can provide the increased power and sideband signals required for typical PCIe cards.
Particular embodiments of OCP connection points that are converted to PCIe connectors are best understood by reference to
Referring now to
As shown in
As shown, the OCP mezzanine riser 401 may be positioned parallel to the mother board 300 and can include at least one PCIe lane 404 on the top side of the riser so that vertical PCI cards 402 may be connected to top side the OCP mezzanine riser 401. As illustrated in
While
In addition, as shown in
Referring now to
While
The above disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments which fall within the true spirit and scope of the present disclosure. Thus, to the maximum extent allowed by law, the scope of the present disclosure is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Name | Date | Kind |
---|---|---|---|
9713279 | Tseng | Jul 2017 | B2 |
20070124529 | Carr | May 2007 | A1 |
20100195289 | Hubal | Aug 2010 | A1 |
20130031288 | Richard | Jan 2013 | A1 |
20130294023 | Gay | Nov 2013 | A1 |
Entry |
---|
Server/SpecsAndDesigns by OpenCompute, <<http://www.opencompute.org/wiki/Motherboard/SpecsAndDesigns>> 11 pages, last modified Mar. 7, 2016. |
Jia Ning's, OCP Mezzanine card 2.0 Design Specification Open Compute Project, version 0.95 <<http://files.opencompute.org/oc/public.php?service=files&t=bbc6250d1a5a0e19672ba6cf2c3e3801>> 41 pages Feb. 11, 2015. |
Number | Date | Country | |
---|---|---|---|
20170262396 A1 | Sep 2017 | US |