Inducing compressive residual stress into surfaces at critical design locations has been utilized to extend fatigue life in crankshafts and other rotating shaft applications. Methods that apply compressive residual stress have included roller (burnishing) treatments. These treatments are typically applied at journal fillet locations, which are representative of stress raisers within the shaft design. Current technologies have applied these roller (burnishing) treatments to crankshafts utilized within automotive to light-commercial engine applications.
One embodiment provides a suspended supporting device for roller compression treatment of rotating shaft products, comprising: a containment frame including: a main portion; and an articulating arm including an attachment for a roller cartridge; a support element attached to the main portion and providing internal stabilization to the supporting device; a mechanism providing motion to the articulating arm with respect to the main portion; and an attachment mechanism for suspending the supporting device via attachment to an external element.
Another embodiment provides a method for roller compression treatment of rotating shaft products using a suspended supporting device, comprising: positioning a vertically suspended containment frame about a work piece, the containment frame including: a main portion; and an articulating arm including an attachment for a roller cartridge having one or more rollers attached thereto; imparting force via one or more rollers to the work piece via a mechanism providing motion to the articulating arm with respect to the main portion; and rotating the work piece about a central axis; wherein the vertically suspended containment frame does not rotate.
The foregoing is a summary and thus may contain simplifications, generalizations, and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting.
For a better understanding of the embodiments, together with other and further features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying drawings. The scope of the invention will be pointed out in the appended claims.
It will be readily understood that the details of the example embodiments, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different ways in addition to the described example embodiments. Thus, the following more detailed description of the example embodiments is not intended to limit the scope of the claims, but is merely representative of certain example embodiments.
Reference throughout this specification to “embodiment(s)” (or the like) means that a particular feature, component, step or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “according to embodiments” or “an embodiment” (or the like) in various places throughout this specification are not necessarily all referring to the same example embodiment.
Furthermore, the described features, components, steps, or characteristics may be combined in any suitable manner in different embodiments. In the following description, numerous specific details are provided to give a thorough understanding of certain example embodiments. One skilled in the relevant art will recognize, however, that aspects can be practiced without certain specific details, or with other methods, components, materials, et cetera. In other instances, well-known structures, materials, components, steps or operations are not shown or described in detail to avoid obfuscation.
In an embodiment, a roller (burnishing) method has been improved upon to be applicable to medium-speed and high-speed diesel engine applications (e.g., marine, rail and power generation engine applications). Preparation for roller treatment includes affixing of a rotatable shaft or other work piece (throughout often simply referred to as “crankshaft”, etc., herein, while noting these are non-limiting examples of work pieces) into a supporting device capable of axial rotation of the crankshaft. The supporting device provides accessibility to the treatment surfaces (e.g., crankshaft journal surfaces). The supporting device also provides locations for support of the roller treatment equipment.
The illustrated example embodiments will be best understood by reference to the figures. The following description is intended only by way of example, and simply illustrates certain example embodiments.
Referring to
This set up features a closed containment clamp 4 design but may impart significant compressive stress to the work piece, i.e., suitable for larger applications, as further described herein. This clamp 4 ensures contact of roller cartridges 5 with work piece 10. However, the asymmetric nature of the work piece 10 (e.g., crankshaft fillet) in turn causes containment clamp 4 to move (laterally), e.g., about trolley assembly 2. The overall assembly is also quite large and the mounting plate 1 remains stationary within a work environment (e.g., takes up committed floor space). Moreover, to insert and extract work piece 10 from containment clamp 4 of
Referring to
Stability of the overall assembly, e.g., as illustrated in
As may be appreciated from
Once the crankshaft or other work piece 10 is positioned within the containment frame 4 and normal force is existent between all rollers and crankshaft journal fillets 10, the crankshaft 10 may be rotated axially to permit travel of the rollers 5 along the circumferential surface of the journal fillets 10. The suspended assembly does not rotate as it is fixed, e.g., via attachment to an overhanging crane (not shown) via eyelet 12. The normal force of the rollers is incrementally increased over multiple rotations, e.g., via cylinder 6, to impart compressive residual stress into the journal fillet material 10.
Certain, e.g., two, of the cartridges may contain rollers of varying width profiles. One of the cartridges may contain rollers of parallel width profile. The function of the varying profile width is to provide alternating contact pressure onto the crankshaft fillet 10 as the surface is rotated across the roller 5. The function of the parallel width profile is to provide constant support to the crankshaft fillet 10 as the surface is rotated across the roller 5.
The open containment frame 4 configuration provides for scaling-up of the roller (burnishing) treatment to include rotating shaft products and crankshafts of various sizes, including work pieces 10 of much larger size than heretofore contemplated, e.g., up to 220 mm journal diameters or greater. Normal forces applied to the journal fillet surfaces may likewise be scaled up, e.g., in excess of 100 kN, and may be modified given the particular work piece 10, roller cartridges chosen, etc. This permits products of elevated mechanical property steels (e.g., quench and temper) and shafts of pre-conditioned surface hardening (e.g., via induction, nitride, carburized, and laser hardened) to receive improvement from this roller (burnishing) treatment.
Additionally, design of the open containment frame 4 as illustrated in
Furthermore, the configuration of the open containment frame 4 permits suspension of the treatment assembly from a vertical location above the shaft work piece 10, e.g., from eyelet 12. This assists, among other things, in entry, repositioning and removal of the work piece 10. This also permits multiple roller (burnishing) treatment devices to be affixed onto one shaft or work piece 10 at a time, allowing for simultaneous multiple treatments to be applied. The vertical suspension also permits the treatment assembly to remain effective to journal fillet locations that are not axially aligned with a crankshaft centerline (“pin” journals) during rotation of the work piece 10. That is, the assembly may move about the vertical attachment at eyelet 12 in multiple planes, rather than simply in one direction e.g., laterally, as with travelling trolley arrangement illustrated in
In an embodiment, the roller cartridges 5 may be interchanged to accommodate various work pieces 10. Thus, the clamp assembly is configured to interchangeably accommodate different roller cartridges 5 via cartridge attachments that permit replacement or fitment with alternate roller profiles and features. For example, fitment of impacting rods or profiled rams may be used to induce compressive residual stress into the journal fillet material 10. The assembly is thus modular and provides generation of normal force application onto the journal fillet locations 10 to affect compressive residual stress of material depths extending beyond 5 mm and to 7 mm of treatment depths below the journal surface. Thus, imparting compressive residual stress for larger work pieces 10 (e.g., marine and locomotive crank shafts) is possible with such an assembly.
From the foregoing it will be appreciated that various embodiments provide for a roller (burnishing) method applicable to medium-speed and high-speed diesel engine applications (e.g., marine, rail and power generation engine applications). The various assemblies, including an open type containment frame, allow for affixing of a rotatable shaft or other work piece into a supporting device capable of axial rotation of the crankshaft. The embodiments thus provide supporting devices with greater accessibility to the treatment surfaces (e.g., crankshaft journal surfaces) with improved mobility and throughput compared to other arrangements.
This disclosure has been presented for purposes of illustration and description but is not intended to be exhaustive or limiting. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiments were chosen and described in order to explain principles and practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
In the specification there has been set forth example embodiments and, although specific terms are used, the description thus given uses terminology in a generic and descriptive sense only and not for purposes of limitation.
Finally, any numerical parameters set forth in the specification and claim(s) are approximations (for example, by using the term “about”) that may vary depending upon the desired properties sought to be obtained by the embodiment(s). At the very least, each numerical parameter should at least be construed in light of the number of significant digits and by applying ordinary rounding.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/065032 | 10/15/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/057201 | 4/23/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1646260 | Schiltz | Oct 1927 | A |
3213659 | Armstrong | Oct 1965 | A |
3253444 | Dolan | May 1966 | A |
4076136 | Jenkin | Feb 1978 | A |
4624123 | Marracino | Nov 1986 | A |
6655186 | Pfleghar | Dec 2003 | B2 |
7162903 | Juranitch | Jan 2007 | B2 |
Number | Date | Country |
---|---|---|
2012106309 | Jun 2012 | JP |
543508 | Sep 1977 | SU |
Entry |
---|
International Search Report for International Application PCT/US2013/065032, Dec. 19, 2013, 2 pages, Moscow, Russia. |
International Preliminary Report on Patentability for International Application PCT/US2013/065032, October 22, 2015, 3 pages, Moscow, Russia. |
Number | Date | Country | |
---|---|---|---|
20160221055 A1 | Aug 2016 | US |