The present invention relates to an open-end spinning rotor with a rotor cup, in which a fiber material is able to be spun, and with a rotor shaft, through which the spinning rotor is able to be supported in a bearing, in particular a magnetic bearing. The rotor shaft and the rotor cup are detachably connected to each other through a coupling device. The coupling device includes a positive-locking connection for the transmission of the turning moment between the rotor cup and the rotor shaft along with a magnetic device for the axial connection of the rotor shaft and the rotor cup.
In the production of yarns in open-end spinning machines, it is necessary to, depending on the type of the fiber material to be spun and depending on the type of the desired yarn to be manufactured, use different spinning rotors or spinning rotors with different rotor cups, since the shape and the design of the rotor cups of the spinning rotor have a significant effect on the spinning result. Given the permanent contact with fiber, the rotor cups of spinning rotors in open-end spinning machines are also subjected to significant wear, and therefore must be replaced. Depending on the structure of the open-end spinning device and the bearing of the spinning rotor, the replacement of the spinning rotors can be associated with a significant effort, such that spinning rotors are often provided with a coupling device for replacing the rotor cup. Particularly in open-end spinning devices in which the rotor shaft is mounted in a magnetic bearing, the installation or removal of the complete spinning rotor is expensive, such that spinning rotors with a coupling device are typically employed.
DE 38 15 182 A1 describes a spinning rotor with such a coupling arrangement. Thereby, DE 38 15 182 A1 provides for arranging a coupling shell with a recess or a sleeve at the end of the rotor shaft; a corresponding complementary designed pin, which is arranged on the reverse side at the bottom of the rotor pot, engages in this. The transmission of the turning moment from the rotor shaft to the rotor pot should thereby take place through a positive-locking connection of both coupling parts with each other. According to a second embodiment, in place of a large, central pin, several smaller pins that engage in recesses of the coupling shell can also be provided. A permanent magnet, which is inserted into the coupling disk on the rotor shaft, is used to hold the rotor pot. The coupling arrangement is relatively costly to produce, and also relatively large and heavy, which is disadvantageous with today's high rotational speeds.
EP 1 156 142 B1 shows a spinning rotor that is already provided with a magnetic bearing arrangement for an open-end spinning device. The coupling device includes a shaft sleeve arranged on the shaft of the spinning rotor, in which an internal hex is arranged. A cylindrical guiding collar is formed on the rotor cup as a coupling device; this engages in the shaft sleeve of the rotor shaft. In the extension of the cylindrical guiding collar, there is an external hex that engages in the internal hex in the shaft sleeve of the rotor shaft. Behind the shaft sleeve of the rotor shaft, which includes the internal hex, a permanent magnet is likewise arranged within the rotor shaft; this is to take over the axial securing of the coupling device. The production of the spinning rotor with the additional guiding collar and the additional shaft sleeve is likewise relatively expensive.
A task of the present invention is to propose an open-end spinning rotor with a coupling device that features a simple and low-maintenance structure. Additional objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
With an open-end spinning rotor with a rotor cup, a rotor shaft and a coupling device, by means of which the rotor shaft and the rotor cup are detachably connected to each other, the coupling device includes a positive-locking connection for the transmission of the turning moment and a magnetic device for the axial connection of the rotor shaft and the rotor cup. It is now provided that the coupling device is arranged with its two coupling components directly at the rotor shaft or the rotor cup without the interposition of additional components. The assembly of the open-end spinning rotor is thereby particularly simple, as only two parts of the rotor shaft and the rotor cup must be connected to each other and, if applicable, the permanent magnet must still be used. In addition, it is thereby possible to provide a coupling device with a very low weight, which requires no additional space requirement. Therefore, in particular, the open-end spinning rotor is advantageously able to be used in open-end spinning devices with high rotational speeds of over 130,000 RPM (revolutions per minute).
As a coupling device, the rotor shaft features at least one projection with at least one turning moment-transmitting area, which engages in at least one recess of the rotor cup corresponding to it with at least one turning moment-transmitting counter-area. A socket for a permanent magnet is arranged on the rotor cup, in particular in the rotor bottom of the rotor cup. Given that the permanent magnet is arranged on the rotor cup, it is possible in a particularly simple and advantageous manner to remove this after the expiration of its service life and replace it with a new permanent magnet. A complex disassembly of the rotor shaft from the bearing of the open-end spinning device is not required for this.
If the socket for the permanent magnet is located directly in the bottom of the rotor cup, the permanent magnet is particularly accessible and easily interchangeable. With this arrangement, it is also particularly advantageous that the permanent magnet is located on the wear part of the spinning rotor (i.e., the rotor cup), which in any event must be replaced after a certain period of time. It has been shown that such magnets often have relatively short service lives, and therefore must be replaced. This is now possible, without any problem, through the arrangement of the permanent magnet on or in the easily replaceable rotor cup, since the magnet is easily accessible.
Particularly good accessibility, and thus a particularly easy replacement of the permanent magnet, arises when such permanent magnet is arranged in an axial extension of the recess for the projection of the rotor shaft. At the same time, this also gives rise to a particularly good axial connection between the rotor shaft and the rotor cup.
A simple production and a simple assembly of the open-end spinning rotor are enabled if the socket for the permanent magnet is formed through a bore hole in the rotor cup. Preferably, one such bore hole is located in the bottom of the rotor cup, such that the permanent magnet can be easily inserted from the opening of the rotor cup into the socket. Yet, it is also possible to arrange one or more permanent magnets within the truss of the rotor cup in such a manner that, with an assembled spinning rotor, they lie next to the projection of the rotor shaft. For example, a ring-shaped permanent magnet can also be arranged in the truss of the rotor cup; with an assembled spinning rotor, this surrounds the projection of the rotor shaft.
According to an advantageous embodiment of the invention, the at least one projection of the rotor shaft features at least one cylindrical outer contour at its end turned towards the rotor cup. Thereby, a good centering of the rotor cup at the rotor shaft can be achieved, and imbalances can be avoided.
According to an additional embodiment of the invention, the at least one projection of the rotor shaft features one elliptical outer contour, at least in sections. Accordingly, the projection of the rotor shaft may either feature an elliptical outer contour over its entire length or feature only one section with one elliptical outer contour. In this case, the elliptical outer contour forms the at least one turning moment-transmitting area.
According to an advantageous further modification of the invention, the at least one projection of the rotor shaft includes a first section turned towards the rotor cup and a second section turned towards its shaft end, which is turned away from the rotor cup. The section turned towards the shaft end thereby includes the at least one turning moment-transmitting area, which may be formed as, for example, a turning moment-transmitting surface or edge. By dividing the projection into two or more sections, it is possible to assign each of these sections to its own task; thus, for example, to provide one or more turning moment-transmitting areas at one section and to undertake the centering of the rotor shaft at the rotor cup through an additional section. Likewise, one of the sections can be used for the connection of the rotor cup with the rotor shaft.
It is also advantageous if the at least one projection or one section of the at least one projection of the rotor shaft features at least one groove, which includes the at least one turning moment-transmitting area. In terms of production technology, this can be made in an advantageous manner by milling.
It is particularly advantageous if the second section includes a width across flats or an elliptical outer contour. This in turn forms the turning moment-transmitting area, here in the form of a turning moment-transmitting surface. If the second section contains a width across flats, both the width across flats on the second section of the projection and the corresponding counter-area and/or counter-surface on the rotor cup can be produced in a particularly simple manner. However, it is also possible to provide only one turning moment-transmitting area on the second section.
It is also advantageous if the first section features a cylindrical outer contour. Using the cylindrical outer contour, a centering can be undertaken in a simple manner. In addition, through this, the rotor shaft may at the same time be fastened in the rotor cup, for example through a press fit.
It is also advantageous for the production and the assembly of the spinning rotor if the at least one recess of the rotor cup includes a through hole, in particular a cylindrical through hole. It is thereby particularly advantageous if the socket for the permanent magnet is arranged in the cylindrical through hole or is formed directly by the cylindrical through hole. At the same time, a particularly good axial stop can be achieved through this, since, with a mounted spinning rotor, the projection of the rotor shaft and the permanent magnet can come into direct contact. However, depending on the embodiment of the projection on the rotor shaft, the through hole may also be designed in elliptical or oval form. In this case, the inner, elliptical or oval lateral surface of the through hole forms the at least one turning moment-transmitting counter-surface or the at least one turning moment-transmitting counter-area.
According to an additional embodiment of the invention, it is advantageous if the at least one recess of the rotor cup includes a first, in particular cylindrical, section, in which the first section of the projection of the rotor shaft engages, along with a second section, which contains the at least one turning moment-transmitting counter-area and operates in conjunction with the first section of the projection of the rotor shaft. With this embodiment, it is particularly advantageous that, as already described, different functions may be assigned to different sections. The turning moment-transmitting surfaces or areas, which always differ from the cylindrical shape, may be formed with such a large size that a good transmission of the turning moment is enabled, but, on the other hand, may be formed relative to the longitudinal axis of the spinning rotor with such a small size that significant imbalances are not produced in the spinning rotor. Of course, such an embodiment is possible not only with two sections of the projection of the rotor shaft or with two sections of the recess of the rotor cup. Three or more sections can also be provided. Thereby, the at least one turning moment-transmitting area or counter-area need not necessarily be arranged on the first section turned away from the rotor cup.
It is particularly advantageous if the second section of the recess is arranged on the reverse side of the rotor cup on the truss of the rotor cup.
It is also advantageous if the second section of the recess includes at least one groove, which preferably extends across the entire width of the truss of the rotor cup. Thereby, the production of the rotor cup or the spinning rotor is possible in a particularly simple manner by milling the groove or grooves.
It is also advantageous if the permanent magnet can be clipped into the socket, in particular into the through hole, of the rotor cup. This further supports the simple replacement and the simple assembly.
In addition, it is advantageous if the permanent magnet features a plastic lining cover. Through this, in a particularly simple manner, the permanent magnet can be fixed by means of the plastic lining cover in the socket. Thereby, due to the elasticity of the plastic lining cover, not only a clamping of the permanent magnet into its socket, but also a partially positive-locking stop, can be achieved.
In addition, it is advantageous if the rotor shaft and/or the rotor cup features a stop surface for the axial positioning of the rotor shaft in relation to the rotor cup. This further simplifies the assembly of the spinning rotor.
It is also advantageous if the shaft end arranged on the projection of the rotor shaft forms a support surface for the permanent magnet. After the assembly of the spinning rotor, only the permanent magnet from the side of the rotor bottom may still be introduced into the through hole of the rotor cup, and is automatically correctly positioned after stopping on the support surface of the projection.
Advantageously, the rotor shaft, at least in the area of its projection, consists of a ferromagnetic material.
Additional advantages of the invention are described on the basis of the following embodiments. The following is shown:
Reference will now be made to embodiments of the invention, one or more examples of which are shown in the drawings. Each embodiment is provided by way of explanation of the invention, and not as a limitation of the invention. For example features illustrated or described as part of one embodiment can be combined with another embodiment to yield still another embodiment. It is intended that the present invention include these and other modifications and variations to the embodiments described herein.
The open-end spinning rotor 1 includes a rotor cup 2 along with a rotor shaft 4, which, through a coupling device 6, includes a positive-locking connection (not shown in this presentation) for the transmission of the turning moment between the rotor cup 2 and the rotor shaft 4, along with a permanent magnet 7 for the axial connection of the rotor shaft 4 and the rotor cup 2. Thereby, the positive-locking connection for the transmission of the turning moment is formed directly on the rotor shaft 4 or the rotor cup 2, such that they are directly connected to each other in a particularly advantageous manner, without any additional components. The rotor shaft 4 thereby includes a projection 8 with at least one turning moment-transmitting area 9 (for example, see
According to this presentation, the rotor cup 2 is provided with one through hole 14, which at the same time forms the recess 10 for the projection 8 along with a socket 12 for the permanent magnet 7. This embodiment is able to be produced in a particularly simple manner, and also enables a simple assembly and a simple installation and removal of the permanent magnet 7. It is also particularly advantageous that, through the through hole 14, the coupling device 6 is less vulnerable to dirt, such as clinging fiber particles, or these can be removed in a more simple manner through the through hole 14.
The through hole 14 may be carried out as a cylindrical bore hole, such that at the same it can serve the purpose of centering the rotor cup 2 on the rotor shaft 4. As such, in most cases, the projection 8 of the rotor shaft 4 is likewise formed in a cylindrical shape. Thereby, the cylindrical projection 8 extends into the center of mass of the rotor cup 2; a particularly good centering can take place through this.
As can be seen in
While it is advantageous for the first section 10a of the recess 10 and for the first section 8a of the projection 8 to form this as a cylinder, the second section 8b of the projection 8, or the second section 10b of the recess 10, may feature differing contours, in order to provide one or more turning moment-transmitting surfaces or areas 9. Thereby, it is advantageous if the second section 10b or the second section 8b is formed with a size as small as possible relative to the longitudinal axis of the spinning rotor, in order to avoid imbalances in operation.
Thereby, it is obvious that a great number of variations are possible with regard to the design of the second section 8b of the projection 8 and/or the second section 10b of the recess 10. The second section 8b of the projection 8 may also include a square or an oval (similar to the form shown in
According to this presentation, the socket 12 for the permanent magnet includes a circumferential groove 18. If the permanent magnet 7 includes a plastic lining cover 15, due to the deformation of the elastic plastic lining cover 15, a sufficient stop of the permanent magnet 7 can be achieved just through simply pressing the socket 12. A positive-locking stop also partially arises due to the deformation of the plastic lining cover 15.
However, instead of the plastic lining cover 15, the permanent magnet 7 can also be equipped with a special mount that is not shown, for example a metallic holder, by means of which it can be clipped into the socket 12.
According to another embodiment of the invention, as it is shown in
According to
A ring magnet as a permanent magnet 7 is also shown in
For the two embodiments of
An additional embodiment of a coupling device 6 is shown in
In this case, the second section 10b of the recess 10 of the rotor cup includes several grooves 20, which in this case are each arranged at a 30° angle to each other, and which feature at least one turning moment-transmitting area 9. These grooves 20 may be inserted radially in a simple manner by means of a milling cutter. In a similar manner, the second section 8b of the projection 8 of the rotor shaft 4 includes several grooves 20, which in this case are arranged at a 30° angle to each other, and which contain at least one turning moment-transmitting area 9. The grooves 20 thereby extend across the entire width of the truss 3 of the rotor cup 2, such that production is further simplified.
For such an embodiment with multiple grooves 20, it is advantageous that, upon the assembly of the rotor cup 2 on the rotor shaft 4, the rotor cup must be rotated only slightly, until the projection 8 and/or the several ridges remaining between the grooves 20 and forming the projection 8 engage in the grooves 20 of the recess 10 of the rotor cup 2. However, it is also possible with this embodiment to provide only one or two grooves 20 on the rotor cup 2 and then, on the rotor shaft, produce bridges corresponding to these as projections or projections 8 by milling. Furthermore, it is also possible to provide more than three grooves 20.
Depending on the design of the grooves 20, the turning moment-transmitting areas 9 of the projection 8 and the turning moment-transmitting counter-areas 11 of the recess 10 can be formed by the side spaces of the grooves 20 or solely by the finished edges of the grooves 20.
Furthermore, with this embodiment, an axial stop surface 16 and a positioning surface 17 for the permanent magnet 7 can also be designed as described in
The invention is not limited to the presentations shown in the embodiments. In particular, instead of one projection and one recess, as is presented in most of the embodiments, several projections can also be arranged on the rotor shaft, which correspondingly work together with several recesses on the rotor cup. The invention also includes additional variations and combinations within the framework of the patent claims, to the extent technically possible and reasonable.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 108 199 | Jul 2013 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4319449 | Hofmann | Mar 1982 | A |
5526638 | Bock | Jun 1996 | A |
5555715 | Paweletz | Sep 1996 | A |
5634326 | Wanger | Jun 1997 | A |
5637941 | Paweletz | Jun 1997 | A |
5802838 | Bock | Sep 1998 | A |
5832711 | Baumgartner | Nov 1998 | A |
6863466 | Bühren | Mar 2005 | B2 |
7605509 | Buhren | Oct 2009 | B2 |
20020006830 | Buhren | Jan 2002 | A1 |
20070234857 | Kozak et al. | Oct 2007 | A1 |
20090084081 | Wassenhoven | Apr 2009 | A1 |
20100062922 | Hoffmann | Mar 2010 | A1 |
20130283754 | Wassenhoven | Oct 2013 | A1 |
20150233025 | Wassenhoven | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
38 15 182 | Nov 1989 | DE |
103 26 849 | Dec 2004 | DE |
2 463 415 | Jun 2012 | EP |
Entry |
---|
German Patent Office Search Report, Mar. 31, 2014. |
EP Search Report, Dec. 4, 2014. |
Number | Date | Country | |
---|---|---|---|
20150033695 A1 | Feb 2015 | US |