1. Field of Invention
This invention relates to an oil well perforating tool and methods in which explosive shape charges are activated by well pressure in order to fracture surrounding geological formations adjoining the well bore casings at predetermined locations.
2. Background
In the oil well drilling and completion industry hydrofracturing, or “fracing”, operations can be beneficial for a number of reasons. For example, fracturing operations help to stimulate the production of hydrocarbons from earth geological formations. In such operations, portions of the formation are fractured to increase fluid flow from the formation into a borehole. Fracturing generally includes isolating (as with packers) a portion of the borehole and pressurizing fluid therein to a pressure sufficient to cause a fracture in the formation. Boreholes may include both vertical and horizontal sections, such as long horizontal wells commonly used in shale gas and other tight formations. In recent years many methods have been used to allow multiple fractures to be induced along the length of a lateral section.
These wellbore fractures are initiated by applying pressure to the annulus of the wellbore once a sliding sleeve has been opened either hydraulically or with a ball. The only fractures that will occur are the ones where the formation is weaker in its natural state. These hydraulically induced fractures may not be in an area of the formation that has been determined to be the best locations for removing all or as much of the hydrocarbons. It should be common practice to explosively fracture well casings at preferred locations in the geological formations that are considered most promising. Open hole casing shock loading or perforating tools should be are used for such fracturing.
We disclose an improved pre-fracturing energetic tool and methods for using it.
The apparatus (tool) of this invention allows perforations or shock loading to help allow induced fracture to be placed wherever it is determined to have the best results. Perforations are mechanically applied to the formation where needed compared to just using applied pressure to initiate a natural fracture. There is no limit to the number of tools that can be placed in a single stage (group of individual tools). By perforating the formation with multiple tools, the number of fractures is increased in the wellbore. Pumping pressures are reduced because the breakdown pressures of the formation have been reduced. Stage spacing can be lengthened by installing more perforating tools in a stage and reducing the number of open hole packers and reducing the risk of packer failure. Shorter fracing times are achieved due to reduced number of stages preformed.
The Figures represent embodiments of the invention and are not intended to be limiting of the scope of the invention.
In broad aspect the invention is a geologic formation perforation (or energetic) tool that allows a formation to be pre-fractured (or shock loaded) prior to high pressure liquid hydro-fracture (fracing) and includes methods of employing the tool in geologic formation fracturing.
The tool comprises, a mandrel having a series of projections, fins, located around the outer circumference, at least one of which fins houses a firing head assembly that may be connected to a detonation means (such as detonating cord). The detonating means are connected to ignition port(s) on shape charges that may be located on the fins. The mandrel body may be constructed with threaded ends for threading into a casing string. It may also be enlarged to fit over the casing and attached to the casing by fitting the mandrel body over casing and securing it with locking rings or pins.
In general, most but not necessarily all, of the fins will have a firing head assembly disposed in it. The fins are oriented longitudinally, laterally, and/or helically in reference to the orientation of the casing string. The fins are preferable disposed on the mandrel body in a customary array such as shown in
The shaped charges, if used, are, in most applications, located in a manner to explode outward of the mandrel surface into the geological formation. The charges may be positioned in the mandrel so that one or more of the shaped charges produce a jet that constructively interact—that is produces jets that intersect in the formation. In some applications one or more of the shaped charges may be directed inward towards the well to create an additional communication port between the wellbore and the annulus.
The firing head assembly may be configured to incorporate a time delay mechanism. The firing head assembly time delay means can be any suitable means, including but not limited to, a time delay fuse, a mechanical means, a hydraulic means, a delay mechanism that is configured to interact with a fracture treatment (injection into the well of high pressure water to fracture the formation), and a delay mechanism configured to preferentially orient banks of charges to fire in conjunction with a fracture treatment. The mechanism interacts with the fracture by providing delay that would detonate the charges during or after a fracing treatment operation has occurred.
The shaped charges may be of any type utilized in wellbore perforation. They be deep penetrating charges, big hole charges, punch charges designed for limited penetration, reactive liner technology charges or linear charges that produce slot shaped holes. These type charges are well known to those skilled in the art. For example there are Razor deep penetrating charges. Interactive charges are described in publications available at http://www.perf.com/publications/. See also http://www.perf.com/chart.
Schlumberger describes its PowerJet Omega™ charge at http://www.slb.com/services/completions/perforating/gun systems/hollow carrier/powerjet omega deep charge.aspx.
Halliburton describes a variety of shaped charges at http://www.halliburton.com/en-US/ps/wireline-perforating/wireline-and-perforating/perforating-services/shaped-charges/perforating-shaped-charges. It should be appreciated by those skilled in the art that the shock loading or perforating charges may be replaced with propellant or some other energetic materials to shock load the geological formation in a manner to induce initial fractures that the hydraulic fractures will follow. It is not always necessary to perforate the formation, shock loading will be sufficient to direct the hydraulic fracture. Shape charges may be too large for some open hole applications and other propellants can be effectively used. It will in some applications, be sufficient to fill the body of the tool with propellant that when detonated will provide the necessary shock loading.
Punch charges are also referred to as circulation charges and are selected for a specific tubing/casing thickness. Puncher charges are designed to minimize/avoid outer casing damage and loss of integrity. http://www.dynaenergetics.com/EN/shaped-charges/puncher-charges-en.html
In one embodiment the invention is a firing head assembly that comprises a pressure activated release mechanism, a firing pin, an initiator percussion unit that ignites a detonation means (such as a detonation cord), housed in a suitable body that can be attached to or disposed in fins of perforating tools in a configuration to allow the initiation of detonation of shape charges located in the fins. The firing head is preferably easily detachable from the tool, such as that shown at 240 in
The firing heads may be modular and interchangeable from one tool assembly to another and they may be configured to allow different initiation means other than detonation cords such as transmission from another fin firing head assembly.
Referring to
In another embodiment, shown in more detail in
The tool firing head mechanism is activated by predetermined pressure (set point selected for the rupture disc). When the preset pressure is reached, rupture disc 242 burst in each of the assemblies, allowing increased pressure into the firing head sub-assembly 240. At approximately the same time (a slight delay is caused by shear pins 244 retaining the firing pin, 246) the firing pin begins to travel towards a percussion initiator 248. Upon impact of the percussion initiator, a detonator cord booster, 243, is ignited which in turn ignites the detonator cord, 210. The detonator cord passes underneath each shape charge ignition port (206) causing the charge to detonate. The charge bursts through the port plug 207 and into the geological formation.
In a given tool the pressure setting of the individual rupture disc settings may be set at different pressure levels as explained herein.
An important aspect of the tool of the invention (
In operation the tool is, for example, set in line inside a single stage of casing that contained two packers (142) and a sliding sleeve (144) (
In an embodiment of the invention, the tool is activated by annulus pressure around a liner string. In
The method of which the first fin assembly would transfer detonation in a secondary fin is accomplished by means of a connection line that contains secondary detonation cord (see
The first tool that is set at the lowest activation pressure, when it is initiated at its designed pressure to detonate its shaped charges, creates blast pressure that will propagate through the annulus of the well and initiate the function of another similar tool in a stage; a secondary type tool inside the same stage. In a similar fashion if two separate stages have pressure communication between them the first tool's blast pressure is used to initiate a similar tool in another stage. Likewise the first tool's blasting pressure can be used to initiate the function of a different tool in a different stage.
The tool is configured to be included into a well casing string as shown in
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes can be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification is, accordingly, to be regarded in an illustrative rather than a restrictive sense. Therefore, the scope of the invention should be limited only by the appended claims.
This application claims benefit of Provisional Application Ser. No. 61/843,003 filed Jul. 4, 2013. The contents and disclosures of the application is incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
61843003 | Jul 2013 | US |