1. Field of the Invention
The present invention generally pertains to apparatus, systems and methods for conveying equipment in a well, and more particularly to a downhole tractor that may be used in both open and cased wells and that is adaptable when used in open holes to all types of soil conditions and formation consistencies, whether they be soft, firm, or otherwise.
2. Description of the Related Art
It is known within the oil and gas industry to use a downhole tractor to convey equipment, such as logging equipment, within a well, and that the use of a downhole tractor is often especially useful when it is desired to convey equipment in highly-deviated and horizontal well bores. Examples of downhole tractors can be found in U.S. Pat. Nos. 4,670,862 issued on Jun. 2, 1987 to Staron et al. and U.S. Pat. No. 6,089,323 issued on Jul. 18, 2000 to Newman et al. The prior downhole tractors are deficient in a variety of respects, including in the areas of operating in open holes wherein the tractor may be required to traverse a variety of soil/formation consistencies (e.g., soft, firm, rigid, etc.), and in bore holes having varying diameters and non-uniform and irregular bore profiles. Also, the prior tractors are deficient in their ability to develop the forces required to convey the tools used in open holes for formation evaluation, which are usually much heavier than the tools used in cased holes for production logging. Another area in which prior tractors are deficient is in their ability to operate while submerged in drilling fluids at high temperatures well above 150 degrees C.; this is due in part to the poor efficiency of such prior tractors in dissipating heat. As will become apparent from the following description and discussion, however, the present invention overcomes the deficiencies of the previous devices and constitutes an improved and more efficient downhole tractor.
In a broad aspect, the present invention may be a downhole tractor comprising: a track assembly including a rotatable track; a motor adapted to rotate the track; a lower arm having a first end supported by a tractor housing, and a second end connected to the track assembly; an upper arm having a first end supported by the tractor housing, and a second end connected to the track assembly; and an actuator arm mounted to move the track assembly between open and closed positions. Another feature of this aspect of the invention may be that the track is rotatably disposed about a plurality of wheels mounted to the track assembly. Another feature of this aspect of the invention may be that the track includes a plurality of wheels. Another feature of this aspect of the invention may be that the tractor may further include one of a rotatable screw and a rod, and wherein the actuator arm includes a first end pivotally connected to one of the screw and the rod and a second end pivotally connected to the track assembly. Another feature of this aspect of the invention may be that the track rotates along a path defined by the general shape of one of an oval, parallelogram, trapezoid and triangle. Another feature of this aspect of the invention may be that the device may further include a transmission connected between the motor and a driven wheel adapted to rotate the track. Another feature of this aspect of the invention may be that the device may further include a rotatable screw connected, directly or indirectly, to the actuator arm, whereby the screw causes the actuator arm to move the track assembly towards its open position when the screw is rotated in a first direction and to move the track assembly towards its closed position when the screw is rotated in second direction. Another feature of this aspect of the invention may be that the device may further include a rod connected to the actuator arm, whereby the rod causes the actuator arm to move the track assembly towards its open position when the rod is moved in a first direction and to move the track assembly towards its closed position when the rod is moved in second direction. Another feature of this aspect of the invention may be that the first end of the lower arm is disposed for movement within a slot in the tractor housing. Another feature of this aspect of the invention may be that the device may further include a slider assembly connected to the track assembly and the lower arm, and adapted to permit relative movement between the track assembly and the lower arm. Another feature of this aspect of the invention may be that the device may further include a slider assembly having an inner member disposed for movement within a bore of an outer member, one of the inner member and outer member being connected to the upper arm and the other of the inner member and the outer member being connected to the track assembly. Another feature of this aspect of the invention may be that the actuator arm includes a wheel engaged with a ramp mounted to the tractor housing. Another feature of this aspect of the invention may be that the track assembly further includes a driven wheel coupled directly or indirectly to the motor. Another feature of this aspect of the invention may be that the motor is coupled directly or indirectly to a rotatable screw that is engaged with the track, whereby rotation of the screw causes rotation of the track.
In another aspect, the invention may be a downhole tractor comprising: a track assembly including a plurality of idler wheels and a continuous track rotatably disposed around the idler wheels; a motor adapted to rotate the track around the idler wheels; a lower arm having a first end pivotally connected to a tractor housing, and a second end pivotally connected to the track assembly; an upper arm having a first end pivotally connected to the tractor housing, and a second end pivotally connected to the track assembly; one of a rotatable screw and a rod; and a link assembly including a first link having a first end pivotally connected to one of the screw and the rod and a second end pivotally connected to the track assembly, and a second link having a first end pivotally connected to the track assembly and a second end pivotally mounted to the tractor housing. Another feature of this aspect of the invention may be that the second end of the first link and the first end of the second link are pivotally mounted to the track assembly at a pivot point on the track assembly. Another feature of this aspect of the invention may be that the first end of the lower arm is disposed for movement within a slot in the tractor housing. Another feature of this aspect of the invention may be that the track rotates along a path defined by the general shape of one of an oval, parallelogram, trapezoid and triangle. Another feature of this aspect of the invention may be that the device may further include a transmission connected between the motor and a driven wheel. Another feature of this aspect of the invention may be that the device further includes a hydraulic system adapted to move the rod between a first position in which the track assembly is in a closed position and a second position in which the track assembly is in an open position. Another feature of this aspect of the invention may be that the device further includes a second motor adapted to rotate the screw in a first direction to cause the track assembly to move towards an open position and a second direction to cause the track assembly to move towards a closed position. Another feature of this aspect of the invention may be that one of the screw and rod is adapted to move the first end of the first link in a direction generally parallel to a central axis of the tractor housing. Another feature of this aspect of the invention may be that the device further includes a slider assembly connected to the track assembly and the lower arm, and adapted to permit relative movement between the track assembly and the lower arm. Another feature of this aspect of the invention may be that the track assembly further includes a driven wheel coupled directly or indirectly to the motor. Another feature of this aspect of the invention may be that the motor is coupled directly or indirectly to a second rotatable screw that is engaged with the track, whereby rotation of the second rotatable screw causes rotation of the track.
In another aspect, the invention may be a downhole tractor comprising: a track assembly including a plurality of idler wheels and a continuous track rotatably disposed around the idler wheels; a motor adapted to rotate the track around the idler wheels; a lower arm having a first end pivotally connected to a tractor housing, and a second end pivotally connected to the track assembly; an upper arm having a first end pivotally connected to the tractor housing, and a second end pivotally connected to the track assembly; one of a rotatable screw and a rod; and an actuator arm having a first end pivotally connected to one of the screw and the rod, a second end pivotally connected to the track assembly, and a wheel engaged with a ramp connected to the tractor housing. Another feature of this aspect of the invention may be that the first end of the lower arm is disposed for movement within a slot in the tractor housing. Another feature of this aspect of the invention may be that the device further includes a transmission connected between the motor and a driven wheel. Another feature of this aspect of the invention may be that the device further includes a hydraulic system adapted to move the rod between a first position in which the track assembly is in a closed position and a second position in which the track assembly is in an open position. Another feature of this aspect of the invention may be that the device further includes a second motor adapted to rotate the screw in a first direction to cause the track assembly to move towards an open position and a second direction to cause the track assembly to move towards a closed position. Another feature of this aspect of the invention may be that one of the screw and rod is adapted to move the first end of the first link in a direction generally parallel to a central axis of the tractor housing. Another feature of this aspect of the invention may be that the device further includes a slider assembly connected to the track assembly and the lower arm, and adapted to permit relative movement between the track assembly and the lower arm. Another feature of this aspect of the invention may be that the track assembly further includes a driven wheel coupled directly or indirectly to the motor. Another feature of this aspect of the invention may be that the motor is coupled directly or indirectly to a second rotatable screw that is engaged with the track, whereby rotation of the second rotatable screw causes rotation of the track. Another feature of this aspect of the invention may be that the device further includes a second downhole tractor spaced from the downhole tractor by a distance greater than a length of a washed out section of a well bore.
In another aspect, the invention may be a method of conveying an item in a well bore, comprising: providing a downhole tractor including a track assembly including a rotatable track, a motor adapted to rotate the track, a lower arm having a first end pivotally connected to a tractor housing and a second end pivotally connected to the track assembly, an upper arm having a first end pivotally connected to the tractor housing and a second end pivotally connected to the track assembly, and an actuator arm mounted to move the track assembly between open and closed positions; connecting the item to the tractor, engaging the track with an inner surface of the well bore, activating the motor, and moving the tractor along the surface. Another feature of this aspect of the invention may be that the method may further include providing a second downhole tractor spaced from the downhole tractor by a distance greater than a length of a washed out section of a well bore.
Other features, aspects and advantages of the present invention will become apparent from the following discussion
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
Referring to the drawings in detail, wherein like numerals denote identical elements throughout the several views, there is shown in
As shown in
Referring back to
The manner in which the track assemblies 28 may be deployed and retracted will now be explained. Still referring to
The present invention is not intended to be limited to any particular mechanical assembly for opening and closing the track assemblies 28, and for preferably imparting a substantially constant outward force to the track assemblies 28 when in their open and engaged position. Other examples are also within the scope of the present invention. For example, in another specific embodiment, the power screw 42 may be a ball screw. In another specific embodiment, the system 18 may comprise a hydraulic system adapted to extend and retract a rod 42 that may be pivotally connected to the lower ends of the lower links 46 to open and close the track assemblies 28 in the same way as explained above. In still another specific embodiment, the tractor 10 may include a constant force actuator of the type disclosed in pending U.S. patent application Ser. No. 10/321,858, filed on Dec. 17, 2002, and entitled “Constant Force Actuator” and published as U.S. Pat. No. 2003/0173076 (“the '858 application”), which is commonly assigned to the assignee of the present application, and fully incorporated herein by reference. For example, as shown in
In a specific embodiment, the tractor 10 may employ the methods disclosed in pending U.S. patent application Ser. No. 10/751,599, filed on Jan. 5, 2004, and entitled “Improved Traction Control For Downhole Tractor” (“the '599 application”) which is commonly assigned to the assignee of the present application, and fully incorporated herein by reference. The methods of the '599 application can be used in the present invention to control the outward normal force applied through the link assembly 44 to the track assemblies 28.
The specific embodiment of the present invention as shown in
In another specific embodiment, as briefly mentioned above, the upper and lower arms 36 and 38 that are connected at each end of the track assemblies 28 may be pivotally fixed to the tractor housing 26. In this case, some mechanism is required to allow the upper and lower arms 36 and 38 to rotate inwardly towards the central axis of the tractor 10 and toward each other. In accordance with this aspect of the present invention, in a specific embodiment, as shown in
In another specific embodiment, instead of transmitting rotary motion from the gear box 24 to the driven wheels 32 of the track assemblies 28, the driven wheels 32 may be replaced with idler wheels and the rotary motion may be transferred to the track 30 through a screw of the type disclosed in pending U.S. patent application Ser. No.10/857,395, filed on May 28, 2004, and entitled “Chain Drive System”, which is commonly assigned to the assignee of the present application, and fully incorporated herein by reference.
Irrespective of the method of imparting movement to the track 30, as the track 30 rotates, a considerable portion of its surface engages the bore hole (not shown) in which the tractor 10 is disposed. The interaction of the track 30 with the bore hole produces the tractoring forces that propel the tractor 10 inside the bore. These tractoring forces are generally determined by two parameters: (1) the amount of power that is applied by the drive section 14 to the track 30; and (2) the amount of outward/normal force applied to track assemblies 28. These two parameters are preferably controlled to optimize operation and movement of the tractor 10 depending upon the nature of the formation in which the bore being traversed is located. The formulation that produces the desired result varies for soft versus rigid formations. For example, when the formation in which the bore is disposed is soft, the tractor 10 produces the tractoring force by shearing the formation. The discussion below for Equations 1, 2 and 3 apply to tractoring on soil when using off-road vehicles which is conceptually similar to tractoring in soft formations. The discussion for Equations 4 and 5 apply to tractoring in rigid formations and also apply to cased holes. The present invention may also tractor in pipe, in which case the equations for rigid formations apply.
Equation 1 shows the relationship between the tractoring force, the contact area, the soil properties, the normal load exerted on the terrain (e.g. formation, soil), the track length and the slippage when a tractor is in a soft soil, which is conceptually similar to some soft formations. The variables of the Equation 1 are described in the Table 1.
Equation 1 is applicable for predicting the tractive effort of a track with uniform normal distribution for a given type of soil.
A vehicle encounters a resistance to movement given by the terrain. This resistance is a function of the terrain characteristics, the track dimensions, and the normal force the vehicle exerts on the terrain. Equation 2 shows this relation and Table 2 explains the parameters of Equation 2. The total traction (net tractoring force) of the vehicle is given by Equation 3, wherein the resistance (Equation 2) is subtracted from the tractoring force (Equation 1). When the tractor is in soft formations it will experience resistance to motion similar to that expressed by Equation 2.
The general formulation that represents tractoring in hard surfaces is defined by Equation 4. In this equation, the tractoring force (TF) is expressed as a function of the friction coefficient μ, the normal force (NF), a function ƒ1 of the contact area, and another function ƒ2 of the slippage. A simplification utilizes Equation 5; in this equation, the area effect is ignored and the normal force is the one that plays the most important role in the tractoring force. It is valuable to mention that in off-road vehicles theory, the track area is mainly important for soft soils with high levels of sinkage (low values of C) while the normal force is more important in less soft soils with high Phi values. Equation 1 gives insight on these statements.
TF=ƒ(μ, NF, ƒ1(contact area), ƒ2(slippage))
The actual tractoring power is given by Equation 6. In this equation, (i) is the slippage factor and Vt is the theoretical speed, which is the speed of the track's driving wheel.
Actual tractoring power=(1−i)*Vt*μ*NF*ƒ2(i)
The present invention has a number of advantages, including its modular design, ability to navigate bore holes of varying consistency (e.g., soft, firm, rigid, etc.), and ability to navigate bore holes of irregular cross-sectional profiles, one example of which is a bore hole having an elliptical cross section. In this case, since the present invention is modular, as shown in
Another example of an irregular borehole profile is commonly referred to as a “wash out”, which refers to a portion of the bore hole that has significantly eroded such that the diameter of the bore hole in the area of the erosion is significantly larger than the original diameter of the bore hole. These washed out sections can span a considerable length of the bore; it is not uncommon for them to span twenty or more feet. As shown in
As previously noted above, the motor 22 and gear box 24 of the present invention may be installed in one or more of the upper and lower arms 36 or 38, a specific embodiment of which is shown in
Another advantage related to the fact that the present invention is modular relates to load sharing and making the most efficient use of the power that is available in a down hole environment, which is typically understood to be around 9 kW. Due to size, space and heat dissipation considerations, it is not practical, and most likely not possible, to design a tractor with a single motor that would consume all of the 9 kW of available power. In this regard, in a specific embodiment, the tractors 10 are designed to have the force-speed relation illustrated in
The present invention is also not limited to any particular configuration for the track assembly 28. In a specific embodiment, the track assembly 28 may be configured so that the track loops around two spaced wheels with one or more wheels disposed therebetween, such as shown in
It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials or embodiments shown and described, as obvious modifications and equivalents will be apparent to one skilled in the art. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.
This application claims priority from U.S. Provisional Application No. 60/487,699, filed Jul. 16, 2003, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5184676 | Graham | Feb 1993 | A |
5794703 | Newman | Aug 1998 | A |
5954131 | Sallwasser | Sep 1999 | A |
6082461 | Newman | Jul 2000 | A |
6089323 | Newman | Jul 2000 | A |
6179055 | Sallwasser | Jan 2001 | B1 |
6273189 | Gissler | Aug 2001 | B1 |
6629568 | Post | Oct 2003 | B1 |
6920936 | Sheiretov et al. | Jul 2005 | B1 |
20020102136 | Holland | Aug 2002 | A1 |
20050145415 | Doering et al. | Jul 2005 | A1 |
20050263325 | Doering et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
WO 2005068773 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050034874 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
60487699 | Jul 2003 | US |