The contents of the following of applicant's US patent applications are hereby incorporated herein in their entirety.
The present invention relates to computer security, and in particular to detecting attackers of computer networks.
Reference is made to
Access to computers 110 and servers 120 in network 100 may optionally be governed by an access governor 150, such as a directory service, that authorizes users to access computers 110 and databases 120 based on “credentials”. Access governor 150 may be a name directory, such as ACTIVE DIRECTORY® developed by Microsoft Corporation of Redmond, Wash., for WINDOWS® environments. Background information about ACTIVE DIRECTORY® is available at Wikipedia. Other access governors for WINDOWS and non-WINDOWS environments, include inter alia Lightweight Directory Access Protocol (LDAP), Remote Authentication Dial-In User Service (RADIUS), and Apple Filing Protocol (AFP), formerly APPLETALK®, developed by Apple Inc. of Cupertino, Calif. Background information about LDAP, RADIUS and AFP is available at Wikipedia.
Access governor 150 may be one or more local machine access controllers. Access governor 150 may be one or more authorization servers, such as a database server or an application server.
In lieu of access governor 150, the endpoints and/or servers of network 100 determine their local access rights.
Credentials for accessing computers 110 and databases 120 include inter alia server account credentials such as <address> <username> <password> for an FTP server, an SQL server, or an SSH server. Credentials for accessing computers 110 and databases 120 also include user login credentials <username> <password>, or <username> <ticket>, where “ticket” is an authentication ticket, such as a ticket for the Kerberos authentication protocol or NTLM hash used by Microsoft Corp.; or login credentials via certificates or via another implementation used today or in the future. Background information about the Kerberos protocol and the LM hash is available at Wikipedia.
Access governor 150 may maintain a directory of computers 110, databases 120 and their users. Access governor 150 authorizes users and computers, assigns and enforces security policies, and installs and updates software. When a user logs into a computer 110, access governor 150 checks the submitted password, and determines if the user is an administrator (admin), a normal user (user) or other user type.
Computers 110 may run a local or remote security service, which is an operating system process that verifies users logging in to computers and other single sign-on systems and other credential storage systems.
Network 100 may include a security information and event management (SIEM) server 160, which provides real-time analysis of security alerts generated by network hardware and applications. Background information about SIEM is available at Wikipedia.
Network 100 may include a domain name system (DNS) server 170, or such other name service system, for translating domain names to IP addresses. Background information about DNS is available at Wikipedia.
Network 100 may include a firewall 180 located within a demilitarized zone (DMZ), which is a gateway between enterprise network 100 and external internet 10. Firewall 180 controls incoming and outgoing traffic for network 100. Background information about firewalls and DMZ is available at Wikipedia.
One of the most prominent threats that an enterprise faces is a targeted attack; i.e., an individual or group of individuals that attacks the enterprise for a specific purpose, such as leaking data, modifying data and systems, and sabotaging data and systems. Targeted attacks are carried out in multiple stages, typically including inter alia reconnaissance, penetration, lateral movement and payload.
The reconnaissance stage involves collecting information that assists an attacker to infiltrate the enterprise network. There are diverse types of information that are of interest to attacker, and there are diverse resources that an attacker uses for collecting information. One of the primary resources used by an attacker to infiltrate an enterprise network is “open source intelligence” (OSINT), which is information that is available on the network from publicly available sources, such as social media sites TWITTER®, FACEBOOK®, YOUTUBE®, and others. An attacker leverages OSINT to infiltrate a victim's network.
The lateral movement stage involves orientation, movement and propagation, and includes establishing a foothold within the enterprise and expanding that foothold to additional systems within the enterprise.
In order to carry out the lateral movement stage, an attacker, whether a human being who is operating tools within the enterprise network, or a tool with “learning” capabilities, learns information about the environment it is operating in, such as network topology and enterprise structure, implemented security solutions, and then operates in accordance with that data. One method to defend against such attacks, termed “honeypots”, is to plant and monitor deceptive information/decoys/bait, with the objective of the attacker learning of their existence and then consuming those bait resources, which are monitored, and to notify an administrator of the malicious activity. Background information about honeypots is available at Wikipedia.
There are several problems with conventional deception-based security solutions. Conventional Internet-facing honeypots are deceptive emulated systems that have public-facing interfaces with the objective of detected targeted attacks. A main disadvantage of such systems is that the Internet is automatically being scanned, all the time. Many tools like scrapers, vulnerability scanners and others identify new assets in the Internet and map them. This affects Internet honeypots as it creates too many false positive alerts, and the enterprise cannot differentiate between a real attack and an automatic scan.
Conventional deception technology are systems that plant deceptive information in enterprise resources, which points to trap servers, in order to detect an attacked who is moving laterally within the enterprise. A main disadvantage of such systems is that it is focused on tracking internal lateral movement within the enterprise network, which does not address detecting an attacker who uses OSINT resources to infiltrate the network, nor an attacker with high deception awareness.
The present invention automatically generates deceptive information and plants it in digital OSINT resources, which in turn enables fast and easy detection of advanced attackers.
Advanced attackers generally try to penetrate a network based on OSINT information. Advanced attackers are hesitant to use enumeration tools once they have breached a resource in the enterprise network. Instead of using enumeration, they use pre-collected data which they found in OSINT resources in a reconnaissance stage. The present invention addresses such attacker behavior by adding deceptive information to resources that attackers use for gathering information about the enterprise, including inter alia paste sites, public code repositories and search engines.
There is thus provided in accordance with an embodiment of the present invention a system to detect attackers who attempt to breach an enterprise network and attackers who have already breached the enterprise network, including an open source intelligence (OSINT) discoverer scanning the Internet to discover data related to an enterprise that is available online, an OSINT replacer generating deceptive files by replacing placeholders within template files with deceptive information, based on the data discovered by the OSINT discoverer, an OSINT distributor planting the deceptive files generated by the OSINT replacer within designated OSINT resources, and a deception management server that alerts an administrator in response to an attacker attempting to make a connection within the network using information in a deceptive file planted by the OSINT distributor.
There is additionally provided in accordance with an embodiment of the present invention a method for detecting attackers who attempt to breach an enterprise network and attackers who have already breached the enterprise network, including scanning the Internet for data of an enterprise that is available online, generating files and text by replacing placeholders within template files with deceptive information based on the results of said scanning, planting the files and text generated by the generating within OSINT resources, and alerting an administrator in response to an attacker attempting to make a connection within the enterprise network using information in a deceptive file planted by planting.
The present invention will be more fully understood and appreciated from the following detailed description, taken in conjunction with the drawings in which:
For reference to the figures, the following index of elements and their numerals is provided. Similarly numbered elements represent elements of the same type, but they need not be identical elements.
Elements numbered in the 1000's are operations of flow charts.
Open source intelligence (OSINT) is used by an attacker to find information about his target; and is used by a defender for risk management, to understand what OSINT information exists about its enterprise. OSINT resources include inter alia social media sites TWITTER® (a registered trademark of Twitter, Inc. of San Francisco, Calif.), FACEBOOK® (a registered trademark of Facebook, Inc. of Menlo Park, Calif.) and YOUTUBE® (a registered trademark of Google LLC of Mountain View, Calif.), and Internet platform resources such as GITHUB® (a registered trademark of GitHub, Inc. of San Francisco, Calif.), WEPASTE™/PASTEBIN™, LINKEDIN® (a registered trademark of LinkedIn Corporation of Sunnyvale, Calif.) and MAILINATOR® (a registered trademark of Manybrain, Inc. of San Francisco, Calif.). Embodiments of the present invention plant deceptive information in OSINT resources.
Reference is made to
Deception management server 210 is synchronized with access governor 150 and with SIEM server 160. Deception management server 210 collects attacker forensic data in two stages. During the first stage, as soon as attacker events are detected by access governor 150, a forensic application 212 is transmitted to the attacker's source computer. Forensic application 212 collects real-time forensics and delivers them to SIEM server 160. Additionally, if the attacker is lured to trap server 240, then a forensic alert module 242 alerts deception management server 210 and collects forensics for the attacker's actions on trap server 240. During the second stage, when incidents are completed, advanced information including inter alia file histories are compiled from compromised hosts and displayed in a management console 211.
OSINT deceptions manager 220 includes and manages several modules; namely, an OSINT discoverer 221, a templates editor 222, an OSINT replacer 223, an OSINT distributor 224, a console 225, and an OSINT dictionary 226. OSINT discoverer 221 scans public open source resources to find data relating to the enterprise. OSINT discoverer 221 returns a summary of data relating to the enterprise that was found online, including inter alia server names, IP addresses, e-mail addresses, and domain hostname information. In an embodiment of the present invention, OSINT discoverer 221 crawls and scrapes the OSINT resources, searching for relevant information by using regular expressions. OSINT discoverer 221 then analyzes the data, removes the irrelevant information, and presents on OSINT console 225 a summary of the information sorted by data type including inter alia IP address, e-mail address and hostname.
Templates editor 222 enables an administrator or such other user to manually create deceptive files, and/or to use existing templates of files and textual information to be planted in OSINT resources. Templates contain inter alia IP addresses and/or hostnames, paths, usernames and passwords.
Reference is made to
Templates editor 222 works with OSINT dictionary 226, which may automatically generate template data based on results obtained from OSINT discoverer 221. E.g., if the enterprise has an e-mail address real_name@example.com, then a deception generated may be fictitious_name@example.com. If the enterprise has an account with an Internet-based platform such as GITHUB®, deceptive data is uploaded using the enterprise account.
The inputs to OSINT replacer 223 are OSINT dictionary 226, the template files, and the output of OSINT discoverer 221. OSINT replacer 223 iterates over selected template files, and replaces placeholders with deceptive information from OSINT dictionary 226. E.g., OSINT replacer 223 may replace <user_name> with a fictitious name, and <password> with a fictitious password. The outputs of OSINT replacer 223 are the filled-in template files.
Reference is made to
OSINT distributor 224 takes data generated from OSINT dictionary 226, and plants the data in many OSINT resources, including inter alia GITHUB, WEPASTE/PASTEBIN, LINKEDIN and MAILINATOR. Thus deceptive scripts for file backups may be planted in GITHUB; paste of dumped deceptive user credentials may be planted in WEPASTE/PASTEBIN; links to sites with deceptive data may be planted in LINKEDIN; and mail with deceptive credentials may be planted in MAILINATOR. Deceptive data may be uploaded to these resources automatically from OSINT deception manager 220, if credentials are available, or manually by visiting the relevant websites.
Console 225 enables the administrator or such other user to view and approve the created deceptions.
When an attacker attempts a connection using a deception planted in OSINT, management server 210 is alerted. The connection may lead to trap server 240, in which case trap server 240 activates a forensic alert module 242. Trap server 240 keeps the connection open while deception management server 210 collects forensics from trap server 240. When forensics have been gathered, the attacker's access attempt ends unsuccessfully. Real-time forensics are critical for identifying the scope of an attack, the attacker's tools and methods, and the context of the attack. Real-time forensics, using direct communication, avoids risking latency and failures of third-party communication tools. With direct communication, forensics are delivered immediately upon attack detection.
In addition to obtaining forensics from trap server 240, deception management server 210 may send its forensic application 212 to the attacker's source computer. Forensic application 212 is an executable that runs on the attacker's source computer to collect forensics therefrom. As such, forensics are not only collected from trap server 240.
Alternatively, when the attacker attempts a connection using a deception planted in OSINT, the connection need not lead to trap server 240. Instead, the attempted connection causes a failed logon attempt to be logged in access governor 150; e.g., from Active Directory events. Deception management server 210 monitors access governor 150 for such failed logon attempts, thus identifying an attacker's attempt to use deceptive OSINT credentials by reading failed logon events from access governor 150. As such, it will be appreciated that use of trap server 240 is not essential to the present invention. For example, if a deception includes a user that exists on Active Directory, it suffices to detect a failed logon attempt from this user to trigger an alert, because no one should be using this user unless he found it in OSINT.
Thus for an attacker who has already compromised an endpoint/server in network 200, he may try to move laterally with network 200 using credentials he found online, and then upon failed logon event on the Active Directory an alert is triggered. Specifically, when an attacker attempts a connection using a deception planted in OSINT, a failed logon attempt may be logged by access governor 150, and deception management server 210 monitors access governor 150 and triggers alerts based on such failed events.
Reference is made to
At operation 1010, the administrator or such other user installs the OSINT system of the present invention on OSINT deceptions manager 220, and configures integration with deception management server 210. By integrating OSINT deceptions manager 220 with deception management server 210, detection of attempts to use a deceptive entity in network 200 is facilitated. Installation of OSINT deception manager 220 is a quick installation that sets up a web interface and backend components. The installation is simple and requires nothing special.
At operation 1020 OSINT discoverer 221 scans the Internet to find enterprise data, including inter alia e-mail addresses, IP addresses, hostnames, employees and usernames, that is available online. OSINT discoverer 221 presents a summary of information that was found online.
In an embodiment of the present invention, OSINT discoverer 221 crawls and scrapes the OSINT resources, searching for relevant information by using regular expressions. OSINT discoverer 221 then analyzes the data, removes the irrelevant information, and presents in OSINT console 225 a summary of the information sorted by data type including inter alia IP address, e-mail address and hostname.
At operation 1030 the administrator or such other user further configures OSINT deceptions manager 220 by supplying information including inter alia a mailbox account in the enterprise, and IP addresses of systems that OSINT deceptions manager 220 integrates with, including inter alia a mail server and deception management server 210.
At operation 1040 the administrator or such other user provides file templates to templates editor 222, or selects file templates from templates editor 222; e.g., PowerShell code for file backups, and text of “paste sites” with credentials in the text.
At operation 1050 OSINT replacer 223 iterates over the selected template files and replaces placeholders with corresponding deceptive information. E.g., a placeholder <user_name> is replaced with a deceptive username, and a placeholder <password> is replaced with a deceptive password.
At operation 1060 OSINT distributor 224 automatically plants the generated files or text data, using the supplied credentials, in various OSINT resources, such as paste sites like PasteBin.com, public code repositories like GitHub.com, and malware samples sharing platforms like virustotal.com. OSINT distributor 224 also enables manual distribution, whereby the administrator or such other user retrieves files or text and manually uploads the contents.
In an embodiment of the present invention, OSINT distributor 224 plants the files or text data by using each website's application programming interface.
At operation 1070 the attacker uses deceptive credentials to connect to trap server 240, which triggers a forensic alert in deception management server 210.
It will be appreciated by those skilled in the art that administration of OSINT deceptions manager 220 is simple. The administrator or such other user conducts an OSINT scan using OSINT discoverer 221. In some embodiments of the present invention the administrator or such other user provides OSINT discoverer 221 with a domain name. When discovery is finished, the administrator or such other user uses templates editor 222 to select which template files are to be used, and generates manual template files as appropriate. After the template files are selected and generated, the administrator or such other user provides deceptive entity information, including inter alia usernames, passwords, hostnames and IP addresses, to OSINT replacer 223, which places the deceptive entity information in the template files. Finally, USINT distributor 224 plants the deceptive files in selected OSINT resources. Thereafter, any attempt by an attacker to use the deceptive information triggers an alert in deception management server 210.
Reference is made to
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made to the specific exemplary embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
6363489 | Comay et al. | Mar 2002 | B1 |
6618709 | Sneeringer | Sep 2003 | B1 |
7065657 | Moran | Jun 2006 | B1 |
7089589 | Chefalas et al. | Aug 2006 | B2 |
7093291 | Bailey | Aug 2006 | B2 |
7516227 | Cohen | Apr 2009 | B2 |
7574741 | Aviani et al. | Aug 2009 | B2 |
7636944 | Raikar | Dec 2009 | B2 |
7665134 | Hernacki et al. | Feb 2010 | B1 |
7694339 | Blake et al. | Apr 2010 | B2 |
7725937 | Levy | May 2010 | B1 |
7752664 | Satish et al. | Jul 2010 | B1 |
7945953 | Salinas et al. | May 2011 | B1 |
8015284 | Isenberg et al. | Sep 2011 | B1 |
8181249 | Chow et al. | May 2012 | B2 |
8181250 | Rafalovich et al. | May 2012 | B2 |
8250654 | Kennedy et al. | Aug 2012 | B1 |
8375447 | Amoroso et al. | Feb 2013 | B2 |
8499348 | Rubin | Jul 2013 | B1 |
8528091 | Bowen et al. | Sep 2013 | B2 |
8549642 | Lee | Oct 2013 | B2 |
8549643 | Shou | Oct 2013 | B1 |
8719938 | Chasko et al. | May 2014 | B2 |
8739281 | Wang et al. | May 2014 | B2 |
8739284 | Gardner | May 2014 | B1 |
8769684 | Stolfo et al. | Jul 2014 | B2 |
8819825 | Keromytis et al. | Aug 2014 | B2 |
8856928 | Rivner et al. | Oct 2014 | B1 |
8881288 | Levy et al. | Nov 2014 | B1 |
8925080 | Hebert | Dec 2014 | B2 |
9009829 | Stolfo et al. | Apr 2015 | B2 |
9043905 | Allen et al. | May 2015 | B1 |
9043919 | Wyatt | May 2015 | B2 |
9124622 | Falkowitz et al. | Sep 2015 | B1 |
9152808 | Ramalingam et al. | Oct 2015 | B1 |
9240976 | Murchison | Jan 2016 | B1 |
9325728 | Kennedy et al. | Apr 2016 | B1 |
9356942 | Joffe | May 2016 | B1 |
9386030 | Vashist et al. | Jul 2016 | B2 |
9495188 | Ettema et al. | Nov 2016 | B1 |
20020066034 | Schlossberg et al. | May 2002 | A1 |
20020194489 | Almogy et al. | Dec 2002 | A1 |
20030084349 | Friedrichs et al. | May 2003 | A1 |
20030110396 | Lewis et al. | Jun 2003 | A1 |
20030145224 | Bailey | Jul 2003 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040128543 | Blake et al. | Jul 2004 | A1 |
20040148521 | Cohen et al. | Jul 2004 | A1 |
20040160903 | Gai et al. | Aug 2004 | A1 |
20040172557 | Nakae et al. | Sep 2004 | A1 |
20040255155 | Stading | Dec 2004 | A1 |
20050114711 | Hesselink et al. | May 2005 | A1 |
20050132206 | Palliyil et al. | Jun 2005 | A1 |
20050149480 | Deshpande | Jul 2005 | A1 |
20050235360 | Pearson | Oct 2005 | A1 |
20060010493 | Piesco et al. | Jan 2006 | A1 |
20060041761 | Neumann et al. | Feb 2006 | A1 |
20060069697 | Shraim et al. | Mar 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060106866 | Green | May 2006 | A1 |
20060161982 | Chari et al. | Jul 2006 | A1 |
20060224677 | Ishikawa et al. | Oct 2006 | A1 |
20060242701 | Black et al. | Oct 2006 | A1 |
20070028301 | Shull et al. | Feb 2007 | A1 |
20070039038 | Goodman et al. | Feb 2007 | A1 |
20070157315 | Moran | Jul 2007 | A1 |
20070192853 | Shraim et al. | Aug 2007 | A1 |
20070226796 | Gilbert et al. | Sep 2007 | A1 |
20070299777 | Shraim et al. | Dec 2007 | A1 |
20080016570 | Capalik | Jan 2008 | A1 |
20080046989 | Wahl | Feb 2008 | A1 |
20080086773 | Tuvell et al. | Apr 2008 | A1 |
20080155693 | Mikan et al. | Jun 2008 | A1 |
20090019547 | Palliyil et al. | Jan 2009 | A1 |
20090144827 | Peinado et al. | Jun 2009 | A1 |
20090222920 | Chow et al. | Sep 2009 | A1 |
20090241173 | Troyansky | Sep 2009 | A1 |
20090241191 | Keromytis et al. | Sep 2009 | A1 |
20090241196 | Troyansky et al. | Sep 2009 | A1 |
20090328216 | Rafalovich et al. | Dec 2009 | A1 |
20100058456 | Jajodia et al. | Mar 2010 | A1 |
20100071051 | Choyi et al. | Mar 2010 | A1 |
20100077483 | Stolfo et al. | Mar 2010 | A1 |
20100082513 | Liu | Apr 2010 | A1 |
20100251369 | Grant | Sep 2010 | A1 |
20100269175 | Stolfo et al. | Oct 2010 | A1 |
20110016527 | Yanovsky et al. | Jan 2011 | A1 |
20110154494 | Sundaram et al. | Jun 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110214182 | Adams et al. | Sep 2011 | A1 |
20110258705 | Vestergaard et al. | Oct 2011 | A1 |
20110307705 | Fielder | Dec 2011 | A1 |
20120005756 | Hoefelmeyer et al. | Jan 2012 | A1 |
20120079596 | Thomas | Mar 2012 | A1 |
20120084866 | Stolfo | Apr 2012 | A1 |
20120167208 | Buford et al. | Jun 2012 | A1 |
20120210388 | Kolishchak | Aug 2012 | A1 |
20120246724 | Sheymov et al. | Sep 2012 | A1 |
20120311703 | Yanovsky et al. | Dec 2012 | A1 |
20130061055 | Schibuk | Mar 2013 | A1 |
20130086691 | Fielder | Apr 2013 | A1 |
20130212644 | Hughes et al. | Aug 2013 | A1 |
20130227697 | Zandani | Aug 2013 | A1 |
20130263226 | Sudia | Oct 2013 | A1 |
20140082730 | Vashist et al. | Mar 2014 | A1 |
20140101724 | Wick et al. | Apr 2014 | A1 |
20140115706 | Silva et al. | Apr 2014 | A1 |
20140201836 | Amsler | Jul 2014 | A1 |
20140208401 | Balakrishnan et al. | Jul 2014 | A1 |
20140237599 | Gertner | Aug 2014 | A1 |
20140259095 | Bryant | Sep 2014 | A1 |
20140298469 | Marion et al. | Oct 2014 | A1 |
20140310770 | Mahaffey | Oct 2014 | A1 |
20140337978 | Keromytis et al. | Nov 2014 | A1 |
20140359708 | Schwartz | Dec 2014 | A1 |
20150007326 | Mooring et al. | Jan 2015 | A1 |
20150013006 | Shulman et al. | Jan 2015 | A1 |
20150047032 | Hannis et al. | Feb 2015 | A1 |
20150074750 | Pearcy et al. | Mar 2015 | A1 |
20150074811 | Capalik | Mar 2015 | A1 |
20150096048 | Zhang et al. | Apr 2015 | A1 |
20150128246 | Feghali et al. | May 2015 | A1 |
20150156211 | Chi Tin et al. | Jun 2015 | A1 |
20150295943 | Malachi | Oct 2015 | A1 |
20150326587 | Vissamsetty et al. | Nov 2015 | A1 |
20150326598 | Vasseur et al. | Nov 2015 | A1 |
20160019395 | Ramalingam et al. | Jan 2016 | A1 |
20160080414 | Kolton et al. | Mar 2016 | A1 |
20160212167 | Dotan et al. | Jul 2016 | A1 |
20160261608 | Hu et al. | Sep 2016 | A1 |
20160300227 | Subhedar et al. | Oct 2016 | A1 |
20160308895 | Kotler et al. | Oct 2016 | A1 |
20160323316 | Kolton et al. | Nov 2016 | A1 |
20160359882 | Touboul | Dec 2016 | A1 |
20160373447 | Akiyama et al. | Dec 2016 | A1 |
20170032130 | Joseph Durairaj et al. | Feb 2017 | A1 |
20170093910 | Gukal | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2006131124 | Dec 2006 | WO |
2015001969 | Jan 2015 | WO |
2015047555 | Apr 2015 | WO |
Entry |
---|
Medkova, “Honeypot Testbed for Network Defence Strategy Evaluation”, pp. 887-888. (Year: 2017). |
Wikipedia, Active Directory, https://en.wikipedia.org/wiki/Active_Directory, Jun. 24, 2015. |
Wikpedia, Apple Filing Protocol, https://en.wikipedia.org/wiki/Apple_Filing_Protocol, Aug. 14, 2015. |
Wikipedia, DMZ (computing), https://en.wikipedia.org/wiki/DMZ_(computing), Jun. 17, 2015. |
Wikipedia, Domain Name System, https://en.wikipedia.org/wiki/Domain_Name_System, Jul. 14, 2015. |
Wikipedia, Firewall (computing), https://en.wikipedia.org/wiki/Firewall_(computing), Jul. 14, 2015. |
Wikipedia, Honeypot (computing), https://en.wikipedia.org/wiki/Honeypot_(computing), Jun. 21, 2015. |
Wikipedia, Kerberos (protocol), https://en.wikipedia.org/wiki/Kerberos_(protocol), Jun. 30, 2015. |
Wikipedia, Lightweight Directory Access Protocol, https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol, Aug. 15, 2015. |
Wikipedia, LM hash, https://en.wikipedia.org/wiki/LM_hash, Jun. 8, 2015. |
Wikipedia, RADIUS, https://en.wikipedia.org/wiki/RADIUS, Aug. 16, 2015. |
Wikipedia, Rainbow table, https://en.wikipedia.org/wiki/Rainbow_table, Jul. 14, 2015. |
Wikipedia, Secure Shell, https://en.wikipedia.org/wiki/Honeypot_(computing), Jul. 12, 2015. |
Wikipedia, Security Information and Event Management, https://en.wikipedia.org/wiki/Security_information_and_event_management, Jun. 23, 2015. |
Wikipedia, Tarpit (networking), https://en.wikipedia.org/wiki/Tarpit_(networking), Jul. 3, 2014. |
Mishra et al., Intrusion detection in wireless ad hoc networks, IEEE Wireless Communications, Feb. 2004, pp. 48-60. |
Zhang et al., Intrusion detection techniques for mobile wireless networks, Journal Wireless Networks vol. 9(5), Sep. 2003, pp. 545-556, Kluwer Academic Publishers, the Netherlands. |
U.S. Appl. No. 15/004,904, Office Action, dated May 27, 2016, 16 pages. |
U.S. Appl. No. 15/004,904, Notice of Allowance, dated Oct. 19, 2016, 13 pages. |
U.S. Appl. No. 15/175,048, Notice of Allowance, dated Oct. 13, 2016, 17 pages. |
U.S. Appl. No. 15/175,050, Office Action, dated Aug. 19, 2016, 34 pages. |
U.S. Appl. No. 15/175,050, Office Action, dated Nov. 30, 2016, 31 pages. |
U.S. Appl. No. 15/175,050, Notice of Allowance, dated Mar. 21, 2017, 13 pages. |
U.S. Appl. No. 15/175,052, Office Action, dated Feb. 13, 2017, 19 pages. |
U.S. Appl. No. 15/175,052, Office Action, dated Jun. 6, 2017, 19 pages. |
U.S. Appl. No. 15/175,054, Notice of Allowance, dated Feb. 21, 2017, 13 pages. |
U.S. Appl. No. 15/403,194, Office Action, dated Feb. 28, 2017, 13 pages. |
U.S. Appl. No. 15/403,194, Notice of Allowance, dated Jun. 16, 2017, 9 pages. |
U.S. Appl. No. 15/406,731, Notice of Allowance, dated Apr. 20, 2017. |
PCT Application No. PCT/IL16/50103, International Search Report and Written Opinion, dated May 26, 2016, 9 pages. |
PCT Application No. PCT/IL16/50579, International Search Report and Written Opinion, dated Sep. 30, 2016, 7 pages. |
PCT Application No. PCT/IL16/50581, International Search Report and Written Opinion, dated Nov. 29, 2016, 10 pages. |
PCT Application No. PCT/IL16/50582, International Search Report and Written Opinion, dated Nov. 16, 2016, 11 pages. |
PCT Application No. PCT/IL16/50583, International Search Report and Written Opinion, dated Dec. 8, 2016, 10 pages. |
U.S. Appl. No. 15/175,052, Notice of Allowance, dated Jan. 2, 2018, 9 pages. |
U.S. Appl. No. 15/679,180, Notice of Allowance, dated Mar. 26, 2018, 14 pages. |
U.S. Appl. No. 15/722,351, Office Action, dated Mar. 9, 2018, 17 pages. |
U.S. Appl. No. 15/682,577, Notice of Allowance, dated Jun. 14, 2018, 15 pages. |