Open type compressor

Information

  • Patent Grant
  • 6264448
  • Patent Number
    6,264,448
  • Date Filed
    Wednesday, June 7, 2000
    24 years ago
  • Date Issued
    Tuesday, July 24, 2001
    23 years ago
Abstract
This compressor 1 is for compressing an introduced working gas to a predetermined pressure and exhausting by means of the rotation of a crank shaft 5 which is rotatively supported by a front case 4 of a housing 1A by a main bearing 6, and has a partition means 31 (labyrinth seal for example) which is provided between the main bearing and a shaft seal 28 which is provided at the outer side of the main bearing along the axial direction, and separating a space in which the shaft seal is provided from a low pressure chamber 15 of the housing to form a sealing chamber 30, and a first lubricating agent supply passage 29 which is formed in the housing and is opened to the sealing chamber for supplying a lubricating agent to the sealing chamber. A part of the highly compressed lubricating agent which is supplied the sealing chamber can be leaked to the low pressure chamber via the partition means during the operation of said compressor.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an open type compressor, and especially relates to an open type compressor which is suitable for a steam compression type cooling cycle using a coolant in the supercritical area of carbon dioxide (CO


2


) and the like.




This application is based on Japanese Patent Application No. Hei 11-1661694, the content of which is incorporated herein by reference.




2. Description of the Related Art




Recently, from the point of view of protection of the environment, a cooling cycle which uses carbon dioxide (CO


2


) as a working gas (coolant gas) has been proposed for steam compression type cooling cycles, as a measures for elimination of fluorocarbons (refer to Japanese Patent Application, First Application No. Hei 7-18602, for example). The operation of this cooling cycle (hereinafter called CO


2


cycle) is similar to the conventional steam compression type cooling cycle. That is, as shown in a line A-B-C-D-A in

FIG. 6

(CO


2


Moller diagram), gaseous CO


2


is compressing by a compressor (A-B), this gaseous CO


2


which is compressed at a high temperature is cooled by a radiator (gas cooler) (B-C), the pressure of the gas is reduced by a decompressor (C-D), the CO


2


which is changed to liquid phase is evaporated (D-A), and an external fluid such as air is cooled by the a latent heat of evaporation.




However, if the external temperature is high, during the sur season or the like, the temperature of the CO


2


at the radiator side becomes higher than the critical temperature of CO


2


, because the critical temperature of CO


2


is about 31° C. which is lower than that of the fluorocarbons used as conventional coolants, and therefore, CO


2


does not condense at the radiator side (the line BC does not cross a saturation line SL in FIG.


6


). Furthermore, the phase of CO


2


at the outlet side of the radiator (point C in

FIG. 6

) is determined by the exhaust pressure of the compressor and the CO


2


temperature at the outlet side of the radiator, and the CO


2


temperature at the outlet side of the radiator is determined by the radiation capacity of the radiator and the external temperature (which cannot be controlled). Hence, the temperature of CO


2


at the outlet side of the radiator is substantially uncontrollable, and the phase of the CO


2


at the outlet side of the radiator is controlled by the exhaust pressure of the compressor (the pressure at the outlet side of the radiator). Consequently, if the outer temperature is high during the summer season or the like, the pressure at the outlet side of the radiator must be increased as shown in line E-F-G-H-E in

FIG. 6

to secure sufficient cooling capacity (difference in enthalpy), and the operation pressure of the compressor must be increased in comparison with the conventional compressor which uses fluorocarbons.




For instance, in the case of an air conditioning unit for a vehicle, the operation pressure of a compressor using CO


2


is increased to 40 kg/cm


2


, as opposed to that of a conventional compressor R134 using fluorocarbon, which is 3 kg/cm


2


. Furthermore, the stopping pressure of the compressor which using CO


2


is increased to 40 kg/cm


2


, as opposed to that of R134, which is 15 kg/cm


2


. Consequently, in the case of the CO


2


cycle, the differential pressure between the internal pressure of the compressor and the atmospheric pressure is increased, and therefore, there is concern of a gas leak from a shaft sealing portion of the compressor during the operation and stopping of the compressor. That is, in the conventional compressor, sufficient lubricating oil is supplied to the compressor, and this lubricating oil is partly supplied to the shaft sealing portion. However, the pressure of the lubricating oil may not be kept at a sufficiently high level, and gas leaks from the shaft sealing portion of the compressor are apt to occur. Especially, when the operation is stopped, the lubricating oil is not sufficiently supplied to the shaft sealing portion, and the gas leak fran the shaft sealing portion can easily occur. Furthermore, the shaft sealing portion may be damaged at the restart of the compressor because lubricating oil is not supplied while it is stopped. For the above reasons, the operation of the CO


2


cycle is not efficient and an improvement is strongly required. Besides, Japanese Patent Application, Second Publication No. Hei 3-6350 discloses a sealing apparatus for a shaft to seal a shaft-end portion of a screw type compressor. In this apparatus, a mechanical seal and a plain bearing which acts as a labyrinth seal are separately arranged on the shaft-end portion to form an enclosed chamber between the seals. A lubricating material is sent into the chamber with a pressure which is higher than the pressure in a pump chamber, and gas leakage from the pump chamber is prevented. However, this apparatus is only for preventing the gas leakage during the operation, and is not for lubricating the machine room (pump chamber) of the compressor.




The present invention is provided in compliance with the above problems of the conventional art, and the object of the present invention is to provide an open type compressor which can secure efficient and appropriate operation during the cooling cycle by improving the lubrication ability during the operation and by preventing the leakage of the working gas when the operation is stopped.




SUMMARY OF THE INVENTION




To achieve the above-described object, the open type compressor of the present invention provides the following features. That is, the open type compressor of the present invention is for compressing an introduced working gas and exhausting the working gas which is compressed by the predetermined pressure, and is characterized by comprising a crank case having a low pressure chamber in which the working gas is introduced, a crank shaft which is rotatively supported by the low pressure chamber by a bearing and compressing the working gas by rotation, a shaft seal which is provided on the crank shaft at the outer side of the bearing along the axial direction, a partition means which is provided between the bearing and the shaft seal for separating a space in which the shaft seal is provided from the low pressure chamber to form a sealing chamber, and a first lubricating agent supply passage which is formed in the crank case and is opened to the sealing chamber for supplying a lubricating agent to the sealing chamber.




In this compressor, the highly compressed lubricating agent is filled in the sealing chamber which is partitioned by the partition means via the first lubricating agent supply passage at the operation of the compressor. As a result, gas leaks from the sealing chamber is surely prevented by this highly compressed lubricating agent.




It is preferable that the partition means is an non-contact type labyrinth seal. The labyrinth seal allows the leakage of a part of the highly compressed lubricating agent which is supplied from the sealing chamber to the low pressure chamber during the operation of the compressor. In this case, the desired leak capacity is provided by a gap between two constituent members which constitute the non-contact type seal. Furthermore, because of the filling of the highly compressed lubricating agent in the sealing chamber via the first lubricating agent supply passage during the operation of the compressor, the pressure of the lubricating agent which is filled in the sealing chamber becomes sufficiently higher than that of the low pressure chamber (machine room). Therefore, a part of the lubricating agent in the sealing chamber is leaked to the low pressure chamber via the labyrinth seal and the low pressure chamber is lubricated by the leaked lubricating agent.




Meanwhile, when the operation is stopped, the pressure in the sealing chamber and the low pressure chamber becomes almost the same. Therefore, the highly compressed lubricating agent which is filled in the sealing chamber is kept by the labyrinth seal and the leakage of the lubricating agent from the sealing chamber is surely prevented by this highly compressed lubricating agent. Furthermore, damage to the shaft sealing portion during the restarting of the compressor is prevented. For the above reasons, the cooling cycle can operate efficiently.




A contact type seal which is composed of a sealing apparatus such as a mechanical seal or shaft seal and a leak passage which is formed in the sealing apparatus can also be employed as the above-described partition means. In this case, a leak capacity similar to that of the above-described labyrinth seal can be obtained by forming a leak passage which provides a predetermined leak capacity to the contact-seal which has complete seal capacity.




It is also preferable that the crank case has a second lubricating agent supply passage which is opened to the low pressure chamber for supplying the lubricating agent to the low pressure chamber. In this case, the lubricating agent is directly supplied to the low pressure chamber via this second lubricating agent supply passage during the operation.




A lubricating oil supply means for supplying lubricating oil as a lubricating agent to the sealing chamber can also be provided. The lubricating oil supply means comprises an oil separator which is provided at an exhaust pipe of the highly compressed working gas for separating said lubricating oil from the working gas, and an oil return pipe for returning the lubricating oil which is separated by the oil separator to the first lubricating agent supply passage or first and second lubricating agent supply passages. In this case, the lubricating oil which is separated from the exhausted working gas by the lubricating oil supply means and introduced to the sealing chamber or sealing chamber and low pressure chamber and is reused as the lubricating oil, and therefore, the running cost of the compressor is reduced.




Furthermore, the present invention is particularly effective for use in an open type compressor for a cooling cycle which uses carbon dioxide as the working gas in which the operation pressure is high and the working gas can easily be leaked.











BRIEF EXPLANATION OF THE DRAWINGS





FIG. 1

is a longitudinal cross sectional view of an embodiment of the open type compressor of the present invention.





FIG. 2

is an enlarged cross sectional view of the vicinity of the sealing chamber of FIG.


1


.





FIG. 3

is an enlarged cross sectional view of the vicinity of the another embodiment of the sealing chamber.





FIG. 4

is a longitudinal cross sectional view of another embodiment of the open type compressor of the present invention.





FIG. 5

is a schematic view of the steam compression type cooling cycle.





FIG. 6

is a Mollier diagram for CO


2


.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Preferred embodiments of the open type compressor of the present invention will be explained with reference to the Figures.




First, a CO


2


cycle having the open type compressor of the present invention will be explained with reference to FIG.


5


. This CO


2


cycle S is used for the air conditioning unit for a vehicle and reference number


1


denotes the open type compressor which compresses gaseous CO


2


. The open type compressor


1


is driven by a driving force which is supplied by a driving source, not shown (for example an engine or the like). Reference number


1




a


denotes a radiator (gas cooler) for cooling the CO


2


which is compressed by the open type compressor, by means of heat-exchange between the CO


2


and an external air; reference number


1




b


denotes a pressure regulation valve for regulating the pressure at the outlet side of the radiator


1




a


in compliance with the CO


2


temperature at the outlet side of the radiator


1




a


. The CO


2


which is decompressed by the pressure regulation valve


1


b and a reducer


1




c


to forms 2 phases, gas and liquid, with low temperature and low pressure. Reference number


1




d


denotes an evaporator (heat absorber) which acts as a cooling means of the air in a passenger compartment, and the CO


2


which forms 2 phases of gas and liquid cools the air of inside the passenger compartment by taking the latent of vaporization (evaporation) of the CO


2


from the inside air, in the evaporator


1




d


. Reference number


1




e


denotes an accumulator for temporarily accumulating the liquid phased CO


2


. Furthermore, the open type compressor


1


, radiator


1




a


, pressure regulation valve


1




b


, reducer


1




c


, evaporator


1




d


and accumulator


1




e


are connected by an oil exhaust pipe


1




f


and form a closed circuit.




Next, an embodiment of the open type compressor


1


will be explained with reference to FIG.


1


and

FIG. 2

(a cross sectional view of the vicinity of the sealing chamber of FIG.


1


).




A housing (casing)


1


A of the open type compressor


1


is composed of a case main body


2


which has a cup shape, and a front case (crank case)


4


which is fastened the case main body


2


by a bolt


3


. A crank shaft


5


penetrates the front case


4


and is rotatively supported in the front case


4


via a main bearing


6


and a sub bearing


7


, and rotation of an automotive engine (not shown) is transmitted to the crank shaft via a known electromagnetic clutch


32


. Furthermore, reference numbers


32




a


,


32




b


denote a coil and a pulley of the electromagnetic clutch


32


respectively.




A fixed scroll


8


and revolving scroll


9


are provided in the housing


1


A. The fixed scroll


8


has an end plate


10


and a spiral projection (lap)


11


which is projected from the inner surface of the end plate


10


, and a backing block


13


is detachably fastened to the case main body


2


by a bolt


12


. Furthermore, O-rings


14




a


,


14




b


are provided on inner and outer surfaces of the backing block


13


respectively. These O-rings


14




a


,


14




b


are closely contacted with the inner surface of the case main body


2


, and therefore, a low pressure chamber (intake chamber)


15


which is formed in the case main body


2


and a high pressure chamber (exhaust chamber)


16


which is explained later are isolated. The high pressure chamber


16


is composed of an inner space


13




a


of the backing block


13


and a hollow portion


10




a


which is formed on the back surface of the end plate


10


.




The revolving scroll


9


comprises an end plate


17


and a spiral projection (lap)


18


which extends from the inner surface of the end plate


17


. This spiral projection


18


has substantially the same shape as the spiral projection


11


of the above-described fixed scroll


8


.




A ring shaped plate spring


20




a


is installed between the fixed scroll


8


and the front case


4


. This plate spring


20




a


is mutually fastened to the fixed scroll


8


and the front case


4


along the circumferential direction by a plurality of bolts


20




b


. As a result, the fixed scroll


8


can only move along the axial direction within the limit of the maximum bending amount of the plate spring


20




a


(floating structure). Furthermore, a fixed scroll supporting member


20


is composed by the ring shaped plate spring


20




a


and the bolts


20




b


. Besides, a space c is formed between the projecting portion which projects from the back surface of the backing block


13


and the housing


1


A, and the backing block


13


can be moved in the space C along the before-mentioned axial direction with the fixed scroll


8


. The axes of fixed and revolving scrolls


8


,


9


are eccentrically separated from each other at the distance of a radius of their revolution. The phase of these scrolls


8


,


9


differs by 180°, and these scrolls


8


,


9


are engaged with each other as shown in

FIG. 4. A

tip seal (not shown) is laid on the end surface of the spiral projection


11


and is closely contacted to the inner surface of the end plate


17


, and another tip seal (not shown) is laid on the end surface of the spiral projection


18


and is closely contacted to the inner surface of the end plate


10


. Furthermore, the side surfaces of these spiral projections


11


,


18


are closely contacted to each other at several places. If tip seals are not installed on the spiral projections


11


,


18


, the end surfaces of the spiral projections


11


,


18


are respectively closely contacted to the inner surfaces of the end plates


10


,


17


. Because of the above described structures, a plurality of closed spaces


21




a


,


21




b


are formed with point symmetry about the center of the spiral. In addition, a rotation prevention ring (Oldham ring)


27


for preventing rotation of the revolving scroll


9


but allowing revolution thereof is provided between the fixed scroll


8


and the revolving scroll


9


.




A cylindrical shaped boss


22


is formed on the central part of the outer surface of the end plate


17


, and a drive bush


23


is rotatively installed in the inside of the boss


22


via a revolving bearing (drive bearing)


24


which also acts as a radial bearing. A penetrating hole


25


is bored the drive bush


23


, and an eccentric shaft


26


which projects from the inner in surface of the crank shaft


5


is rotatively installed in the penetrating hole


25


. Furthermore, a thrust ball bearing


19


for supporting the revolving scroll


9


is placed between the outer circumferential end of the outer surface of the end plate


17


and the front case


4


.




On the outer circumferential surface of the crank shaft


5


, a known mechanical seal (shaft seal)


28


which is explained later is provided at the outer side of the main bearing


6


. Furthermore, a lubricating oil supply passage (first lubricating agent supply passage)


29


is bored in the front case


4


, and one end of this passage


29


is opened to the sealing chamber (oil chamber)


30


, described later, which is formed at the inside of the front case


4


. The sealing chamber


30


is isolated from the low pressure chamber


15


by non-contact type labyrinth seal (partition means)


31


which is explained later. In this case, the partition means is not limited to the labyrinth seal


31


, and a contact-seal which is composed by forming a leak passage to a sealing apparatus such as a mechanical seal or shaft seal can be employed as explained later. A highly compressed lubricating oil (lubricating agent) is supplied via the lubricating oil supply passage


29


. That is, an oil separator


42


for separating the lubricating oil from the working gas is prepared the pipe


1




f


for the highly compressed working gas which is exhausted from an exhaust opening


38


, and the lubricating gas which is gathered by the oil separator


42


is introduced into the lubricating oil supply passage


29


via an oil return pipe


43


.




Here, the area near the sealing chamber


30


will be explained with reference to FIG.


2


.




A slide ring type shaft seal apparatus is employed as the mechanical seal


28


of the present embodiment, for example. This mechanical seal


28


has a seat ring (rubber packing)


28




a


which is formed by a synthetic rubber, for example, and a driven ring (slide ring)


28




b


which rotates with the crank shaft


5


and is formed of a carbon steel for example. The driven ring


28




b


is closely contacted with the seat ring


28




a


by a pusher


28




c


, and therefore, the driven ring


28




b


slides toward the seat ring


28




a


in compliance with the rotation of the crank shaft


5


. This mechanical seal is disclosed in Japanese Utility Model Application, Second Publication No. Hei 4-33424 which was filed by the applicant of the present application, and in “Revised Refrigerating Engineering” (Published in Japan by Corona Co., Publication date: Jul. 20, 1975) pp. 141-148, for example.




The partition means


31


of the present invention (the non-contact type labyrinth seal is employed in the present embodiment) is composed of a ring shaped seal main body (constituent member)


31




a


and a ring shaped tip (constituent member)


31




b


which is movably engaged with the inner circumferential surface of the seal main body


31




a


. A slight gap is formed between the outer circumferential surface of the tip


31




b


and the inner circumferential surface of the seal main body


31




a


, and therefore, these members


31




a


,


31




b


are separated and the highly compressed lubricating oil can pass through the gap. The outer circumferential portion of the seal main body


31




a


forms a thick portion


40


and the thick portion


40


is pressed against the inner surface of the front case


4


by an outer ring


6




a


of the main bearing


6


, and therefore, the thick portion


40


is supported by the front case


4


. Furthermore, the main bearing


6


is pressed along the left side of the

FIG. 2

by a brim portion


5




a


of the crank shaft


5


, and therefore, the seal main body


31




a


is fixed to the front case


4


. In addition, the tip


31




b


is formed by an elastic material and the crank shaft is pressed by the inner circumferential surface of the tip


31




b


. Because of the above described structure, the sealing chamber


30


is isolated from the low pressure chamber


15


by the labyrinth seal


31


. The labyrinth seal


31


has the feature that the tip


31




b


is elastically deformed by the highly compressed lubricating oil which is supplied by the sealing chamber


30


to leak a part of it to the low pressure chamber


15


through the above-described gap.




Next, the movement of the open type compressor


1


will be explained.




When applying an electric power to the coil


32




a


of the electromagnetic clutch


32


, rotation of the automotive engine is transmitted to the crank shaft


5


, and the rotation of the crank shaft


5


is transmitted to the revolving scroll


9


via a rotation drive mechanism which is composed of the eccentric shaft


26


, penetrating hole


25


, drive bush


23


, revolving bearing


24


, and the boss


22


. Consequently, the revolving scroll


9


revolves on a circular orbit, and the rotation of the revolving scroll


9


is prevented by the rotation prevention ring


27


.




When the revolving scroll


9


revolves, the line contact portions between the spiral projections


11


,


18


gradually moves to the center of the spiral, and the closed spaces (compression chamber)


21




a


,


21




b


are gradually moved to the center of the spiral while their volumes thereof are gradually reduced. In compliance with these movements, the working gas which flows into the intake chamber


15


(refer to arrow A in

FIG. 1

) via an inlet (not shown) flows into the closed spaces (compression chambers)


21




a


,


21




b


from an opening which is formed at the outer end of the spiral projections


11


,


18


. This working gas is compressed and arrives at the center portion


21




c


of the spiral, and is exhausted to an exhaust port


34


which is bored into the end plate


10


of the fixed scroll


8


. The exhausted working gas pushes up the exhaust valve


35


and arrives at the high pressure chamber


16


, and is exhausted from the exhaust opening


38


. As described above, the working gas which flows into the intake chamber


15


is compressed in the closed space


21




a


,


21




b


by the revolving of the revolving scroll


9


, and is exhausted as a compressed gas.




Besides, the lubricating gas which is gathered by the oil separator


42


is supplied to the sealing chamber via the lubricating oil supply passage


29


and oil return pipe


43


. Therefore, the pressure of the lubricating oil which is filled in the sealing chamber


30


becomes sufficiently higher than that of the low pressure chamber


15


(machine room) in the housing


1


A. Consequently, the tip


31




b


of the labyrinth seal


31


is elastically deformed and a part of the highly compressed lubricating oil is leaked to the low pressure chamber


15


. As a result, gas leakage from the shaft sealing


28


is prevented by the highly compressed lubricating oil which is filled in the sealing chamber


30


. Furthermore, the low pressure chamber


15


is lubricated by the leaked lubricating oil.




When stopping the transmission of the rotation to the crank shaft


5


by stopping the application of electric power to the coil


32




a


of the electromagnetic clutch


32


, the operation of the open type compressor


1


is stopped and the pressure in the sealing chamber


30


and the low pressure chamber


15


become almost the same. Therefore, the tip


31




b


of the labyrinth seal


31


is not deformed and the highly compressed lubricating oil which is filled in the sealing chamber


30


is kept by the labyrinth seal


31


. As a result, gas leaks from the sealing chamber


30


and from the shaft sealing


28


are surely prevented.




Another embodiment of the partition means will be explained below.




As shown in

FIG. 3

, a labyrinth seal


51


which functions as the partition means is composed of a ring shaped first sealing portion (constituent member)


51




a


which is fixed to the front case


4


and a ring shaped second sealing portion (constituent member)


51




b


which is fixed the crank shaft


5


. The outer circumferential portion of the first sealing portion


51




a


forms a thick portion


52


and the thick portion


52


is pressed against the inner surface of the front case


4


by an outer ring


6




a


of the main bearing


6


, and therefore, the first sealing portion


51




a


is fixed to the front case


4


. Furthermore, the inner circumferential portion of the second sealing portion


51




b


forms a thick portion


53


and the thick portion


53


is fixed to the end surface of a large diameter portion


5




b


of the crank shaft


5


. A slight gap is formed between the inner circumferential surface of the first sealing portion


51




a


and the outer circumferential surface of the second sealing portion


51




b


, and therefore, these sealing portions


51




a


,


51




b


are not contacted with each other. Because of the above described construction, the sealing chamber


30


is isolated from the low pressure chamber


15


by the labyrinth seal


51


. During the operation of the compressor, a part of the highly compressed lubricating oil which is supplied to the sealing chamber


30


is leaked to the low pressure chamber


15


through the above-described gap. The rest of the construction of this embodiment is same as that of the embodiment shown in FIG.


2


.




In the embodiments which shown in

FIGS. 2 and 3

, the labyrinth seal is employed as the partition means, however, the partition means is not limited to the labyrinth seal, and a contact-seal which is composed by forming a leak passage in the sealing apparatus such as the mechanical seal or the shaft seal can be employed. That is, a leakage capacity similar to that of the above-described labyrinth seal can be obtained by forming a leak passage which has a predetermined leakage capacity in the contact-seal which can form a complete seal.




Next, another embodiment of the open type compressor of the present invention will be explained.




In this embodiment, as shown in

FIG. 4

, a lubricating oil supply passage (second lubricating agent supply passage)


29




a


which is opened into the low pressure chamber


15


is bored in the case main body


2


, and a branch pipe


43




a


from the oil return pipe


43


is connected to the lubricating oil supply passage


29




a


. During the operation of the compressor, the lubricating oil is directly supplied to the low pressure chamber


15


and the capacity to lubricate the low pressure chamber


15


is improved.




Furthermore, in these embodiments, the open type compressor is applied for a CO


2


cycle which uses CO


2


as the working gas, however, the present invention is not limited to the above embodiments. That is, the open type compressor of the present invention also can be applied to a normal type steam compression type cooling cycle which uses fluorocarbons as the working gas, for example.




In addition, in these embodiments, the lubricating oil which is separated from the exhausted working gas at a high pressure is introduced into the sealing chamber (or sealing chamber and low pressure chamber) and reused for reduction of the running costs, however, the present invention is not limited to the above embodiment. That is, a tank which stores the lubricating oil and supplies highly compressed lubricating oil to the sealing chamber (or sealing chamber and low pressure chamber) can be separately provided, for example.



Claims
  • 1. An open type compressor for compressing an introduced working gas and exhausting said working gas which is compressed to a predetermined pressure, the open type compressor comprising:a crank case having a low pressure chamber in which said working gas is introduced, a crank shaft which is rotatively supported by said low pressure chamber by a bearing and compressing said working gas by rotation, a shaft seal which is provided on said crank shaft at the outer side of said bearing along the axial direction, a partition means which is provided between said bearing and said shaft seal for separating a space in which said shaft seal is provided from said low pressure chamber to form a sealing chamber, and a first lubricating agent supply passage which is formed in said crank case and is opened to said sealing chamber for supplying a lubricating agent to said sealing chamber.
  • 2. An open type compressor according to claim 1, wherein said partition means is an non-contact type labyrinth seal, and said labyrinth seal allows leakage a part of said lubricating agent which highly compressed, and is supplied from said sealing chamber to said low pressure chamber during the operation of said compressor.
  • 3. An open type compressor according to claim 1, wherein said partition means is a contact type seal which is composed of a sealing apparatus such as a mechanical seal or an shaft seal and a leak passage which is formed in said sealing apparatus.
  • 4. An open type compressor according to one of claims 1 to 3, wherein said crank case has a second lubricating agent supply passage which is opened to said low pressure chamber for supplying said lubricating agent to said low pressure chamber.
  • 5. An open type compressor according to one of claims 1 to 3, wherein a lubricating oil supply means for supplying a lubricating oil as said lubricating agent to said sealing chamber is provided;said lubricating oil supply means comprising: an oil separator which is provided at an exhaust pipe of said highly compressed working gas for separating said lubricating oil from said working gas, and an oil return pipe for returning said lubricating oil which is separated by said oil separator to said first lubricating agent supply passage.
  • 6. An open type compressor according to claim 4, wherein a lubricating oil supply means for supplying a lubricating oil as said lubricating agent to said sealing chamber and said low pressure chamber, is provided;said lubricating oil supply means comprising: an oil separator which is provided at an exhaust pipe of said highly compressed working gas for separating said lubricating oil from said working gas, and an oil return pipe for returning said lubricating oil which is separated by said oil separator to said first lubricating agent supply passage and said second lubricating agent supply passage.
  • 7. An open type compressor according to claim 1, wherein said working gas is carbon dioxide.
  • 8. An open type compressor according to claim 2, wherein said working gas is carbon dioxide.
  • 9. An open type compressor according to claim 3, wherein said working gas is carbon dioxide.
  • 10. An open type compressor according to claim 4, wherein said working gas is carbon dioxide.
  • 11. An open type compressor according to claim 5, wherein said working gas is carbon dioxide.
  • 12. An open type compressor according to claim 6, wherein said working gas is carbon dioxide.
Priority Claims (1)
Number Date Country Kind
11-161694 Jun 1999 JP
US Referenced Citations (8)
Number Name Date Kind
4345886 Nakayama et al. Aug 1982
4484869 Nakayama et al. Nov 1984
4648814 Shiibayashi Mar 1987
4834634 Ono May 1989
5049041 Nakajima Sep 1991
5464163 Zoz Nov 1995
5567137 Nakashima et al. Oct 1996
6074187 Kawada et al. Jun 2000
Foreign Referenced Citations (7)
Number Date Country
1570266 Apr 1978 GB
57-176382 Oct 1982 JP
3-006350 Jan 1991 JP
5-172068 Jul 1993 JP
7-167068 Jul 1995 JP
7-043490 Oct 1995 JP
11-241691 Sep 1999 JP
Non-Patent Literature Citations (1)
Entry
Corona Co., “Revised Refrigerating Engineering”, pp. 141 to 148, Jul. 20, 1975 (with partial English Translation).