Open vessel sealing forceps disposable handswitch

Information

  • Patent Grant
  • 7641653
  • Patent Number
    7,641,653
  • Date Filed
    Thursday, May 4, 2006
    19 years ago
  • Date Issued
    Tuesday, January 5, 2010
    15 years ago
Abstract
A removable handswitch and electrode assembly for use with a forceps having opposing end effectors and a handle for effecting relative movement of the end effectors with respect to one another includes a housing having at least one portion which removably engages at least a portion of a mechanical forceps and a handswitch assembly disposed on the housing. A pair of electrodes is included which removably engage a distal end of the mechanical forceps such that the electrodes reside in opposing relation to one another. At least one electrode is adapted to connect to an electrosurgical generator through the handswitch assembly. At least one stop member is operatively associated with the electrodes and controls the distance between the opposing electrodes to affect a tissue seal.
Description
BACKGROUND

The present disclosure relates to electrosurgical forceps used for open surgical procedures. More particularly, the present disclosure relates to an open bipolar forceps having a disposable handswitch and electrode assembly for sealing vessels and vascular tissue.


TECHNICAL FIELD

A hemostat or forceps is a simple plier-like tool which uses mechanical action between its jaws to constrict tissue and is commonly used in open surgical procedures to grasp, dissect and/or clamp tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to affect hemostasis by heating the tissue and blood vessels to coagulate, cauterize, cut and/or seal tissue.


Bipolar electrosurgical forceps utilize two generally opposing electrodes which are disposed on the inner opposing surfaces of end effectors and which are both electrically coupled to an electrosurgical generator. Each electrode is charged to a different electric potential. Since tissue is a conductor of electrical energy, when the effectors are utilized to clamp or grasp tissue therebetween, the electrical energy can be selectively transferred through the tissue.


The process of coagulating small vessels is fundamentally different than vessel sealing. For the purposes herein the term coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. Vessel sealing is defined as the process of liquefying the collagen in the tissue so that it cross-links and reforms into a fused mass. Thus, coagulation of small vessels is sufficient to close them, however, larger vessels need to be sealed to assure permanent closure.


In order to effect a proper seal with larger vessels, two predominant mechanical parameters must be accurately controlled—the pressure applied to the vessel and the gap between the electrodes both of which affect thickness of the sealed vessel. More particularly, accurate application of the pressure is important to oppose the walls of the vessel, to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue, to overcome the forces of expansion during tissue heating and to contribute to the end tissue thickness which is an indication of a good seal. In some instances a fused vessel wall is optimum between 0.001 and 0.006 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.


It has also been found that cleaning and sterilizing many of the prior art bipolar instruments is often impractical as electrodes and/or insulation can be damaged. More particularly, it is known that electrically insulative materials, such as plastics, can be damaged or compromised by repeated sterilization cycles.


SUMMARY

The present disclosure relates to a removable handswitch and electrode assembly for use with a forceps having opposing end effectors and a handle for effecting relative movement of the end effectors with respect to one another. The removable handswitch and electrode assembly includes a housing having at least one portion which removably engages at least a portion of a mechanical forceps and a handswitch assembly disposed on the housing. A pair of electrodes is included which removably engage a distal end of the mechanical forceps such that the electrodes reside in opposing relation to one another. At least one electrode is adapted to connect to an electrosurgical generator either independently or through the handswitch assembly. At least one stop member is operatively associated with the electrodes and controls the distance between the opposing electrodes to affect a tissue seal. In particular embodiments, the stop member is proximal to the electrodes or on the tissue engaging surfaces of one or more electrodes.


In one embodiment, the handswitch assembly includes at least one activation button disposed on one side of the housing which operatively connects to a flexible circuit board to control the activation of the electrodes. In yet other envisioned embodiments, two independently activatable activation buttons are included on either side of the housing which operatively connect to a flexible circuit board to control the activation of the electrodes. The flexible circuit board is preferably dimensioned to span between two housing halves prior to the housing being assembled. The flexible circuit board includes at least one dome switch which cooperates with the activation button to activate the electrodes. In one embodiment according to the present disclosure, the dome switch and the flexible circuit board are securely supported atop one or more backer plates by one or more mechanical interfaces. The flexible circuit board is configured to wrap around the backer plate(s) and fit within the housing.


The present disclosure also relates to a removable handswitch and electrode assembly for use with a forceps which includes a housing having at least one portion which removably engages at least a portion of a mechanical forceps and a handswitch assembly disposed on the housing adapted to connect to an electrosurgical generator. The handswitch assembly includes a flexible circuit board having at least one portion thereof which operatively communicates with an activation button to control the activation of a pair of electrodes. The electrodes are removably engageable with a distal end of the mechanical forceps such that the electrodes reside in opposing relation to one another.


In one embodiment, the activation button includes a rocker pivot at one end thereof which allows the activation button to pivot into operative communication with the flexible circuit board. In yet another embodiment, a guidance tab is included at one end of the activation button which facilitates alignment and assembly of the activation button atop the flexible circuit board and within the housing.


The present disclosure also relates to a removable handswitch and electrode assembly which includes a housing having at least one portion which removably engages at least a portion of a mechanical forceps and a pair of electrodes which removably engage a distal end of the mechanical forceps such that the electrodes reside in opposing relation to one another. Each electrode is adapted to connect to an electrosurgical generator either independently or though a handswitch assembly which includes a flexible circuit board. The flexible circuit board includes at least one portion which operatively communicates with at least one activation button to control the activation of the pair of electrodes. The activation button(s) is disposed in a recess defined in a side of the housing.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1A is a side view of an open bipolar forceps according to the present disclosure including a disposable handswitch and electrode assembly attached thereto;



FIG. 1B is a side view of an alternate embodiment of an open bipolar forceps according to the present disclosure including a disposable handswitch and electrode assembly with an ergonomically-enhanced proximal end;



FIG. 1C is an enlarged view of the area of detail of FIG. 1B;



FIG. 2A is an enlarged, perspective view of the distal end of the handswitch and disposable electrode assembly shown attached to a distal end of a forceps;



FIG. 2B is an enlarged, perspective view of the distal end of the handswitch and disposable electrode assembly shown separated from the forceps;



FIG. 2C is a perspective view with parts separated of an upper electrode of the handswitch and disposable electrode assembly of FIG. 2B;



FIG. 2D is a perspective view with parts separated of a lower electrode of the handswitch and disposable electrode assembly of FIG. 2B;



FIG. 3A is a schematic diagram of a flex circuit for use with the handswitch and disposable electrode assembly;



FIG. 3B is a top, perspective view of the disposable handswitch and electrode assembly prior to assembly showing a flex-type circuit bridging between the two electrode assembly body halves;



FIG. 3C is a rear cross-section of the handswitch and disposable electrode assembly shown assembled;



FIG. 4 is an enlarged, partial perspective view of a backer plate which supports the flexible circuit board of FIG. 3A;



FIG. 5 is a front view of a handswitch of the handswitch and disposable electrode assembly shown assembled;



FIG. 6 is an internal side view of the handswitch and disposable electrode assembly;



FIG. 7 is an internal side view of the handswitch and disposable electrode assembly showing the routing of an electrical wire therethrough; and



FIGS. 8A-10B are enlarged views of various designs of a handswitch activation button for use with the handswitch and disposable electrode assembly.





DETAILED DESCRIPTION

Referring now to FIGS. 1A-1C, a bipolar forceps 10 for use with open surgical procedures includes a mechanical forceps 11 and a disposable handswitch and electrode assembly 100. In the drawings and in the description which follows, the term “proximal”, as is traditional, will refer to the end of the forceps 10 which is closer to the user, while the term “distal” will refer to the end which is further from the user.


Mechanical forceps 11 includes first and second elongated shafts 12a and 12b, respectively. Shafts 12a and 12b each include a proximal end 13a and 13b and a distal end 17a and 17b (See FIG. 2A), respectively. Each proximal end 13a, 13b of each shaft portion 12a, 12b includes a handle member 16a and 16b attached thereto to allow a user to effect movement of at least one of the shaft portions 12a and 12b relative to one another. Extending from the distal end 17a and 17b of each shaft portion 12a and 12b are end effectors 22a and 22b, respectively. The end effectors 22a and 22b are movable relative to one another in response to movement of handle members 16a and 16b. Shaft members 12a and 12b are designed to transmit a particular desired force to the end effectors 22a and 22b when clamped. In particular, since the shaft members 12a and 12b effectively act together in a spring-like manner (i.e., bending that behaves like a spring), the length, width, height and deflection of the shaft members 12a and 12b will directly effect the overall transmitted force imposed on opposing end effectors 22a and 22b. Preferably, end effectors 22a and 22b are more rigid than the shaft members 12a and 12b and the strain energy stored in the shaft members 12a and 12b provides a constant closure force therebetween.


Shaft portions 12a and 12b are affixed to one another at a pivot 25 proximate the end effectors 22a and 22b such that movement of the handles 16a and 16b impart movement of the end effectors 22a and 22b from an open position wherein the end effectors 22a and 22b are disposed in spaced relation relative to one another to a clamping or closed position wherein the end effectors 22a and 22b cooperate to grasp tissue therebetween.


As best seen in FIG. 2A, end effector 22b includes an engagement surface 45 having a plurality of mechanical interfaces 41 disposed thereon which are dimensioned to releasable engage a portion of the disposable handswitch and electrode assembly 100 which will be described in greater detail below. For example, mechanical interfaces 41 may include sockets which are disposed at least partially through engagement surface 45 of end effector 22b and which are dimensioned to receive a complimentary mechanical interface attached to disposable handswitch and electrode assembly 100, e.g., detent 122. While the term socket is used herein, it is contemplated that either a male or female mechanical interfaces may be used depending upon a particular purpose. End effector 22a includes similar mechanical interfaces for engaging the disposable handswitch and electrode assembly 100 to end effector 22a.


Each shaft member 12a and 12b also includes a ratchet portion 30a and 30b that mutually extend inwardly from respective proximal ends 13a and 13b of shaft member 12a and 12b towards the one another in a generally vertically aligned manner such that the inner facing surfaces of each ratchet 30a and 30b interlock to hold a specific, i.e., constant, strain energy in the shaft members 12a and 12b. A design without a ratchet system or similar system would require the user to hold the end effectors together by applying constant force to the handles 16a and 16b which may yield inconsistent results especially when sealing.


As best seen in FIGS. 1A-1C and 2A-2D, disposable handswitch and electrode assembly 100 is designed to work in combination with mechanical forceps 11. Electrode assembly 100 includes housing 101 which has a proximal end 102, a distal end 104 and an elongated shaft plate 103 disposed therebetween. A handle plate 109 is disposed near the proximal end 102 and is sufficiently dimensioned to releasably engage and/or encompass handle 16b of mechanical forceps 11. Likewise, shaft plate 103 is dimensioned to encompass and/or releasably engage shaft 12b and pivot 25 disposed near the distal end 104 of housing 101. Disposable handswitch and electrode assembly 100 is composed of a two mating halves 101a and 101b which are designed to snap fit over mechanical forceps 11. More particularly, a plurality of male or female mechanical interfaces or a combination of mechanical interfaces may be disposed on one half 101a of the housing 101 with mating mechanical interfaces disposed on the other housing half 101b. A one piece housing 101 is also contemplated which mechanically engages the mechanical forceps 11 in a secure fashion.


As best seen with respect to FIGS. 2A-2D, the distal end 104 of disposable handswitch and electrode assembly 100 is bifurcated such that two prong-like members 133 and 135 extend outwardly therefrom to support corresponding electrodes 110 and 120, respectively. More particularly, electrode 120 is affixed at an end 90 of prong 135 and electrode 110 is affixed at an end 91 of prong 133. It is envisioned that the electrodes 110 and 120 can be affixed to the ends 91 and 90 in any known manner such as, e.g., frictional or snap-fit engagement.


A pair of electrical leads or wires 60 and 62 is connected to the electrodes 120 and 110, respectively. Preferably, leads 60 and 62 are bundled together and form a wire bundle 28 which runs from a handswitch assembly 200 through the distal end 104 to respective electrodes 110 and 120.


As best seen in FIG. 2C, electrode 120 includes an electrically conductive seal surface 126 and an electrically insulative substrate 121 which are attached to one another by snap-fit engagement or some other method of assembly, e.g., substrate 121 is overmolded to capture the electrically conductive seal surface 126. Substrate 121 may be made from an injection molded plastic material and is shaped to mechanically engage a corresponding socket 41 located in end effector 22b. The substrate 121 not only insulates the electric current but substrate 121 also aligns electrode 120 both of which contribute to the seal quality and consistency. For example, by overmolding the conductive surface 126 to the substrate 121, the alignment and thickness of the electrode 120 can be effectively controlled.


Substrate 121 includes a plurality of bifurcated detents 122 which are shaped to compress during insertion into sockets 41 and expand and releasably engage sockets 41 after insertion. It is envisioned that this snap-fit engagement of the electrode 120 and the end effector 22b will accommodate a broader range of manufacturing tolerances. Substrate 121 may also include one or more alignment or guide pins 124 which mechanically align with a corresponding mechanical interface in end effector 22b.


Conductive seal surface 126 includes a wire crimp 145 designed to engage the distal end 90 of prong 135 of handswitch and electrode assembly 100 and electrically engage a corresponding wire connector affixed to lead 60. Seal surface 126 also includes an opposing tissue-engaging face 125 which is designed to conduct an electrosurgical current to tubular vessels or tissue when held thereagainst.


As shown in FIG. 2D, electrode 110 includes similar elements for insulating and conducting electrosurgical current to tissue. More particularly, electrode 110 includes an electrically conductive seal surface 116 and an electrically insulative substrate 111 which are attached to one another by snap-fit engagement or some other method of assembly. Substrate 111 includes a plurality of bifurcated detents 112 and an alignment pin 126 which are dimensioned to engage a corresponding plurality of sockets and aperture (not shown) located in end effector 22a. Conductive seal surface 116 includes an extension 155 having a wire crimp 119 which engages the distal end 91 of prong 133 and electrically engages a corresponding wire connector affixed to lead 62 located in housing 101. Seal surface 116 also includes an opposing face 115 which conducts an electrosurgical current to tissue when held thereagainst. Alternatively, electrodes 110 or 120 can be formed as one piece and include similar components for insulating and conducting electrical energy.


Substrate 111 also includes an extension 108 and a stop member 106 which is designed to engage corresponding extension 155 and an interface 107 located proximal conductive seal surface 116. To assemble electrode 110, stop member 106 and extension 108 are overmolded onto interface 107 and extension 155 of conductive seal 116. After assembly, wire crimp 119 is then inserted into end 91 of prong member 133 and connected to lead 62. In order to assure that the desired gap range is achieved after assembly and that the correct force is applied to seal the tissue, substrate 111 includes at least one stop member, 106, which is designed to restrict and/or regulate movement of the two electrodes 110 and 120 relative to one another.


It is known that as the tissue is compressed and electrosurgical energy is applied to the tissue, the impedance of the tissue decreases as the moisture level decreases. As a result, two mechanical factors play an important role in determining seal thickness and effectiveness, i.e., the pressure applied between opposing faces 115 and 125 and the gap distance between the opposing electrodes 110 and 120. When, the end effectors 22a and 22b closed about tissue, stop member 106 is configured to keep the requisite gap range of about 0.001 inches to about 0.006 inches between opposing sealing surfaces 115 and 125 and more preferably, between about 0.002 inches to about 0.005 inches. The shafts 12a and 12b are preferably designed to provide and the ratchets 30a and 30b are preferably designed to maintain pressure between end effectors 22a and 22b within the range of about 3 kg/cm2 to about 16 kg/cm2.


It is contemplated that one or more stop members (not shown) may be positioned at various points along the disposable handswitch and electrode assembly 100 to achieve the aforedescribed desired gap range and/or one or more stop members can be positioned on other parts of the instrument, e.g., handles 16a, 16b, on sealing surfaces 115 and/or 125, and/or shafts 12a, 12b. The additional stop members may be utilized in connection with stop member 106 or used instead of stop member 106 to regulate the gap distance between opposing electrodes 110 and 120.


At least one of the prong members, e.g., 135, is resilient or includes a flex relief portion 53 which permits movement of the two prong members 135 and 133 and, thus, the two electrodes 120 and 110, relative to one another. The flex relief portions 135 and 133 may be configured to bias the end effectors 22a and 22b in an open position. As seen best in FIG. 2B, the disposable handswitch and electrode assembly 100 is removably attached to the mechanical forceps 11 by initially moving prong 135 towards prong 133 by bending prong 135 at flex relief portion 53. The electrodes 110 and 120 are then slid between opposing end effectors 22a and 22b in their open position such that detents 112 and 122 and guide pins 126 and 124, respectively, are each disposed in alignment with each corresponding mechanical interface (not shown), respectively. When flex relief portion 53 is released, each electrode 110 and 120 is engaged with end effector 22a and 22b, respectively, and the bipolar forceps 10 is now ready for operation.


After the bipolar forceps 10 is used or if the disposable handswitch and electrode assembly 100 is damaged, the electrode assembly 100 can be easily removed and/or replaced by reversing the above attachment procedure and a new electrode assembly 100 can be engaged with the mechanical forceps 11 in the same manner. By making the handswitch and electrode assembly 100 disposable, the electrode assembly 100 is less likely to become damaged since it is only intended for a single use and, therefore, does not require cleaning or sterilization. As a result, the functionality and consistency of the vital sealing components, e.g., the conductive surface 115, 125 and insulating surface 121, 111 will assure a uniform and quality seal.


As mentioned above, the bipolar forceps also includes a handswitch 200 assembly disposed on the housing 101 to permit the user to selectively apply electrosurgical energy as needed to seal tissue grasped between electrodes 110 and 120. Handswitch assembly 200 includes a flexible circuit board (FCB) 250, a backer plate assembly 260 and a pair of activation buttons 280 which all mutually cooperate to allow selective activation of the electrode assembly 100. As can be appreciated, positioning the handswitch assembly 200 on the forceps 10 gives the user more visual and tactile control over the application of electrosurgical energy. These aspects are explained below with respect to the discussion of the handswitch assembly 200 and the electrical connections associated therewith.


Referring back to FIG. 1A, the housing 101 is particularly configured to include various ergonomically-friendly features to enhance the feel and handling of the forceps 10. The particular shape of the contour is designed to integrate smoothly with the hand of the operator thereby reducing operator fatigue and helping to maximize productivity. While keeping the general hemostat design, certain profile features have been added to facilitate handling and ease of use. For example, the handswitch assembly 200 may include a two-button design allowing both left-handed and right-handed operation with the curve of the jaw members facing in a preferred orientation (i.e., facing outwardly). The lower portion of the housing 101 (i.e., the portion opposite the handswitch assembly 200) features a symmetrical protruding sweep 109 that allows placement of an operator's forefinger to give the operator enhanced control during difficult surgical maneuvers (e.g., operating in deep surgical cavities). The contoured design also provides additional surface area for torquing purposes. The particular placement of activation button 280 of the handswitch assembly 200 on housing 101 is designed to limit or reduce finger travel for activation purposes. The internal portion of the lower sweep 109 is configured to house the soldering joint on the terminal connections 265a and 265b of the flexible circuit board 250 and the heat shrink associated therewith.


As best shown in FIGS. 6 and 7, an electrical cable 300 is routed through one or more channels 185 defined in the housing 101 and connects to the FCB 250. One or more pinch points 187 may be included to facilitate routing of the cable 300 during assembly. FIGS. 3A-3C show FCB 250 which includes a set of two dome switches 252a and 252b which are configured to span across the two halves 101a and 101b of housing 101 during assembly. As can be appreciated, using a FCB has many advantages over conventional circuit designs in that the FCB is very thin and has the ability to “flex” and twist without risk of disconnection. Moreover, FCBs are easy to assemble, their internal matrix limits the effects that fluid ingress could cause on the circuit and the lengthy, windy shape creates room to bridge the gap between the two plastic halves of the housing 101. Preferably, FCB 250 is constructed using known photo-masking techniques, wherein a photo-mask is applied to the desired dielectric surfaces of a flexible substrate and no photo-mask is applied to the desired conductive surfaces of the flexible substrate. Other masking techniques are also envisioned for forming FCB 250.


FCB 250 also includes a series of leg portions 257a, 257b and 257c and arms 253a and 253b are disposed between the two dome switches 252 which allow the FCB 250 to “flex” as needed during assembly. One or more bend points 259 may also be included between each respective arm and leg portion, e.g., 253a, 257a and 253b, 257b which allow the FCB 250 to wrap around the back plate assembly 260 as shown in FIG. 4. As can be appreciated, configuring the FCB 250 in this fashion has several advantages including facilitating the assembly process of housing 101 and allowing left-handed or right-handed activation as described in more detail below.


FCB 250 also includes at least one resistor which is configured to span between the two dome switches 252a and 252b. For example and as shown in FIG. 3A, each arm 253a and 253b of the dome switches 252a and 252b includes a resistor 254a and 254b, respectively, which are each configured to limit current passing though each dome switch 252a and 252b, respectively. It is envisioned that only one resistor would be necessarily needed if placed before the traces of the FCB 250 split into respective leg portions 257a and 257b. Terminal connections 265a and 265b are provided between the two dome switches 252a and 252b which connect to leads 60 and 62 leading from handswitch assembly 200 to electrodes 110 and 120. It is envisioned that locating the terminal connections 265a and 265b to the proximal portion of the housing 101 isolates the heat shrink and allows for more room within the housing 101. The terminal connections 265a and 265b are preferably offset so that the crimped terminals and corresponding wire connections from leads 60 and 62 will remain flat when the FCB 250 is wrapped to fit into housing 101.


Dome switches 252a and 252b typically include a raised portion or so-called “snap dome” 255a and 255b, respectively, mounted thereto. When one of the snap domes, e.g., 255a, is depressed, the snap dome 255a completes the electrical circuit within the FCB 250. A snap dome-type switch is typically made of a suitable metal or conductive material and configured so that when depressed, a predetermined range of motion is evident to the surgeon (tactile feedback) through a snap phase of closing the electrical circuit. The surgeon develops a tactile “feel” through the range of motion and during activation of the switch when depressed and deflected over the center position. Typically, a snap dome switch includes a dielectric outer layer such as activation button 280 which protects the surgeon from electrical shock during use and reduces the chances of contaminating the switch with surgical fluids.


When mounted atop FCB 250, a conductive apex or central region 251a and 251 b, respectively of the snap dome 255a, 255b resides in vertical registration over a contact portion on FCB 250 such that upon depression, snap dome 255a, 255b deflects downwardly to a point where the conductive apex 251a, 251b passes parallel and inverts into contact with the FCB 250. As can be appreciated, the point of inversion as well as the additional range of travel of the membrane provides an enhanced level of tactile feedback to the user thus enabling the user to more readily ascertain the “active” position of the switch. Moreover, it is envisioned that the snap dome 255a, 255b may be dimensioned such that the point of inversion of the snap dome 255a, 255b can be coupled with a physical and audible “snap” which can be readily felt or heard by the surgeon thus enhancing the surgeon's control over the activation of the instrument.


As best shown in FIG. 4, backer plate assembly 260 includes generally symmetrical backer plates 261a and 261b each dimensioned to securely retain and support a respective dome switch 252a and 252b thereon. More particularly, each backer plate, e.g., 261b, includes a series of mechanical interfaces or raised ledges 264a and 264b which are configured to support and secure a respective dome switch, e.g., dome switch 252b, therebetween. Recesses (not shown) or a combination of ledges and recesses may also be utilized to accomplish the same or similar purpose, e.g., securely mounting the dome switches 252a and 252b. Preferably, the dome switches 252a and 252b are assembled and secured to the backer plates 261a and 261b using a snap-fit mechanical interface but other mechanical interfaces are also envisioned to accomplish the same or similar purpose, e.g., adhesives, key-like interfaces, welding, screws, etc. The two backer plates 261a and 261b may be symmetrical which reduces production costs and facilitates assembly.


During assembly, the backer plates 261a and 261b are initially secured within housing 101. Alternatively, the backer plates 261a and 261b may be formed integrally with the housing 101 during an initial manufacturing step. FCB 250 is then secured to each backer plate 261a and 261b by orienting each dome switch 252a and 252b between the various mechanical ledges 264a and 264b extending from each outer-facing side of each backer plate 261a and 261b. Alternatively, the FCB 250 may be secured to the backer plates 261a and 261b and then the FCB 250 and backer plates 261a and 261b may then be secured to either side of the halves 101a and 101b of the housing 101. Once secured and as shown in FIG. 4, the FCB 250 wraps around the backer plates 261a and 261b such that the terminal connections 265a and 265b reside therebetween. As mentioned above, various bend points 259 may be configured within the FCB 250 to facilitate wrapping around the backer plates 261a and 261b.



FIGS. 3C and 5 show rear views of the dome switches 252a and 252b mounted atop the backer plates 261a and 261b, respectively, in registration with two activation buttons 280a and 280b. More particularly, each activation button 280a and 280b includes a contoured ergonomically-friendly outer profile 284a and 284b which facilitates activation of the activation switch 280a and 280b by the user. A detent 282a and 282b is associated with each switch 280a and 280b which operatively connects to a respective apex 251a and 251b of each dome switch 252a and 252b. Once assembled, transverse or lateral movement of an activation button, e.g., button 280a, inverts the respective dome switch, e.g., 252a, into communication with the FCB 250 to activate the electrode assembly 100. The two dome switches 252a and 252b disposed on either side of housing 101 operatively communicate with activation buttons 280a and 280b, respectively, to independently control activation of the electrodes 110 and 120.



FIGS. 8A-10B show various activation button designs for use with the forceps 10 of the present disclosure. FIGS. 8A and 8B show one alternate embodiment of an activation button 380 which includes a finger-engagement surface 381 having a series of tactile features disposed thereon. More particularly, button 380 includes one or more curved raised protuberances 384a and 384b which extend from the finger-engaging surface 381 and which are configured to provide enhanced positive engagement for an operator's finger on the button 380 during use, especially under wet operating condition. A centrally disposed raised protuberance 385 is also included which is configured to align the operator's finger in vertical registration with an underlying detent 382 disposed on the underside of button 380. Detent 382, operatively engages the apex , e.g., apex 251a, of dome switch 252a to activate the forceps 10 as described above.


An outer flange or rim 383 is disposed around the outer periphery of engagement surface 381 and is configured to both limit Unnecessary movement of the button 380 within housing 101 and act as a seal to reduce fluid ingress. In other words, flange 383 may hermetically-seal button 380 to housing 101 to avoid damage to the FCB 250 during wet operating conditions. A guidance tab 387 may also be included which facilitates assembly and also acts to limit unwanted button movement relative to the housing 101. Preferably, the button 380 is symmetrical about the button's 380 major axis (not shown) to reduce manufacturing costs and ease assembly.



FIGS. 9A-10B show alternate embodiments of activations buttons for use with the presently disclosed forceps 10. FIGS. 9A and 9B show an activation button 480 which includes similar elements as described above with respect to FIGS. 8A and 8B (e.g., finger-engagement surface 481, outer flange 483, tactile features 484a, 484b and 485, guidance tab 487 and detent 482) with the exception of a rocker pivot 488 disposed opposite the guidance tab 487. It is envisioned that the rocker pivot 488 provides enhance tactile feel of the movement of the underlying dome switch, e.g., 255a, during activation and release due to the majority of the leverage being directed towards the proximal portion of the button 480. It is also envisioned that the positioning of the pivot 488 towards the proximal portion of the button 480 greatly facilitates the overall tactile feel of the activation button 480 and allows a surgeon to simply pull the button 480 proximally which facilitates activation. Moreover, the combination of the pivot 488 and guidance tab 487 is believed to also enhance stability of the button 480 during activation and reduce any wobble effect.



FIGS. 10A and 10B show yet another activation button 580 which, again, includes similar elements as described above with respect to FIGS. 8A and 8B (e.g., finger-engagement surface 581, outer flange 583, tactile features 584a, 584b and 585, and detent 582) and includes an alternate design of a forwardly-disposed rocker pivot 588.


Electrical leads 60 and 62 are electrically connected to the FCB 250 such that when the handswitch assembly 200 is depressed, lead 62 carries the first electrical potential from the FCB 250 to electrode 110 and a second electrical potential is carried by lead 60 directly from the generator (not shown) to electrode 120. It is envisioned that a safety switch or circuit (not shown) may be employed such that handswitch assembly 200 cannot fire unless the electrodes 110 and 120 are closed and/or unless the electrodes 110 and 120 have tissue held therebetween. In the latter instance, a sensor (not shown) may be employed to determine if tissue is held therebetween. In addition, other sensor mechanisms may be employed which determine pre-surgical, concurrent surgical (i.e., during surgery) and/or post surgical conditions. The sensor mechanisms may also be utilized with a closed-loop feedback system coupled to the electrosurgical generator to regulate the electrosurgical energy based upon one or more pre-surgical, concurrent surgical or post surgical conditions. Various sensor mechanisms and feedback systems are described in commonly-owned, co-pending U.S. patent application Ser. No. 10/427,832 the entire contents of which are hereby incorporated by reference herein.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the present disclosure. For example, although it is preferable that electrodes 110 and 120 meet in parallel opposition, and, therefore, meet on the same plane, in some cases it may be preferable to slightly bias the electrodes 110 and 120 to meet each other at a distal end such that additional closure force on the handles 16a and 16b is required to deflect the electrodes in the same plane.


Other types of handswitch assemblies are also envisioned, for example, a regular push-button style handswitch or a toggle switch which permits the user to selectively activate the electrode assembly 100 in a variety of different orientations, i.e., multi-oriented activation, which simplifies activation. For example, FIGS. 1B-1C show a recessed handswitch assembly 200′ for use with the forceps 10. More particularly, a recessed activation button 680 may be disposed within a recess 681 defined in the housing 101 and utilized with forceps 10 to facilitate activation. It is envisioned that positioning the button 680 within a recess in this fashion provides enhanced feel to the instrument and provides a flush profile. Other types of handswitches are disclosed in commonly-owned, co-pending U.S. patent application Ser. No. 10/460,926 the entire contents of which are hereby incorporated by reference herein.


Although it is preferable to vertically align electrodes 110 and 120, in some cases it may be preferable to offset the opposing electrodes 110 and 120 relative to one another either longitudinally or transversally to suit a particular purpose.



FIG. 1A shows one envisioned proximal portion 102 while FIG. 1C shows a variation of the proximal portion 102a of the housing 101 which is configured to direct the instrument cable 300 away from the operator's palm when using the instrument in a palm-like fashion.


While various embodiments of the disclosure have been described, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A removable handswitch assembly comprising: a housing having at least one portion adapted to removably engage at least a portion of a mechanical forceps;a handswitch disposed on said housing, said handswitch adapted to connect to an electrosurgical generator and including: a backer plate; anda flexible circuit board configured to wrap around the backer plate and electrically connect to the electrosurgical generator;a pair of electrodes removably engageable with a distal end of said mechanical forceps such that said electrodes reside in opposing relation to one another, at least one electrode being adapted to connect to the electrosurgical generator through the flexible circuit board of said handswitch; andat least one stop member operatively associated with at least one of said electrodes which controls the distance between said opposing electrodes.
  • 2. A removable handswitch assembly according to claim 1 wherein said stop member is proximal to said electrodes.
  • 3. A removable handswitch assembly according to claim 1 wherein said handswitch includes at least one activation button disposed on one side of said housing.
  • 4. A removable handswitch assembly according to claim 1 wherein said handswitch includes two activation buttons disposed on said housing.
  • 5. A removable handswitch assembly according to claim 4 wherein each of said activation buttons operatively cooperate with the flexible circuit board to control activation of said electrodes.
  • 6. A removable handswitch assembly according to claim 1 wherein said handswitch includes at least one dome switch disposed within said housing which operatively connects to the flexible circuit board to control the activation of said electrodes.
  • 7. A removable handswitch assembly according to claim 6 wherein said backer plate supports said at least one dome switch within said housing.
  • 8. A removable handswitch assembly according to claim 7 wherein said backer plate includes at least one mechanical interface which secures said dome switch thereto.
  • 9. A removable handswitch assembly according to claim 6 wherein said flexible circuit board includes at least one resistor which controls current though said handswitch.
  • 10. A removable handswitch assembly according to claim 1 wherein said handswitch includes two dome switches disposed within said housing which operatively connect to the flexible circuit board to control the activation of said electrodes.
  • 11. A removable handswitch assembly according to claim 10 wherein said housing includes two housing halves which matingly engage one another to form said housing and said flexible circuit board is dimensioned to span between said two housing halves prior to assembly.
  • 12. A removable handswitch assembly according to claim 11 wherein said handswitch includes one backer plate operatively associated with each housing half which supports one of said two dome switches within said housing and said flexible circuit board is configured to wrap around both of said backer plates within said housing at assembly.
  • 13. A removable handswitch assembly comprising: a housing having at least one portion adapted to removably engage at least a portion of a mechanical forceps; anda handswitch disposed on said housing adapted to connect to an electrosurgical generator, said handswitch including: a backer plate; anda flexible circuit board configured to wrap around the backer plate and having at least one portion thereof which operatively communicates with at least one activation button to control the activation of a pair of electrodes, said electrodes being removably engageable with a distal end of said mechanical forceps such that said electrodes reside in opposing relation to one another.
  • 14. A removable handswitch assembly according to claim 13 wherein said activation button includes a rocker pivot at one end thereof which allows the activation button to pivot into operative communication with said flexible circuit board,
  • 15. A removable handswitch assembly according to claim 13 wherein said activation button is affixed to one side of said housing.
  • 16. A removable handswitch assembly according to claim 15 wherein said activation button includes a guidance tab at one end thereof which facilitates alignment and assembly of said activation button atop said flexible circuit board and within said housing.
  • 17. A removable handswitch assembly according to claim 13 wherein said flexible circuit board includes two dome switches disposed on either side of said housing which operatively communicate with two corresponding activation buttons to independently control activation of said electrodes.
  • 18. A removable handswitch assembly according to claim 17 wherein said housing includes two housing halves which matingly engage one another to form said housing and said flexible circuit board is dimensioned to span between said two housing halves prior to assembly.
  • 19. A removable handswitch assembly according to claim 18 wherein said backer plate operatively couples to each housing half which supports one of said two dome switches within said housing.
  • 20. A removable handswitch assembly comprising: a housing having at least one portion adapted to removably engage at least a portion of a mechanical forceps; anda pair of electrodes removably engageable with a distal end of said mechanical forceps such that said electrodes reside in opposing relation to one another, at least one electrode being adapted to connect to an electrosurgical generator through a handswitch, said handswitch including: a backer plate; anda flexible circuit board configured to wrap around the backer plate and having at least one portion thereof which operatively communicates with an activation button to control the activation of said pair of electrodes, said activation button disposed in a recess defined in a side of said housing.
US Referenced Citations (622)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2176479 Willis Oct 1939 A
2279753 Knopp Apr 1942 A
2305156 Grubel Dec 1942 A
2632661 Cristofv Mar 1953 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3459187 Pallotta Aug 1969 A
3643663 Sutter Feb 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3720896 Beierlein Mar 1973 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4088134 Mazzariello May 1978 A
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4233734 Bies Nov 1980 A
4300564 Furihata Nov 1981 A
D263020 Rau, III Feb 1982 S
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4452246 Bader et al. Jun 1984 A
4492231 Auth Jan 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4685459 Xoch et al. Aug 1987 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
4827929 Hodge May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4938761 Ensslin Jul 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5084057 Green et al. Jan 1992 A
5099840 Goble et al. Mar 1992 A
5116332 Lottick May 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Xamiyama et al. Sep 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5282799 Rydell Feb 1994 A
5290286 Parins Mar 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308357 Lichtman May 1994 A
5314445 Degwitz et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5368600 Failla et al. Nov 1994 A
5376089 Smith Dec 1994 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5451224 Goble et al. Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472443 Cordis et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5512721 Young et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562699 Heimberger et al. Oct 1996 A
5569241 Edwardds Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5582611 Tsukagoshi et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5601601 Tal et al. Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5611798 Eggers Mar 1997 A
5620453 Nallakrishnan Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638003 Hall Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5658281 Heard Aug 1997 A
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5755717 Yates et al. May 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
H1745 Paraschac Aug 1998 H
5792137 Carr et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5817083 Williamson IV et al. Oct 1998 A
5820630 Lind Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5860976 Billings et al. Jan 1999 A
5876401 Schulze et al. Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5935126 Riza Aug 1999 A
5944718 Dafforn et al. Aug 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
5976132 Morris Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5997565 Inoue Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka Jan 2000 A
6024741 Williamson et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
6074386 Goble et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6152923 Ryan Nov 2000 A
6162220 Nezhat Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6217602 Redmon Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6302424 Gisinger et al. Oct 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6500176 Truckai et al. Dec 2002 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6527771 Weadock et al. Mar 2003 B1
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6669696 Bacher et al. Dec 2003 B2
6676660 Wampler et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6757977 Dambal et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6860880 Treat et al. Mar 2005 B2
6887240 Lands et al. May 2005 B1
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
6942662 Goble et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052496 Yamauchi May 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179258 Buysse et al. Feb 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7207990 Lands et al. Apr 2007 B2
D541938 Kerr et al May 2007 S
7223265 Keppel May 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jigamian Mar 2008 B2
7367976 Lawes et al. May 2008 B2
20020013583 Camran et al. Jan 2002 A1
20020026189 Wayne et al. Feb 2002 A1
20020049442 Roberts et al. Apr 2002 A1
20020099372 Schulze et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018331 Dycus et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030032956 Lands et al. Feb 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078578 Truckai et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030158549 Swanson Aug 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030199869 Johnson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220637 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040078035 Kanehira et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040115296 Duffin Jun 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040116979 Truckai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040176762 Lawes et al. Sep 2004 A1
20040193153 Sarter et al. Sep 2004 A1
20040225288 Buysse et al. Nov 2004 A1
20040230189 Keppel Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040250419 Sremcich et al. Dec 2004 A1
20040254573 Dycus et al. Dec 2004 A1
20040260281 Baxter, III et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004568 Lawes et al. Jan 2005 A1
20050004570 Chapman et al. Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050096645 Wellman et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050107784 Moses et al. May 2005 A1
20050107785 Dycus et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050113827 Dumbauld et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20050119655 Moses et al. Jun 2005 A1
20050149017 Dycus Jul 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20050187547 Sugi Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050240179 Buysse et al. Oct 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060074417 Cunningham et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060161150 Keppel Jul 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189980 Johnson et al. Aug 2006 A1
20060189981 Dycus et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060224158 Odom et al. Oct 2006 A1
20060259036 Tetzlaf et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060271038 Johnson et al. Nov 2006 A1
20060287641 Perlin Dec 2006 A1
20070016182 Lipson et al. Jan 2007 A1
20070016187 Weinberg et al. Jan 2007 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070055231 Dycus et al. Mar 2007 A1
20070060919 Isaacson et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070078459 Johnson et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070106297 Dumbauld et al. May 2007 A1
20070118111 Weinberg May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070203485 Keppel Aug 2007 A1
20070213706 Dumbauld et al. Sep 2007 A1
20070213707 Dumbauld et al. Sep 2007 A1
20070213708 Dumbauld et al. Sep 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070255279 Buysse et al. Nov 2007 A1
20070260235 Podhajsky Nov 2007 A1
20070260238 Guerra Nov 2007 A1
20070260241 Dalla Betta et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080009860 Odom Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080021450 Couture Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080039835 Johnson et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082100 Orton et al. Apr 2008 A1
Foreign Referenced Citations (143)
Number Date Country
2104423 Feb 1994 CA
2415263 Oct 1975 DE
2627679 Jan 1977 DE
8712328 Mar 1988 DE
4303882 Aug 1994 DE
29616210 Jan 1997 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
0364216 Apr 1990 EP
518230 Dec 1992 EP
541 930 May 1993 EP
0572131 Dec 1993 EP
584787 Mar 1994 EP
0589453 Mar 1994 EP
0623316 Nov 1994 EP
0624348 Nov 1994 EP
0650701 May 1995 EP
0694290 Mar 1996 EP
0717966 Jun 1996 EP
0754437 Mar 1997 EP
853922 Jul 1998 EP
0875209 Nov 1998 EP
0878169 Nov 1998 EP
0887046 Jan 1999 EP
0923907 Jun 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
1025807 Oct 2000 EP
1034746 Oct 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1159926 Dec 2001 EP
1301135 Apr 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
1472984 Nov 2004 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1632192 Mar 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1707143 Oct 2006 EP
2214430 Jun 1989 GB
2213416 Aug 1989 GB
501068 Sep 1984 JP
502328 Mar 1992 JP
5-5106 Jan 1993 JP
5-40112 Feb 1993 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
11244298 Sep 1999 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
401367 Nov 1974 SU
WO8900757 Jan 1989 WO
WO 9204873 Apr 1992 WO
WO 9206642 Apr 1992 WO
WO 9408524 Apr 1994 WO
WO9420025 Sep 1994 WO
WO 9502369 Jan 1995 WO
WO9507662 Mar 1995 WO
WO 9507662 Mar 1995 WO
WO9515124 Jun 1995 WO
WO9605776 Feb 1996 WO
WO 9622056 Jul 1996 WO
WO 9613218 Sep 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO9710764 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9827880 Jul 1998 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912488 Mar 1999 WO
WO 9940857 Aug 1999 WO
WO 9940861 Aug 1999 WO
WO 9951158 Oct 1999 WO
WO 9966850 Dec 1999 WO
WO 0024330 May 2000 WO
WO0024331 May 2000 WO
WO 0024331 May 2000 WO
WO 0041638 Jul 2000 WO
WO0047124 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0117448 Mar 2001 WO
WO 0154604 Aug 2001 WO
WO 0207627 Jan 2002 WO
WO0207627 Jan 2002 WO
WO 02067798 Sep 2002 WO
WO 02080783 Oct 2002 WO
WO02080783 Oct 2002 WO
WO02080784 Oct 2002 WO
WO 02080784 Oct 2002 WO
WO 02080785 Oct 2002 WO
WO02080785 Oct 2002 WO
WO 02080786 Oct 2002 WO
WO02080786 Oct 2002 WO
WO 02080793 Oct 2002 WO
WO02080793 Oct 2002 WO
WO02080794 Oct 2002 WO
WO 02080794 Oct 2002 WO
WO 02080795 Oct 2002 WO
WO 02080796 Oct 2002 WO
WO02080797 Oct 2002 WO
WO 02080797 Oct 2002 WO
WO 02080798 Oct 2002 WO
WO 02080799 Oct 2002 WO
WO 02081170 Oct 2002 WO
WO02081170 Oct 2002 WO
WO 03090630 Nov 2003 WO
WO 03101311 Dec 2003 WO
WO 2004032776 Apr 2004 WO
WO2004032777 Apr 2004 WO
WO 2004032777 Apr 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004073488 Sep 2004 WO
WO 2004073490 Sep 2004 WO
WO2004073490 Sep 2004 WO
WO2004073753 Sep 2004 WO
WO 2004082495 Sep 2004 WO
WO 2004098383 Nov 2004 WO
WO 2004103156 Dec 2004 WO
WO2005004735 Jan 2005 WO
WP 2005004734 Jan 2005 WO
WO 2005110264 Nov 2005 WO
Related Publications (1)
Number Date Country
20070260241 A1 Nov 2007 US