The present disclosure relates to forceps used for open surgical procedures. More particularly, the present disclosure relates to an open forceps which applies a combination of mechanical clamping pressure and electrosurgical energy to seal tissue and a knife which is selectively advanceable to sever tissue along the tissue seal.
A forceps is a plier-like instrument which relies on mechanical action between its jaws to grasp, clamp and constrict vessels or tissue. So-called “open forceps” are commonly used in open surgical procedures whereas “endoscopic forceps” or “laparoscopic forceps” are, as the name implies, used for less invasive endoscopic surgical procedures. Electrosurgical forceps (open or endoscopic) utilize both mechanical clamping action and electrical energy to effect hemostasis by heating tissue and blood vessels to coagulate and/or cauterize tissue.
Certain surgical procedures require more than simply cauterizing tissue and rely on the unique combination of clamping pressure, precise electrosurgical energy control and gap distance (i.e., distance between opposing jaw members when closed about tissue) to “seal” tissue, vessels and certain vascular bundles.
Vessel sealing or tissue sealing is a recently-developed technology which utilizes a unique combination of radiofrequency energy, pressure and gap control to effectively seal or fuse tissue between two opposing jaw members or the use of heat to destroy tissue (also called “diathermy” or “electrodiathermy”). Vessel sealing is also more than “coagulation” which is the process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” is defined as the process of liquefying the collagen, elastin and ground substances in the tissue so that the tissue reforms into a fused mass with significantly-reduced demarcation between the opposing tissue structures.
In order to effectively “seal” tissue or vessels, two predominant mechanical parameters must be accurately controlled: 1) the pressure or closure force applied to the vessel or tissue; and 2) the gap distance between the conductive tissue contacting surfaces (electrodes). As can be appreciated, both of these parameters are affected by the thickness of the tissue being sealed. Accurate application of pressure is important for several reasons: to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a good seal for certain tissues is optimum between about 0.001 and about 0.006 inches.
With respect to smaller vessels or tissue, the pressure applied becomes less relevant and the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as the tissue thickness and the vessels become smaller.
Commonly owned, U.S. Pat. No. 6,511,480, PCT Patent Application Nos. PCT/US01/11420 and PCT/US01/11218, U.S. patent application Ser. Nos. 10/116,824, 10/284,562 and 10/299,650 all describe various open surgical forceps which seal tissue and vessels. All of these references are hereby incorporated by reference herein. In addition, several journal articles have disclosed methods for sealing small blood vessels using electrosurgery. An article entitled Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator, J. Neurosurg., Volume 75, July 1991, describes a bipolar coagulator which is used to seal small blood vessels. The article states that it is not possible to safely coagulate arteries with a diameter larger than 2 to 2.5 mm. A second article is entitled Automatically Controlled Bipolar Electrocoagulation—“COA-COMP”, Neurosurg. Rev. (1984), pp. 187-190, describes a method for terminating electrosurgical power to the vessel so that charring of the vessel walls can be avoided.
Typically and particularly with respect to open electrosurgical procedures, once a vessel is sealed, the surgeon has to remove the sealing instrument from the operative site, substitute a new instrument and accurately sever the vessel along the newly formed tissue seal. As can be appreciated, this additional step may be both time consuming (particularly when sealing a significant number of vessels) and may contribute to imprecise separation of the tissue along the sealing line due to the misalignment or misplacement of the severing instrument along the center of the tissue sealing line.
Many endoscopic vessel sealing instruments have been designed which incorporate a knife or blade member which effectively severs the tissue after forming a tissue seal. For example, commonly-owned U.S. application Ser. Nos. 10/116,944 and 10/179,863 describe one such endoscopic instrument which effectively seals and cuts tissue along the tissue seal. Other instruments include blade members or shearing members which simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes.
There exists a need to develop an open electrosurgical forceps which is simple, reliable and inexpensive to manufacture and which effectively seals tissue and vessels and which allows a surgeon to utilize the same instrument to effectively sever the tissue along the newly formed tissue seal.
The present disclosure relates to an open electrosurgical forceps for sealing tissue and includes a pair of first and second shaft members each having a jaw member disposed at a distal end thereof. The jaw members are movable from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween. Each jaw member includes an electrically conductive sealing plate for communicating electrosurgical energy through tissue held therebetween upon activation of the forceps. At least one of the jaw members includes a knife channel defined along a length thereof which is dimensioned to reciprocate a cutting mechanism therealong.
Preferably, an actuator is included which is operatively connected to one of the shaft members and is configured to selectively advance the cutting mechanism from a first position wherein the cutting mechanism is distally translated through tissue held between the jaw members. The cutting mechanism includes a generally hourglass-shaped flexible knife blade having a notch disposed generally midway therealong which facilitates distal translation of the knife within the knife channel.
In one embodiment, the actuator includes a rack and pinion system having a first gear-like rack connected to the trigger; a second gear-like rack connected to the cutting mechanism; and a pinion disposed between the first and second racks. A safety lockout may also be included which is designed to prevent reciprocation of the cutting mechanism when the jaw members are disposed in the first position. The safety lockout may be dimensioned as part of one of the jaw members and/or part of the cutting mechanism.
Another embodiment according to the present invention includes an open electrosurgical forceps for sealing tissue having a pair of first and second shaft members each including a jaw member disposed at a distal end thereof. The jaw members are movable from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween. Preferably, each of the jaw members includes an electrically conductive sealing plate attached thereto for selectively communicating electrosurgical energy through tissue held therebetween to effect a tissue seal. A ratchet is included having first and second ratchet interfaces disposed on the first and second shaft members, respectively. The ratchet is configured to maintain a pressure between jaw members within the range of about 3 kg/cm2 to about 16 kg/cm2. The ratchet preferably includes a stop disposed on one of the shaft members to prevent over pressurizing of the jaw members beyond the first and second ratchet interfaces.
Preferably, the forceps further includes a knife channel defined along a length of at least one of the jaw members. The knife channel is dimensioned to reciprocate a cutting mechanism therealong. An actuator is preferably included which is operatively connected to one of the shaft members and selectively advances the cutting mechanism from a first position wherein the cutting mechanism is disposed proximal to tissue held between the jaw members to at least one subsequent position wherein the cutting mechanism is disposed distal to tissue held between the jaw members.
Various embodiments of the subject instrument are described herein with reference to the drawings wherein:
Referring now to
The forceps 10 includes an end effector assembly 100 which attaches to the distal ends 16a and 16b of shafts 12a and 12b, respectively. As explained in more detail below, the end effector assembly 100 includes pair of opposing jaw members 110 and 120 which are pivotably connected about a pivot pin 65 and which are movable relative to one another to grasp tissue.
Preferably, each shaft 12a and 12b includes a handle 15 and 17, respectively, disposed at the proximal end 14a and 14b thereof which each define a finger hole 15a and 17a, respectively, therethrough for receiving a finger of the user. As can be appreciated, finger holes 15a and 17a facilitate movement of the shafts 12a and 12b relative to one another which, in turn, pivot the jaw members 110 and 120 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween.
As best seen in
As best illustrated in
As explained in more detail below, the distal end of the cable 70 connects to a handswitch 50 to permit the user to selectively apply electrosurgical energy as needed to seal tissue grasped between jaw members 110 and 120. More particularly, the interior of cable 70 houses leads 71a, 71b and 71c which upon activation of the handswitch 50 conduct the different electrical potentials from the electrosurgical generator to the jaw members 110 and 120 (See
The two opposing jaw members 110 and 120 of the end effector assembly 100 are pivotable about pin 65 from the open position to the closed position for grasping tissue therebetween. Preferably, pivot pin 65 consists of two component halves 65a and 65b which matingly engage and pivotably secure the shafts 12a and 12b during assembly such that the jaw members 110 and 120 are freely pivotable between the open and closed positions. For example, the pivot pin 65 may be configured to be spring loaded such that the pivot snap fits together at assembly to secure the two shafts 12a and 12b for rotation about the pivot pin 65.
The tissue grasping portions of the jaw members 110 and 120 are generally symmetrical and include similar component features which cooperate to permit facile rotation about pivot pin 65 to effect the grasping and sealing of tissue. As a result and unless otherwise noted, jaw member 110 and the operative features associated therewith are initially described herein in detail and the similar component features with respect to jaw member 120 will be briefly summarized thereafter. Moreover, many of the features of the jaw members 110 and 120 are described in detail in commonly-owned U.S. patent application Ser. Nos. 10/284,562, 10/116,824, 09/425,696, 09/178,027 and PCT Application Serial No. PCT/US01/11420 the contents of which are all hereby incorporated by reference in their entirety herein.
As best shown in
It is also contemplated that the electrically conductive sealing surface 112 may include an outer peripheral edge which has a radius and the insulated outer housing 116 meets the electrically conductive sealing surface 112 along an adjoining edge which is generally tangential to the radius and/or meets along the radius. Preferably, at the interface, the electrically conductive surface 112 is raised relative to the insulated outer housing 116. Alternatively, the jaw member 110 including the sealing plate 112 and the outer insulative housing 116 may be formed as part of a molding process to facilitate manufacturing and assembly. These and other envisioned embodiments are discussed in commonly-owned, co-pending PCT Application Serial No. PCT/US01/11412 and commonly owned, co-pending PCT Application Serial No. PCT/US01/11411, the contents of both of these applications being incorporated by reference herein in their entirety.
Preferably, the insulated outer housing 116 and the electrically conductive sealing surface 112 are dimensioned to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread and stray current dissipation. All of the aforementioned and cross referenced manufacturing techniques produce an electrode having an electrically conductive surface 112 which is substantially surrounded by an insulated outer housing 116.
Likewise, jaw member 120 includes similar elements which include: an outer housing 126 which engages an electrically conductive sealing surface 122 and an electrically conducive sealing surface 122 which conducts electrosurgical energy of a second potential to the tissue upon activation of the handswitch 50.
It is envisioned that one of the jaw members, e.g., 120, includes at least one stop member 175 disposed on the inner facing surface of the electrically conductive sealing surface 122 (and/or 112). Alternatively or in addition, the stop member 175 may be positioned adjacent to the electrically conductive sealing surfaces 112, 122 or proximate the pivot pin 65. The stop member(s) is preferably designed to facilitate gripping and manipulation of tissue and to define a gap “G” between opposing jaw members 110 and 120 during sealing (See
A detailed discussion of these and other envisioned stop members 175 as well as various manufacturing and assembling processes for attaching, disposing, depositing and/or affixing the stop members to the electrically conductive sealing surfaces 112, 122 are described in commonly-assigned, co-pending PCT Application Serial No. PCT/US01/11222 which is hereby incorporated by reference in its entirety herein.
As mentioned above, two mechanical factors play an important role in determining the resulting thickness of the sealed tissue and effectiveness of the seal, i.e., the pressure applied between opposing jaw members 110 and 120 and the gap “G” between the opposing jaw members 110 and 120 (or opposing seal surfaces 112 and 122 during activation). It is known that the thickness of the resulting tissue seal cannot be adequately controlled by force alone. In other words, too much force and the sealing surfaces 112 and 122 of the two jaw members 110 and 120 would touch and possibly short resulting in little energy traveling through the tissue thus resulting in a bad seal. Too little force and the seal would be too thick. Applying the correct force is also important for other reasons: to oppose the walls of the vessel; to reduce the tissue impedance to a low enough value that allows enough current through the tissue; and to overcome the forces of expansion during tissue heating in addition to contributing towards creating the required end tissue thickness which is an indication of a good seal.
Preferably, the seal surfaces 112 and 122 are relatively flat to avoid current concentrations at sharp edges and to avoid arcing between high points. In addition and due to the reaction force of the tissue when engaged, jaw members 110 and 120 are preferably manufactured to resist bending, i.e., tapered along their length which provides a constant pressure for a constant tissue thickness at parallel and the thicker proximal portion of the jaw members 110 and 120 will resist bending due to the reaction force of the tissue.
As best seen in
The arrangement of shaft 12b is slightly different from shaft 12a. More particularly, shaft 12b is generally hollow to define a chamber 28 therethrough which is dimensioned to house the handswitch 50 (and the electrical components associated therewith), the actuating mechanism 40 and the cutting mechanism 80. As best seen in
Interdisposed between the first and second gear racks 42 and 86, respectively, is a pinion gear 45 which mechanically meshes with both gear racks 42 and 86 and converts proximal motion of the trigger 43 into distal translation of the drive rod 89 and vice versa. More particularly, when the user pulls the trigger 43 in a proximal direction within a predisposed channel 29 in the shaft 12b (See arrow “A” in
It is envisioned that multiple gears or gears with different gear ratios may be employed to reduce surgical fatigue which may be associated with advancing the cutting mechanism 80. In addition, it is contemplated the gear tracks 42 and 86 are configured to include a plurality of gear teeth tracks 43 and 87, respectively, which may be of different length to provide additional mechanical advantage for advancing the jaw members 110 and 120 through tissue. The rack and pinion arrangement may be curved for spatial purposes and to facilitate handling and/or to enhance the overall ergonomics of the forceps 10.
A spring 83 may be employed within chamber 28 to bias the first rack 42 upon proximal movement thereof such that upon release of the trigger 43, the force of the spring 83 automatically returns the first rack 42 to its distal most position within channel 29. Obviously, spring 83 may be operatively connected to bias the second rack 86 to achieve the same purpose.
Preferably, the trigger 43 includes one or more ergonomically friendly features which enhance the tactile feel and grip for the user to facilitate actuation of the finger tab 43. Such features may include, raised protuberances, rubber inserts, scallops and gripping surfaces and the like. In addition, the downward orientation of the trigger 43 is believed to be particularly advantageous since this orientation tends to minimize accidental or inadvertent activation of the trigger 43 during handling. Moreover, it is contemplated that integrally associating (molding or otherwise forming) the trigger 43 and the gear rack 42 during the manufacturing process minimizes the number of parts which, in turn, simplifies the overall assembly process.
As best seen in
More particularly, the distal end 81 of the cutting mechanism 80 is dimensioned to reciprocate within a channel 126b defined in the proximal end of jaw member 120 when jaw member 110 and 120 are disposed in a closed position (see
As best shown in
When the jaw members 110 and 120 are moved to the closed position as illustrated in
It is envisioned that the safety lockout mechanism 200 may include one or more electrical or electromechanical sensors (not shown) which prevent the cutting mechanism 80 from advancing through tissue until a tissue seal has been created. For example, the safety lockout mechanism 200 could include a sensor which upon completion of a tissue seal activates a switch or release (not shown) which unlocks the cutting mechanism 80 for advancement through tissue.
As best seen in
It is envisioned that the ratchet 30 may include graduations or other visual markings which enable the user to easily and quickly ascertain and control the amount of closure force desired between the jaw members. It is envisioned that the shafts 12a and 12b may be manufactured from a particular plastic material which is tuned to apply a particular closure pressure within the above-specified working range to the jaw members 110 and 120 when ratcheted. As can be appreciated, this simplified the manufacturing process and eliminates under pressurizing and over pressurizing the jaw members 110 and 120 during the sealing process.
The proximal connector 77 may include a stop or protrusion 19 (See
It is envisioned that by making the forceps 10 disposable, the forceps 10 is less likely to become damaged since it is only intended for a single use and, therefore, does not require cleaning or re-sterilization. As a result, the functionality and consistency of the vital sealing components, e.g., the conductive surfaces 112 and 122, the stop member(s) 175, and the insulative housings 126 and 116 will assure a uniform and quality seal.
Several different types of handswitches 50 are envisioned, for example, switch 50 is a regular push-button style switch but may be configured more like a toggle switch which permits the user to selectively activate the forceps 10 in a variety of different orientations, i.e., multi-oriented activation, which simplifies activation. One particular type of handswitch is disclosed in commonly-owned, co-pending U.S. patent application Ser. No. 10/460,926 the contents of which are hereby incorporated by reference herein.
The electrical leads 71a and 71b are electrically connected to the circuit board 52 such that when the switch 50 is depressed, a trigger lead 72 carries the first electrical potential from the circuit board 52 to jaw member 110. As mentioned above, the second electrical potential is carried by lead 71c directly from the generator (not shown) to jaw member 120 through the terminal connector 150 as described above. It is envisioned that a safety switch or circuit (not shown) may be employed such that the switch 50 cannot fire unless the jaw members 110 and 120 are closed and/or unless the jaw members 110 and 120 have tissue 400 held therebetween. In the latter instance, a sensor (not shown) may be employed to determine if tissue is held therebetween. In addition, other sensor mechanisms may be employed which determine pre-surgical, concurrent surgical (i.e., during surgery) and/or post surgical conditions. The sensor mechanisms may also be utilized with a closed-loop feedback system coupled to the electrosurgical generator to regulate the electrosurgical energy based upon one or more pre-surgical, concurrent surgical or post surgical conditions. Various sensor mechanisms and feedback systems are described in commonly-owned, co-pending U.S. patent application Ser. No. 10/427,832 the entire contents of which are hereby incorporated by reference herein.
As best shown in
The jaw members 110 and 120 are electrically isolated from one another such that electrosurgical energy can be effectively transferred through the tissue to form a tissue seal. Preferably, each jaw member, e.g., 110, includes a uniquely-designed electrosurgical cable path disposed therethrough which transmits electrosurgical energy to the electrically conductive sealing surface 112. It is envisioned that the jaw members 110 and 120 may include one or more cable guides or crimp-like electrical connectors to direct the cable leads towards electrically conductive sealing surfaces 112 and 122. Preferably, cable leads are held securely along the cable path to permit pivoting of the jaw members 110 and 120 about pivot 65.
As best shown in
In operation, the surgeon simply utilizes the two opposing handle members 15 and 17 to grasp tissue between jaw members 110 and 120. The surgeon then activates the handswitch 50 to provide electrosurgical energy to each jaw member 110 and 120 to communicate energy through the tissue held therebetween to effect a tissue seal (See
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, although the electrical connections are preferably incorporated within one shaft 12b and the forceps 10 is intended for right-handed use, it is contemplated the electrical connections may be incorporated within the other shaft 12a depending upon a particular purpose and/or to facilitate manipulation by a left-handed user. Alternatively, the forceps 10 may operated in an upside down orientation for left-handed users without compromising or restricting any operating characteristics of the forceps 10.
It is also contemplated that the forceps 10 (and/or the electrosurgical generator used in connection with the forceps 10) may include a sensor or feedback mechanism (not shown) which automatically selects the appropriate amount of electrosurgical energy to effectively seal the particularly-sized tissue grasped between the jaw members 110 and 120. The sensor or feedback mechanism may also measure the impedance across the tissue during sealing and provide an indicator (visual and/or audible) that an effective seal has been created between the jaw members 110 and 120. Commonly-owned U.S. patent application Ser. No. 10/427,832 discloses several different types of sensory feedback mechanisms and algorithms which may be utilized for this purpose. The contents of this application are hereby incorporated by reference herein.
Experimental results suggest that the magnitude of pressure exerted on the tissue by the sealing surfaces of the jaw members 110 and 120 is important in assuring a proper surgical outcome. Tissue pressures within a working range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, within a working range of 7 kg/cm2 to 13 kg/cm2 have been shown to be effective for sealing arteries and vascular bundles. Tissue pressures within the range of about 4 kg/cm2 to about 10 kg/cm2 have proven to be particularly effective in sealing arteries and tissue bundles. Preferably, the inter-engaging surfaces 31a and 31b of the ratchet 30 are positioned to provide a closure within this working range. In addition and if the ratchet 30 includes multiple positions as explained above, it is envisioned that each particular ratchet position employs a specific closure force on tissue for particular surgical purposes. For example, the shafts 12a and 12b may be manufactured such that the spring constants of the shaft portions 12a and 12b, in conjunction with the placement of the ratchet interfaces 31a and 31b, will yield pressures within the above working range. If desired, the forceps 10 may be manufactured to include successive ratchet positions, i.e., ratchet interfaces 21a and 31b which would increase the closure force between opposing sealing surfaces 112 and 122 incrementally within the above working range or, if desired, outside the working range to suit a particular surgical purpose.
It is also envisioned that the drive rod 89 may be connected to the same or alternate source of electrosurgical energy and may be selectively energizable by the surgeon during cutting. As can be appreciated, this would enable the surgeon to electrosurgically cut the tissue along the tissue seal. As a result thereof, a substantially dull blade may be employed to electrosurgically cut the tissue. It is also envisioned that a substantially dull blade may be utilized with a spring loaded non-electrically energized cutting mechanism which, due to the clamping pressure between the opposing jaw members 110 and 120 and due to the force at which the spring-loaded cutting mechanism advances the blade, the tissue will sever along the tissue seal.
It is also contemplated that the forceps may include a safety blade return mechanism (not shown). For example and as mentioned above, the cutting blade 80 may include one or more springs which automatically return the cutting blade 87 after actuation of the actuator 40. In addition, a manual return may be included which allows the user to manually return the blade 87 if the automatic blade return (e.g., spring) should fail due to sticking, skewing, or some other unforeseen surgical condition. Alternatively, the actuating mechanism 40 may be spring-loaded and advanced automatically when tab 43 is depressed by the surgeon. After deployment, the surgeon manually retracts the tab 43 to reset the tab 43 and cutting mechanism 80 for subsequent deployment.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application claims the benefit of priority to U.S. Provisional Application Ser. No. 60/523,387 filed on Nov. 19, 2003 by Moses et al. and is a continuation-in-part to U.S. patent application Ser. No. 10/873,860 filed Jun. 22, 2004 by Moses et al., now U.S. Pat. No. 7,252,667, the entire contents of both of which being incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
702472 | Pignolet | Jun 1902 | A |
728883 | Downes | May 1903 | A |
1586645 | Bierman | Jun 1926 | A |
1813902 | Bovie | Jul 1931 | A |
1822330 | Ainslie | Sep 1931 | A |
1852542 | Sovatkin | Apr 1932 | A |
2002594 | Wappler et al. | May 1935 | A |
2011169 | Wappler | Aug 1935 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2054149 | Wappler | Sep 1936 | A |
2176479 | Willis | Oct 1939 | A |
2305156 | Grubel | Apr 1941 | A |
2279753 | Knopp | Apr 1942 | A |
2327353 | Karle | Aug 1943 | A |
2632661 | Cristofv | Aug 1948 | A |
2668538 | Baker | Feb 1954 | A |
2796065 | Kapp | Jun 1957 | A |
3073311 | Tibbs et al. | Jan 1963 | A |
3372288 | Wigington | Mar 1968 | A |
3459187 | Pallotta | Aug 1969 | A |
3643663 | Sutter | Feb 1972 | A |
3648001 | Anderson et al. | Mar 1972 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3678229 | Osika | Jul 1972 | A |
3720896 | Beierlein | Mar 1973 | A |
3763726 | Hildebrand | Oct 1973 | A |
3779918 | Ikeda et al. | Dec 1973 | A |
3801766 | Morrison, Jr. | Apr 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3863339 | Reaney et al. | Feb 1975 | A |
3866610 | Kletschka | Feb 1975 | A |
3911766 | Fridolph et al. | Oct 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3921641 | Hulka | Nov 1975 | A |
3938527 | Rioux et al. | Feb 1976 | A |
3952749 | Fridolph et al. | Apr 1976 | A |
3970088 | Morrison | Jul 1976 | A |
3987795 | Morrison | Oct 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4016881 | Rioux et al. | Apr 1977 | A |
4041952 | Morrison, Jr. et al. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4076028 | Simmons | Feb 1978 | A |
4080820 | Allen | Mar 1978 | A |
4088134 | Mazzariello | May 1978 | A |
4112950 | Pike | Sep 1978 | A |
4127222 | Adams | Nov 1978 | A |
4128099 | Bauer | Dec 1978 | A |
4165746 | Burgin | Aug 1979 | A |
4187420 | Piber | Feb 1980 | A |
4233734 | Bies | Nov 1980 | A |
4236470 | Stenson | Dec 1980 | A |
4300564 | Furihata | Nov 1981 | A |
4311145 | Esty et al. | Jan 1982 | A |
D263020 | Rau, III | Feb 1982 | S |
4370980 | Lottick | Feb 1983 | A |
4375218 | DiGeronimo | Mar 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4418692 | Guay | Dec 1983 | A |
4443935 | Zamba et al. | Apr 1984 | A |
4452246 | Bader et al. | Jun 1984 | A |
4470786 | Sano et al. | Sep 1984 | A |
4492231 | Auth | Jan 1985 | A |
4493320 | Treat | Jan 1985 | A |
4503855 | Maslanka | Mar 1985 | A |
4506669 | Blake, III | Mar 1985 | A |
4509518 | McGarry et al. | Apr 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4574804 | Kurwa | Mar 1986 | A |
4597379 | Kihn et al. | Jul 1986 | A |
4600007 | Lahodny et al. | Jul 1986 | A |
4624254 | McGarry et al. | Nov 1986 | A |
4655215 | Pike | Apr 1987 | A |
4655216 | Tischer | Apr 1987 | A |
4657016 | Garito et al. | Apr 1987 | A |
4662372 | Sharkany et al. | May 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4685459 | Xoch et al. | Aug 1987 | A |
4733662 | DeSatnick et al. | Mar 1988 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4754892 | Retief | Jul 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
4827929 | Hodge | May 1989 | A |
4829313 | Taggart | May 1989 | A |
4846171 | Kauphusman et al. | Jul 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4938761 | Ensslin | Jul 1990 | A |
4947009 | Osika et al. | Aug 1990 | A |
4985030 | Melzer et al. | Jan 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026371 | Rydell et al. | Jun 1991 | A |
5035695 | Weber, Jr. et al. | Jul 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047046 | Bodoia | Sep 1991 | A |
5078716 | Doll | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5085659 | Rydell | Feb 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5100430 | Avellanet et al. | Mar 1992 | A |
5108392 | Spingler | Apr 1992 | A |
5112343 | Thornton | May 1992 | A |
5116332 | Lottick | May 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5151102 | Xamiyama et al. | Sep 1992 | A |
5151978 | Bronikowski et al. | Sep 1992 | A |
5176695 | Dulebohn | Jan 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196009 | Kirwan, Jr. | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5215101 | Jacobs et al. | Jun 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217458 | Parins | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5219354 | Choudhury et al. | Jun 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5250063 | Abidin et al. | Oct 1993 | A |
5258001 | Corman | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261918 | Phillips et al. | Nov 1993 | A |
5275615 | Rose | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282826 | Quadri | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5300082 | Sharpe et al. | Apr 1994 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308353 | Beurrier | May 1994 | A |
5308357 | Lichtman | May 1994 | A |
5313027 | Inoue et al. | May 1994 | A |
5314445 | Degwitz et al. | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
D348930 | Olson | Jul 1994 | S |
5326806 | Yokoshima et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334215 | Chen | Aug 1994 | A |
5336220 | Ryan et al. | Aug 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5344424 | Roberts et al. | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354271 | Voda | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5366477 | LeMarie, III et al. | Nov 1994 | A |
5368600 | Failla et al. | Nov 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5376089 | Smith | Dec 1994 | A |
5383875 | Bays et al. | Jan 1995 | A |
5383897 | Wholey | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389103 | Melzer et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5391183 | Janzen et al. | Feb 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5409763 | Serizawa et al. | Apr 1995 | A |
5411519 | Tovey et al. | May 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5415656 | Tihon et al. | May 1995 | A |
5415657 | Taymor-Luria | May 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5425690 | Chang | Jun 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5429616 | Schaffer | Jul 1995 | A |
5431672 | Cote et al. | Jul 1995 | A |
5431674 | Basile et al. | Jul 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5439478 | Palmer | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443464 | Russell et al. | Aug 1995 | A |
5443480 | Jacobs et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445658 | Durrfeld et al. | Aug 1995 | A |
5449480 | Kuriya et al. | Sep 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5454823 | Richardson et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5461765 | Linden et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5480406 | Nolan et al. | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499997 | Sharpe et al. | Mar 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5528833 | Sakuma | Jun 1996 | A |
5529067 | Larsen et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5558671 | Yates | Sep 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5562619 | Mirarchi et al. | Oct 1996 | A |
5562699 | Heimberger et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5569241 | Edwardds | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5579781 | Cooke | Dec 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5585896 | Yamazaki et al. | Dec 1996 | A |
5590570 | LeMaire, III et al. | Jan 1997 | A |
5591181 | Stone et al. | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5601641 | Stephens | Feb 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5611798 | Eggers | Mar 1997 | A |
5611808 | Hossain et al. | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620453 | Nallakrishnan | Apr 1997 | A |
5620459 | Lichtman | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5638003 | Hall | Jun 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5655650 | Naitou | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5662667 | Knodel | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674229 | Tovey et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690652 | Wurster et al. | Nov 1997 | A |
5690653 | Richardson et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5693920 | Maeda | Dec 1997 | A |
5695522 | LeMaire, III et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5727428 | LeMaire, III et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5759188 | Yoon | Jun 1998 | A |
5766130 | Selmonosky | Jun 1998 | A |
5766166 | Hooven | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5766196 | Griffiths | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5772655 | Bauer et al. | Jun 1998 | A |
5772670 | Brosa | Jun 1998 | A |
5776128 | Eggers | Jul 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5779646 | Koblish et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
H1745 | Paraschac | Aug 1998 | H |
5792137 | Carr et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5792177 | Kaseda | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797938 | Paraschac et al. | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5800449 | Wales | Sep 1998 | A |
5807393 | Williamsom, IV et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5810805 | Sutcu et al. | Sep 1998 | A |
5810808 | Eggers | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5814043 | Shapeton | Sep 1998 | A |
5814054 | Kortenbach et al. | Sep 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5824978 | Karasik et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827279 | Hughett et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5827548 | Lavallee et al. | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5843080 | Fleenor et al. | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5859527 | Cook | Jan 1999 | A |
5860976 | Billings et al. | Jan 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5876412 | Piraka | Mar 1999 | A |
5882567 | Cavallaro et al. | Mar 1999 | A |
5891141 | Rydell | Apr 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5893877 | Gampp, Jr. et al. | Apr 1999 | A |
5897563 | Yoon et al. | Apr 1999 | A |
5902301 | Olig | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5908432 | Pan | Jun 1999 | A |
5911719 | Eggers | Jun 1999 | A |
5913874 | Berns et al. | Jun 1999 | A |
5921916 | Aeikens et al. | Jul 1999 | A |
5921984 | Sutcu et al. | Jul 1999 | A |
5925043 | Kumar et al. | Jul 1999 | A |
5928136 | Barry | Jul 1999 | A |
5935126 | Riza | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5954733 | Yoon | Sep 1999 | A |
5957923 | Hahnen et al. | Sep 1999 | A |
5957937 | Yoon | Sep 1999 | A |
5960544 | Beyers | Oct 1999 | A |
5961514 | Long et al. | Oct 1999 | A |
5964758 | Dresden | Oct 1999 | A |
5976132 | Morris | Nov 1999 | A |
5984932 | Yoon | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
5989277 | LeMaire, III et al. | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
5993467 | Yoon | Nov 1999 | A |
5997565 | Inoue | Dec 1999 | A |
6004332 | Yoon et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010516 | Hulka | Jan 2000 | A |
6017358 | Yoon et al. | Jan 2000 | A |
6021693 | Feng-Sing | Feb 2000 | A |
6024741 | Willaimson et al. | Feb 2000 | A |
6024743 | Edwards | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6027522 | Palmer | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6041679 | Slater et al. | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053914 | Eggers et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6059782 | Novak et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6077287 | Taylor et al. | Jun 2000 | A |
6080180 | Yoon et al. | Jun 2000 | A |
RE36795 | Rydell | Jul 2000 | E |
6083223 | Baker | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6086601 | Yoon | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6106542 | Toybin et al. | Aug 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126658 | Baker | Oct 2000 | A |
6126665 | Yoon | Oct 2000 | A |
6139563 | Cosgrove, III et al. | Oct 2000 | A |
6143005 | Yoon et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6171316 | Kovac et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6178628 | Clemens et al. | Jan 2001 | B1 |
6179834 | Buysse et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183467 | Shapeton et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6190400 | VanDeMoer et al. | Feb 2001 | B1 |
6193718 | Kortenbach et al. | Feb 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6217602 | Redmon | Apr 2001 | B1 |
6217615 | Sioshansi et al. | Apr 2001 | B1 |
6221039 | Durgin et al. | Apr 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6224593 | Ryan et al. | May 2001 | B1 |
6224614 | Yoon | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6248124 | Pedros et al. | Jun 2001 | B1 |
6248944 | Ito | Jun 2001 | B1 |
6261307 | Yoon et al. | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6280458 | Boche et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6298550 | Kirwan | Oct 2001 | B1 |
6302424 | Gisinger et al. | Oct 2001 | B1 |
6319262 | Bates et al. | Nov 2001 | B1 |
6319451 | Brune | Nov 2001 | B1 |
6322561 | Eggers et al. | Nov 2001 | B1 |
6322580 | Kanner | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6345532 | Coudray et al. | Feb 2002 | B1 |
6350264 | Hooven | Feb 2002 | B1 |
6352536 | Buysse et al. | Mar 2002 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
6358259 | Swain et al. | Mar 2002 | B1 |
6358268 | Hunt et al. | Mar 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6387094 | Eitenmuller | May 2002 | B1 |
6391035 | Appleby et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402747 | Lindemann et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6425896 | Baltschun et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6440144 | Bacher | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458125 | Cosmescu | Oct 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6506196 | Laufer | Jan 2003 | B1 |
6508815 | Strul et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514215 | Ouchi | Feb 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517539 | Smith et al. | Feb 2003 | B1 |
6527771 | Weadock et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6545239 | Spedale et al. | Apr 2003 | B2 |
6558385 | McClurken et al. | May 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6569105 | Kortenbach et al. | May 2003 | B1 |
6582450 | Ouchi | Jun 2003 | B2 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6605790 | Yoshida | Aug 2003 | B2 |
6616658 | Ineson | Sep 2003 | B2 |
6616661 | Wellman et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6620184 | De Laforcade et al. | Sep 2003 | B2 |
6626901 | Treat et al. | Sep 2003 | B1 |
6638287 | Danitz et al. | Oct 2003 | B2 |
6641595 | Moran et al. | Nov 2003 | B1 |
6652514 | Ellman et al. | Nov 2003 | B2 |
6652521 | Schulze | Nov 2003 | B2 |
6656175 | Francischelli et al. | Dec 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6663639 | Laufer et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6669696 | Bacher et al. | Dec 2003 | B2 |
6673092 | Bacher | Jan 2004 | B1 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6676676 | Danitz et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6685724 | Haluck | Feb 2004 | B1 |
6689131 | McClurken | Feb 2004 | B2 |
6692445 | Roberts et al. | Feb 2004 | B2 |
6693246 | Rudolph et al. | Feb 2004 | B1 |
6695840 | Schulze | Feb 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6723092 | Brown et al. | Apr 2004 | B2 |
6726068 | Miller | Apr 2004 | B2 |
6726686 | Buysse et al. | Apr 2004 | B2 |
6726694 | Blatter et al. | Apr 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6743230 | Lutze et al. | Jun 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6755843 | Chung et al. | Jun 2004 | B2 |
6756553 | Yamaguchi et al. | Jun 2004 | B1 |
6757977 | Dambal et al. | Jul 2004 | B2 |
D493888 | Reschke | Aug 2004 | S |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773432 | Clayman et al. | Aug 2004 | B1 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773441 | Laufer et al. | Aug 2004 | B1 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776780 | Mulier et al. | Aug 2004 | B2 |
6786905 | Swanson et al. | Sep 2004 | B2 |
6790217 | Schulze et al. | Sep 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800825 | Sasaki et al. | Oct 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
D499181 | Dycus et al. | Nov 2004 | S |
6818000 | Muller et al. | Nov 2004 | B2 |
6821285 | Laufer et al. | Nov 2004 | B2 |
6835200 | Laufer et al. | Dec 2004 | B2 |
6857357 | Fujii | Feb 2005 | B2 |
6887240 | Lands et al. | May 2005 | B1 |
6889116 | Jinno | May 2005 | B2 |
6914201 | Van Vooren et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932816 | Phan | Aug 2005 | B2 |
6934134 | Mori et al. | Aug 2005 | B2 |
6936061 | Sasaki | Aug 2005 | B2 |
D509297 | Wells | Sep 2005 | S |
6942662 | Goble et al. | Sep 2005 | B2 |
6943311 | Miyako | Sep 2005 | B2 |
6953430 | Kodooka | Oct 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6958070 | Witt et al. | Oct 2005 | B2 |
6960210 | Lands et al. | Nov 2005 | B2 |
6964662 | Kidooka | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6972017 | Smith et al. | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979786 | Aukland et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6987244 | Bauer | Jan 2006 | B2 |
6994707 | Ellman et al. | Feb 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7001381 | Harano et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7033354 | Keppel | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044948 | Keppel | May 2006 | B2 |
7052489 | Griego et al. | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7063715 | Onuki et al. | Jun 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
7070597 | Truckai et al. | Jul 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7087051 | Bourne et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090689 | Nagase et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7103947 | Sartor et al. | Sep 2006 | B2 |
7107124 | Green | Sep 2006 | B2 |
7112199 | Cosmescu | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7115123 | Knowlton et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
7135020 | Lawes et al. | Nov 2006 | B2 |
D533942 | Kerr et al. | Dec 2006 | S |
7145757 | Shea et al. | Dec 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7150097 | Sremcich et al. | Dec 2006 | B2 |
7150749 | Dycus et al. | Dec 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
7156842 | Sartor et al. | Jan 2007 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7179256 | Buysse et al. | Feb 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7207990 | Lands et al. | Apr 2007 | B2 |
D541938 | Kerr et al. | May 2007 | S |
7223264 | Daniel et al. | May 2007 | B2 |
7223265 | Keppel | May 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7241288 | Braun | Jul 2007 | B2 |
7241296 | Buysse et al. | Jul 2007 | B2 |
7244257 | Podjahsky et al. | Jul 2007 | B2 |
7246734 | Shelto, IV | Jul 2007 | B2 |
7248944 | Green | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7270660 | Ryan | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7314471 | Holman | Jan 2008 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7329256 | Johnson et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
7338526 | Steinberg | Mar 2008 | B2 |
7342754 | Fitzgerald et al. | Mar 2008 | B2 |
7344268 | Jigamian | Mar 2008 | B2 |
D567943 | Moses et al. | Apr 2008 | S |
7367976 | Lawes et al. | May 2008 | B2 |
7377920 | Buysse et al. | May 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7384421 | Hushka | Jun 2008 | B2 |
7396336 | Orszulak et al. | Jul 2008 | B2 |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7435249 | Buysse et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7442194 | Dumbauld et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7458972 | Keppel | Dec 2008 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7481810 | Dumbauld et al. | Jan 2009 | B2 |
7487780 | Hooven | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7491202 | Odom et al. | Feb 2009 | B2 |
7500975 | Cunningham et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7513898 | Johnson et al. | Apr 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7549995 | Schultz | Jun 2009 | B2 |
7553312 | Tetzlaff et al. | Jun 2009 | B2 |
20020013583 | Camran et al. | Jan 2002 | A1 |
20020049442 | Roberts et al. | Apr 2002 | A1 |
20020099372 | Schulze et al. | Jul 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020111624 | Witt et al. | Aug 2002 | A1 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20030014052 | Buysse et al. | Jan 2003 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030018331 | Dycus et al. | Jan 2003 | A1 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20030032956 | Lands et al. | Feb 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030069571 | Treat et al. | Apr 2003 | A1 |
20030078578 | Truckai et al. | Apr 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030158549 | Swanson | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030181910 | Dycus et al. | Sep 2003 | A1 |
20030199869 | Johnson et al. | Oct 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030220637 | Truckai et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20030236325 | Bonora | Dec 2003 | A1 |
20030236518 | Marchitto et al. | Dec 2003 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040030332 | Knowlton et al. | Feb 2004 | A1 |
20040049185 | Latterell et al. | Mar 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040073238 | Makower | Apr 2004 | A1 |
20040073256 | Marchitto et al. | Apr 2004 | A1 |
20040078035 | Kanehira et al. | Apr 2004 | A1 |
20040082952 | Dycus et al. | Apr 2004 | A1 |
20040087943 | Dycus et al. | May 2004 | A1 |
20040115296 | Duffin | Jun 2004 | A1 |
20040116924 | Dycus et al. | Jun 2004 | A1 |
20040116979 | Truckai et al. | Jun 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040143263 | Schechter et al. | Jul 2004 | A1 |
20040147925 | Buysse et al. | Jul 2004 | A1 |
20040148035 | Barrett et al. | Jul 2004 | A1 |
20040162557 | Tetzlaff et al. | Aug 2004 | A1 |
20040176762 | Lawes et al. | Sep 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040210282 | Flock et al. | Oct 2004 | A1 |
20040224590 | Rawa et al. | Nov 2004 | A1 |
20040225288 | Buysse et al. | Nov 2004 | A1 |
20040230189 | Keppel | Nov 2004 | A1 |
20040236325 | Tetzlaff et al. | Nov 2004 | A1 |
20040236326 | Schulze et al. | Nov 2004 | A1 |
20040243125 | Dycus et al. | Dec 2004 | A1 |
20040249371 | Dycus et al. | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040250419 | Sremcich et al. | Dec 2004 | A1 |
20040254573 | Dycus et al. | Dec 2004 | A1 |
20040260281 | Baxter, III et al. | Dec 2004 | A1 |
20050004564 | Wham et al. | Jan 2005 | A1 |
20050004568 | Lawes et al. | Jan 2005 | A1 |
20050004569 | Witt et al. | Jan 2005 | A1 |
20050004570 | Chapman et al. | Jan 2005 | A1 |
20050021025 | Buysse et al. | Jan 2005 | A1 |
20050021026 | Baily | Jan 2005 | A1 |
20050021027 | Shields et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050059934 | Wenchell et al. | Mar 2005 | A1 |
20050096645 | Wellman et al. | May 2005 | A1 |
20050101951 | Wham et al. | May 2005 | A1 |
20050101952 | Lands et al. | May 2005 | A1 |
20050107784 | Moses et al. | May 2005 | A1 |
20050107785 | Dycus et al. | May 2005 | A1 |
20050113818 | Sartor et al. | May 2005 | A1 |
20050113819 | Wham et al. | May 2005 | A1 |
20050113826 | Johnson et al. | May 2005 | A1 |
20050113827 | Dumbauld et al. | May 2005 | A1 |
20050113828 | Shields et al. | May 2005 | A1 |
20050119655 | Moses et al. | Jun 2005 | A1 |
20050149017 | Dycus | Jul 2005 | A1 |
20050149151 | Orszulak et al. | Jul 2005 | A1 |
20050154387 | Moses et al. | Jul 2005 | A1 |
20050187547 | Sugi | Aug 2005 | A1 |
20050197659 | Bahney | Sep 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050240179 | Buysse et al. | Oct 2005 | A1 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20060052779 | Hammill | Mar 2006 | A1 |
20060064085 | Schechter et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060074417 | Cunningham et al. | Apr 2006 | A1 |
20060079888 | Mulier et al. | Apr 2006 | A1 |
20060079890 | Guerra | Apr 2006 | A1 |
20060079891 | Arts et al. | Apr 2006 | A1 |
20060079933 | Hushka et al. | Apr 2006 | A1 |
20060084973 | Hushka | Apr 2006 | A1 |
20060089670 | Hushka | Apr 2006 | A1 |
20060116675 | McClurken et al. | Jun 2006 | A1 |
20060129146 | Dycus et al. | Jun 2006 | A1 |
20060161150 | Keppel | Jul 2006 | A1 |
20060167450 | Johnson et al. | Jul 2006 | A1 |
20060167452 | Moses et al. | Jul 2006 | A1 |
20060173452 | Buysse et al. | Aug 2006 | A1 |
20060189980 | Johnson et al. | Aug 2006 | A1 |
20060189981 | Dycus et al. | Aug 2006 | A1 |
20060190035 | Hushka et al. | Aug 2006 | A1 |
20060217709 | Couture et al. | Sep 2006 | A1 |
20060224158 | Odom et al. | Oct 2006 | A1 |
20060229666 | Suzuki et al. | Oct 2006 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20060259036 | Tetzlaf et al. | Nov 2006 | A1 |
20060264922 | Sartor et al. | Nov 2006 | A1 |
20060264931 | Chapman et al. | Nov 2006 | A1 |
20060271038 | Johnson et al. | Nov 2006 | A1 |
20060283093 | Petrovic et al. | Dec 2006 | A1 |
20060287641 | Perlin | Dec 2006 | A1 |
20070016182 | Lipson et al. | Jan 2007 | A1 |
20070016187 | Weinberg et al. | Jan 2007 | A1 |
20070043352 | Garrison et al. | Feb 2007 | A1 |
20070043353 | Dycus et al. | Feb 2007 | A1 |
20070055231 | Dycus et al. | Mar 2007 | A1 |
20070060919 | Isaacson et al. | Mar 2007 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070074807 | Guerra | Apr 2007 | A1 |
20070078456 | Dumbauld et al. | Apr 2007 | A1 |
20070078458 | Dumbauld et al. | Apr 2007 | A1 |
20070078459 | Johnson et al. | Apr 2007 | A1 |
20070088356 | Moses et al. | Apr 2007 | A1 |
20070106295 | Garrison et al. | May 2007 | A1 |
20070106297 | Dumbauld et al. | May 2007 | A1 |
20070118111 | Weinberg | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070142833 | Dycus et al. | Jun 2007 | A1 |
20070142834 | Dumbauld | Jun 2007 | A1 |
20070156139 | Schechter et al. | Jul 2007 | A1 |
20070156140 | Baily | Jul 2007 | A1 |
20070173811 | Couture et al. | Jul 2007 | A1 |
20070173814 | Hixson et al. | Jul 2007 | A1 |
20070179499 | Garrison | Aug 2007 | A1 |
20070198011 | Sugita | Aug 2007 | A1 |
20070203485 | Keppel | Aug 2007 | A1 |
20070213706 | Dumbauld et al. | Sep 2007 | A1 |
20070213707 | Dumbauld et al. | Sep 2007 | A1 |
20070213708 | Dumbauld et al. | Sep 2007 | A1 |
20070213712 | Buysse et al. | Sep 2007 | A1 |
20070255279 | Buysse et al. | Nov 2007 | A1 |
20070260235 | Podhajsky | Nov 2007 | A1 |
20070260238 | Guerra | Nov 2007 | A1 |
20070260241 | Dalla Betta et al. | Nov 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20080004616 | Patrick | Jan 2008 | A1 |
20080009860 | Odom | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080021450 | Couture | Jan 2008 | A1 |
20080033428 | Artale et al. | Feb 2008 | A1 |
20080039835 | Johnson et al. | Feb 2008 | A1 |
20080039836 | Odom et al. | Feb 2008 | A1 |
20080045947 | Johnson et al. | Feb 2008 | A1 |
20080058802 | Couture et al. | Mar 2008 | A1 |
20080082100 | Orton et al. | Apr 2008 | A1 |
20080091189 | Carlton | Apr 2008 | A1 |
20080114356 | Johnson et al. | May 2008 | A1 |
20080167651 | Tetzlaff et al. | Jul 2008 | A1 |
20080195093 | Couture et al. | Aug 2008 | A1 |
20080215051 | Buysse et al. | Sep 2008 | A1 |
20080243120 | Lawes et al. | Oct 2008 | A1 |
20080249527 | Couture | Oct 2008 | A1 |
20080312653 | Arts et al. | Dec 2008 | A1 |
20080319442 | Unger et al. | Dec 2008 | A1 |
20090012520 | Hixson et al. | Jan 2009 | A1 |
20090018535 | Schechter et al. | Jan 2009 | A1 |
20090024126 | Artale et al. | Jan 2009 | A1 |
20090043304 | Tetzlaff et al. | Feb 2009 | A1 |
20090048596 | Shields et al. | Feb 2009 | A1 |
20090062794 | Buysse et al. | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090082767 | Unger et al. | Mar 2009 | A1 |
20090082769 | Unger et al. | Mar 2009 | A1 |
20090088738 | Guerra et al. | Apr 2009 | A1 |
20090088739 | Hushka et al. | Apr 2009 | A1 |
20090088740 | Guerra et al. | Apr 2009 | A1 |
20090088741 | Hushka et al. | Apr 2009 | A1 |
20090088744 | Townsend | Apr 2009 | A1 |
20090088745 | Hushka et al. | Apr 2009 | A1 |
20090088746 | Hushka et al. | Apr 2009 | A1 |
20090088747 | Hushka et al. | Apr 2009 | A1 |
20090088748 | Guerra et al. | Apr 2009 | A1 |
20090088749 | Hushka et al. | Apr 2009 | A1 |
20090088750 | Hushka et al. | Apr 2009 | A1 |
20090112206 | Dumbauld et al. | Apr 2009 | A1 |
20090131934 | Odom et al. | May 2009 | A1 |
20090149853 | Shields et al. | Jun 2009 | A1 |
20090149854 | Cunningham et al. | Jun 2009 | A1 |
20090171350 | Dycus et al. | Jul 2009 | A1 |
20090171353 | Johnson et al. | Jul 2009 | A1 |
20090182327 | Unger | Jul 2009 | A1 |
20090187188 | Guerra et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
2104423 | Feb 1994 | CA |
2415263 | Oct 1975 | DE |
2514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
3612646 | Apr 1987 | DE |
8712328 | Mar 1988 | DE |
4303882 | Aug 1994 | DE |
4403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
19738457 | Jan 2009 | DE |
0364216 | Apr 1990 | EP |
0467501 | Jan 1992 | EP |
0518230 | Dec 1992 | EP |
0 541 930 | May 1993 | EP |
0572131 | Dec 1993 | EP |
0584787 | Mar 1994 | EP |
0589453 | Mar 1994 | EP |
0589555 | Mar 1994 | EP |
0623316 | Nov 1994 | EP |
0624348 | Nov 1994 | EP |
0650701 | May 1995 | EP |
0694290 | Mar 1996 | EP |
0717966 | Jun 1996 | EP |
0754437 | Mar 1997 | EP |
0517243 | Sep 1997 | EP |
0853922 | Jul 1998 | EP |
0875209 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0887046 | Jan 1999 | EP |
0923907 | Jun 1999 | EP |
0986990 | Mar 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1025807 | Oct 2000 | EP |
1034746 | Oct 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1082944 | Mar 2001 | EP |
1159926 | Dec 2001 | EP |
1177771 | Feb 2002 | EP |
1301135 | Apr 2003 | EP |
1330991 | Jul 2003 | EP |
1486177 | Jun 2004 | EP |
1472984 | Nov 2004 | EP |
0774232 | Jan 2005 | EP |
1527747 | May 2005 | EP |
1530952 | May 2005 | EP |
1532932 | May 2005 | EP |
1535581 | Jun 2005 | EP |
1609430 | Dec 2005 | EP |
1632192 | Mar 2006 | EP |
1642543 | Apr 2006 | EP |
1645238 | Apr 2006 | EP |
1645240 | Apr 2006 | EP |
1649821 | Apr 2006 | EP |
1707143 | Oct 2006 | EP |
1769765 | Apr 2007 | EP |
1769766 | Apr 2007 | EP |
1929970 | Jun 2008 | EP |
1683496 | Dec 2008 | EP |
623316 | May 1949 | GB |
1490585 | Nov 1977 | GB |
2214430 | Jun 1989 | GB |
2213416 | Aug 1989 | GB |
501068 | Sep 1984 | JP |
502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
5-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09010223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
401367 | Nov 1974 | SU |
WO8900757 | Jan 1989 | WO |
WO 9204873 | Apr 1992 | WO |
WO 9206642 | Apr 1992 | WO |
WO 9321845 | Nov 1993 | WO |
WO 9408524 | Apr 1994 | WO |
WO9420025 | Sep 1994 | WO |
WO 9502369 | Jan 1995 | WO |
WO9507662 | Mar 1995 | WO |
WO 9507662 | Mar 1995 | WO |
WO9515124 | Jun 1995 | WO |
WO9605776 | Feb 1996 | WO |
WO 9622056 | Jul 1996 | WO |
WO 9613218 | Sep 1996 | WO |
WO 9700646 | Jan 1997 | WO |
WO 9700647 | Jan 1997 | WO |
WO9710764 | Mar 1997 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9923933 | May 1999 | WO |
WO 9940857 | Aug 1999 | WO |
WO 9940861 | Aug 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 9966850 | Dec 1999 | WO |
WO 9966850 | Dec 1999 | WO |
WO 0024330 | May 2000 | WO |
WO 0024331 | May 2000 | WO |
WO0024331 | May 2000 | WO |
WO 0036986 | Jun 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO0047124 | Aug 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0117448 | Mar 2001 | WO |
WO 0154604 | Aug 2001 | WO |
WO0207627 | Jan 2002 | WO |
WO 0207627 | Jan 2002 | WO |
WO 02067798 | Sep 2002 | WO |
WO 02080783 | Oct 2002 | WO |
WO02080783 | Oct 2002 | WO |
WO02080784 | Oct 2002 | WO |
WO 02080784 | Oct 2002 | WO |
WO02080785 | Oct 2002 | WO |
WO 02080785 | Oct 2002 | WO |
WO 02080786 | Oct 2002 | WO |
WO02080786 | Oct 2002 | WO |
WO02080793 | Oct 2002 | WO |
WO 02080793 | Oct 2002 | WO |
WO02080794 | Oct 2002 | WO |
WO 02080794 | Oct 2002 | WO |
WO 02080795 | Oct 2002 | WO |
WO 02080796 | Oct 2002 | WO |
WO 02080796 | Oct 2002 | WO |
WO02080797 | Oct 2002 | WO |
WO 02080797 | Oct 2002 | WO |
WO 02080798 | Oct 2002 | WO |
WO 02080798 | Oct 2002 | WO |
WO 02080799 | Oct 2002 | WO |
WO 02081170 | Oct 2002 | WO |
WO02081170 | Oct 2002 | WO |
WO 03061500 | Jul 2003 | WO |
WO 03090630 | Nov 2003 | WO |
WO 03101311 | Dec 2003 | WO |
WO 2004032776 | Apr 2004 | WO |
WO2004032777 | Apr 2004 | WO |
WO 2004032777 | Apr 2004 | WO |
WO 2004052221 | Jun 2004 | WO |
WO 2004073488 | Sep 2004 | WO |
WO2004073490 | Sep 2004 | WO |
WO 2004073490 | Sep 2004 | WO |
WO2004073753 | Sep 2004 | WO |
WO 2004082495 | Sep 2004 | WO |
WO 2004082495 | Sep 2004 | WO |
WO 2004098383 | Nov 2004 | WO |
WO 2004103156 | Dec 2004 | WO |
WO 2005004734 | Jan 2005 | WO |
WO2005004735 | Jan 2005 | WO |
WO 2005110264 | Nov 2005 | WO |
WO 2008045348 | Apr 2008 | WO |
WO 2008045350 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20050154387 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60523387 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10873860 | Jun 2004 | US |
Child | 10962116 | US |