The present application claims priority from Japanese application P2017-163902 filed on Aug. 29, 2017, the content of which is hereby incorporated by reference into this application.
The present disclosure relates to an opening and closing device for a fuel tank.
In an opening and closing device for a fuel tank conventionally known, a fuel path is opened in response to insertion of a filling nozzle in a period of supply of liquid fuel (hereinafter called a fuel filling period) into a fuel tank in a vehicle. In a non-filling period in which the liquid fuel is not supplied, the fuel path is closed. In such an opening and closing device, a valve element itself closing the fuel path in the non-filling period or the interior of the valve element is required to have a tank inner pressure adjusting part for ventilation. However, forming a simple ventilation path adversely causes a risk of entry of water such as rainwater into an insertion path for insertion of the filling nozzle. A drainage path configuration responsive to this issue is suggested in Japanese Patent Application Publication No. 2014-69618, for example. This drainage path configuration includes a drainage path connecting the insertion path and the outside and this drainage path is configured as a labyrinth, thereby preventing entry of dust, etc. while ensuring air permeability in the non-filling period.
A demand for minimizing discharge of fuel to the outside in the fuel filling period has newly been made in recent years. In the opening and closing device described in the foregoing patent document, the drainage path is used for discharge of fuel. In this usage, if fuel overflows into the insertion path in the fuel filling period, it becomes hard to prevent the overflowing fuel from being discharged to the outside. This has caused a demand for an opening and closing device capable of preventing or reducing discharge of fuel in the fuel filling period while ensuring air permeability in the non-filling period.
The present disclosure has been made to solve at least some of the foregoing problems and is feasible in the following aspects.
(1) According to one aspect of the present disclosure, an opening and closing device for a fuel tank is provided. The opening and closing device for a fuel tank comprises: a path forming part that forms a fuel path along which supplied liquid fuel is guided to the fuel tank; a first valve mechanism arranged at the path forming part for opening and closing a filling opening of the fuel path; a second valve mechanism arranged at the path forming part to be closer to a fuel tank side than the first valve mechanism, the second valve mechanism opening and closing an insertion path for a fuel nozzle at the end of the insertion path in the most upstream area of the fuel path using an opening and closing member; and a ventilation mechanism that encourages passage of outside air into the insertion path. The path forming part includes: an insertion path forming part that defines the insertion path in the most upstream area of the fuel path, and forms an insertion path communication hole communicating with the insertion path on an extension line of a direction in which the first valve mechanism moves during operation of opening the first valve mechanism; and a surrounding part that surrounds the insertion path forming part from outside with a gap left between the surrounding part and the insertion path forming part, and includes an outside air passage hole formed to make the gap communicate with outside air. In a non-filling situation in which the first valve mechanism closes the filling opening, the ventilation mechanism encourages passage of air between the insertion path communication hole and the outside air passage hole through the gap. In a filling situation in which the fuel nozzle makes the first valve mechanism open the filling opening, the ventilation mechanism interrupts passage of air between the insertion path communication hole and the outside air passage hole.
In the opening and closing device for a fuel tank of this aspect, in the non-filling situation in which the first valve mechanism closes the filling opening, passage of air between the insertion path communication hole and the outside air passage hole is encouraged to ensure the performance of passing air into the insertion path. In the opening and closing device for a fuel tank of this aspect, in the filling situation in which the fuel nozzle makes the first valve mechanism open the filling opening, passage of air between the insertion path communication hole and the outside air passage hole is interrupted. Further, in response to insertion of the filling nozzle, the second valve mechanism opens the insertion path at the end of the insertion path. In the filling situation, liquid fuel supplied from the filling nozzle may overflow into the insertion path. In this state, passage of air between the insertion path communication hole and the outside air passage hole is interrupted, so that the overflowing liquid fuel once stays in the insertion path and then flows from the insertion path into the fuel path. In this way, the opening and closing device for a fuel tank of this aspect is allowed to prevent discharge of the overflowing liquid fuel to the outside through the insertion path communication hole in the fuel filling situation, or reduce a degree of discharge of the liquid fluid.
(2) In the opening and closing device for a fuel tank of the foregoing aspect, the second valve mechanism may include a pressure adjusting mechanism provided at the opening and closing member. In the non-filling situation, if pressure in the fuel path downstream from the opening and closing member is higher than pressure in the insertion path upstream from the opening and closing member, the pressure adjusting mechanism may encourage passage of air from the fuel path downstream from the opening and closing member into the insertion path. This allows reduction in pressure in the fuel path downstream from the opening and closing member. Further, gas of liquid fuel having flowed from the fuel path downstream from the opening and closing member into the insertion path is allowed to be emitted to outside air through the insertion path communication hole.
(3) In the opening and closing device for a fuel tank of the foregoing aspect, in the non-filling situation, if pressure in the fuel path downstream from the opening and closing member becomes lower than pressure in the insertion path upstream from the opening and closing member, the second valve mechanism may drive the opening and closing member so as to open the insertion path. This makes it possible to resolve or reduce the likelihood of generation of what is called a negative pressure in the fuel path downstream from the opening and closing member, eventually, in the fuel tank to which this path is connected in the non-filling situation.
(4) In the opening and closing device for a fuel tank of the foregoing aspect, the ventilation mechanism may include an on-off valve to be driven in conjunction with operation for opening and closing the filling opening by the first valve mechanism, and the on-off valve may close the insertion path communication hole in the filling situation, and open the insertion path communication hole in the non-filling situation. By doing so, by closing the insertion path communication hole using the on-off valve working in conjunction with the operation for opening and closing the filling opening by the first valve mechanism, discharge of overflowing liquid fuel to the outside in the filling situation is reduced with higher accuracy.
(5) in the opening and closing device for a fuel tank of the foregoing aspect, the on-off valve may include an elastic deflection part, and may open and close the insertion path communication hole with the elastic deflection part. By doing so, the deformation of the elastic deflection part is used for absorbing variations in the position of the on-off valve to allow the insertion path communication hole to he closed with higher accuracy
(6) In the opening and closing device for a fuel tank of the foregoing aspect, while the path forming part is mounted in a filling room, the insertion path communication hole may be located above the outside air passage hole in the vertical direction. This increases a gap from the second valve mechanism to the insertion path communication hole. Thus, even if liquid fuel overflows in large quantities into the insertion path in the fuel filling period, discharge of the overflowing liquid fuel to the outside is still reduced with higher accuracy.
(7) In the opening and closing device for a fuel tank of the foregoing aspect, the outside air passage hole may be located at a position shifted from the insertion path communication hole around an axis in the insertion path. This allows the gap between the insertion path forming part and the surrounding part for encouraging passage of air between the insertion path communication hole and the outside air passage hole to be formed into a bent path or a labyrinth configuration. This makes it possible to reduce mixture of impurities such as dust or dirt during passage of air into the insertion path in the non-filling situation.
(8) In the opening and closing device for a fuel tank of the foregoing aspect, the insertion path forming part may form a liquid-tight region between the insertion path forming part and the surrounding part, the liquid-tight region surrounding the opening and closing member of the second valve mechanism in a liquid-tight manner from a side of the insertion path. The surrounding part may include the outside air passage hole communicating with the liquid-tight region, and an opening part through which the liquid-tight region is opened to outside air at a low-level position in the vertical direction while the path forming part is mounted in a filling room. This makes it possible to discharge water having entered through the outside air passage hole by causing the water to stay in the liquid-tight region, and then discharging the water through the opening part to the outside.
(9) In the opening and closing device for a fuel tank of the foregoing aspect, the outside air passage hole may have a smaller diameter than the insertion path communication hole, and may be formed at the surrounding part along the axis of the insertion path communication hole. The ventilation mechanism may include an on-off valve to be driven in conjunction with operation for opening and closing the filling opening by the first valve mechanism and having a size that allows the on-off valve to pass through the insertion path communication hole. In the filling situation, the on-off valve may pass through the insertion path communication hole to close the outside air passage hole. In the non-filling situation, the on-off valve may open the insertion path communication hole and the outside air passage hole. By doing so, by closing the outside air passage hole using the on-off valve working in conjunction with the operation for opening and closing the filling opening using the first valve mechanism, discharge of overflowing liquid fuel to the outside in the filling situation is reduced with higher accuracy.
(10) In the opening and closing device for a fuel tank of the foregoing aspect, the on-off valve of the ventilation mechanism may be fitted as a part of at least one of the first valve mechanism and the insertion path forming part. This allows the insertion path communication hole or the outside air passage hole to be opened and closed using the fitted on-off valve.
(11) In the opening and closing device for a fuel tank of the foregoing aspect, the on-off valve of the ventilation mechanism may be fitted as a part of the first valve mechanism by being held by a valve support member. This allows the insertion path communication hole or the outside air passage hole to be opened and closed using the on-off valve fitted as a part of the first valve mechanism.
(12) In the opening and closing device for a fuel tank of the foregoing aspect, the valve support member may have elasticity. By doing so, the deflection of the valve support member becomes available for ensuring a closed state of the insertion path communication hole or the outside air passage hole produced by the on-off valve fitted as a part of the first valve mechanism. This increases part accuracy or a degree of freedom in assembly clearance of each part.
(13) In the opening and closing device for a fuel tank of the foregoing aspect, the on-off valve of the ventilation mechanism may be fitted as a part of the insertion path forming part by being held by a valve support member. This allows the insertion path communication hole or the outside air passage hole to be opened and closed using the on-off valve fitted as a part of the insertion path forming part.
(14) In the opening and closing device for a fuel tank of the foregoing aspect, the valve support member may have elasticity. By doing so, the deflection of the valve support member becomes available for ensuring a closed state of the insertion path communication hole or the outside air passage hole produced by the on-off valve fitted as a part of the insertion path forming part. This increases part accuracy or a degree of freedom in assembly clearance of a part.
The present disclosure is feasible in various aspects other than the opening and closing device for a fuel tank. These aspect include a filling system including the opening and closing device for a fuel tank, a vehicle equipped with the opening and closing device for a fuel tank, and a method of manufacturing the opening and closing device for a fuel tank, for example.
The filler neck 100 is connected to the fuel tank FT through the filler pipe FP and the fuel vapor tube NT. The filler neck 100 guides liquid fuel such as gasoline from the filling nozzle FN inserted into the filling opening 104 to the fuel tank FT connected to the filler neck 100 through the filler pipe FP. The filler pipe FP is a resin tube having bellows structures formed at two locations, for example. The filler pipe FP expands and contracts, and is bendable in a certain range. The filler pipe FP is connected to the fuel tank FT through the check valve TV. Fuel ejected from the filling nozzle FN inserted into the filling opening 104 passes through a fuel path described later formed by the filler neck 100, passes through the filler pipe FP, and is then guided to the fuel tank FT through the check valve TV. The check valve TV prevents backflow of fuel from the fuel tank FT into the filler pipe FP.
The fuel vapor tube NT has one end connected to the fuel tank FT through the gas emission valve BV, and an opposite end connected to the fuel vapor port 102 projecting from the filler neck 100. The gas emission valve BV functions as a joint for connecting the fuel vapor tube NT to the fuel tank FT. Air inside the tank containing fuel vapor flows from the gas emission valve BV into the fuel vapor tube NT. In a period of supplying fuel from the filling nozzle FN, the fuel vapor passes through the filler pipe FP and is guided to the fuel tank FT together with the supplied fuel. The filler neck 100 will be described in detail below.
As shown in
The inner body 22 includes a thin seal piece 22a having an annular shape formed at the lower end of the inner body 22. The seal piece 22a is fitted to the under body 23 to form the liquid-tight region 40 between the inner body 22 and the outer body 21. The liquid-tight region 40 surrounds a fuel tank side opening and closing member 31 of the second valve mechanism 30 described later in a liquid-tight manner from a side of the insertion path 100Pn. An outside air passage hole 53 formed at the outer body 21 communicates with the liquid-tight region 40 through a communication part 55. While the filler neck 100 is mounted in the filling room FR (see
The first valve mechanism 10 is arranged at the outer body 21 of the path forming part 20, and opens and closes the filling opening 104 of the fuel path 100P. Specifically, the first valve mechanism 10 opens the filling opening 104 in response to insertion of the filling nozzle FN (see
The insertion side spring 12 rotates in a range of predetermined angles about the rotary axis 12S around which the fixed end 12L is wound. The insertion side spring 12 biases the insertion side opening and closing member 11 in a direction of closing the filling opening 104 of the fuel path 100P. The insertion side spring 12 is arranged in such a manner that, when the filler neck 100 is installed on a vehicle in a tilted posture shown in
The second valve mechanism 30 is arranged at the under body 23 of the path forming part 20 to he closer to the fuel tank side than the first valve mechanism 10. The second valve mechanism 30 opens and closes the insertion path 100Pn at the end of the insertion path 100Pn in the most upstream area of the fuel path 100P. The second valve mechanism 30 includes the fuel tank side opening and closing member 31 as a valve element for opening and closing the insertion path 100Pn, a fuel tank side spring 32 fixed to the path forming part 20 and biasing the fuel tank side opening and closing member 31 in a direction of closing the fuel tank side opening and closing member 31, and a pressure adjusting mechanism 33. The fuel tank side opening and closing member 31 is a flap valve that prevents backflow of liquid fuel from the fuel tank side toward the insertion side. The fuel tank side spring 32 is fixed through a fixed end 32L wound like a coiled spring around a rotary axis 32S fitted to the path forming part 20. The fuel tank side spring 32 is fixed to the fuel side opening and closing member 31 at a free end opposite the fixed end 32L. The fuel tank side spring 32 rotates in a range of predetermined angles about the rotary axis 32S around which the fixed end 32L is wound. The fuel tank side spring 32 biases the fuel tank side opening and closing member 31 in a direction of closing the insertion path 100Pn. The fuel tank side spring 32 is arranged in such a manner that, when the filler neck 100 is installed on a vehicle, the fixed end 32L is located above the free end in the direction of gravitational force while the second valve mechanism 30 is closed. In other words, like the insertion side spring 12 of the first valve mechanism 10, the fuel tank side spring 32 is arranged to be located above the axis OL in the direction of gravitational force.
The pressure adjusting mechanism 33 mounted on the second valve mechanism 30 includes a spring mount 34, a valve element 35, and a spring 36. The spring 36 is mounted between the spring mount 34 and the valve element 35 integrated with the fuel tank side opening and closing member 31, and biases the valve element 35 toward the fuel tank side opening and closing member 31. In this way, in a normal state, the pressure adjusting mechanism 33 closes an opening 38 at the fuel tank side opening and closing member 31 using the valve element 35.
The pressure state shown in
The biasing force of the fuel tank side spring 32 is adjusted to make the second valve mechanism 30 further fulfill a negative pressure adjusting function as follows.
The ventilation mechanism 50 is a valve mechanism for encouraging passage of outside air into the insertion path 100Pn. The ventilation mechanism 50 includes the insertion path communication hole 51, an on-off valve 52, the outside air passage hole 53, and a ventilation path 54. The insertion path communication hole 51 is formed at the inner body 22 at a position near the filling opening 104, and communicates with the insertion path 100Pn. While the path forming part 20 of the filler neck 100 is mounted in a tilted posture shown in
The on-off valve 52 is made of oil-resistant elastic rubber such as nitrile rubber, butyl rubber, or silicone rubber, for example. As shown in
In the foregoing filler neck 100 functioning as the opening and closing device for a fuel tank of this embodiment, in the non-filling situation in which the first valve mechanism 10 closes the filling opening 104, the on-off valve 52 of the ventilation mechanism 50 opens the insertion path communication hole 51 communicating with the insertion path 100Pn, as shown in
In the filler neck 100 of this embodiment, the on-off valve 52 is made of an oil-resistant rubber material to make the shaft 52b and the horn-like valve tip 52c supported by the shaft 52b function as the elastic deflection part. The deflections of the shapes of these parts are used for absorbing variations in the position of the on-off valve 52 to allow the insertion path communication hole 51 to be closed preferably with high accuracy. This effectively reduces discharge of liquid fluid to the outside. Even if the on-off valve 52 becomes incapable of deflecting sufficiently due to the deterioration of the rubber material, for example, to prohibit the on-off valve 52 from closing the insertion path communication hole 51 completely; the deformations by deflections of the shapes of the shaft 52b and the valve tip 52c still function to reduce a degree of discharge of the liquid fluid to the outside.
While the path forming part 20 is mounted in the filling room FR as shown in
In the filler neck 100 of this embodiment, the inner body 22 has the insertion path communication hole 51, and the outer body 21 has the outside air passage hole 53 communicating with the insertion path communication hole 51 through the ventilation path 54. Further, the outside air passage hole 53 is located at a position shifted from the insertion path communication hole 51 around the axis OL in the insertion path 100Pn. Thus, in the filler neck 100 of this embodiment, the ventilation path 54 for encouraging passage of air between the insertion path communication hole 51 and the outside air passage hole 53 is allowed to be formed into a bent path or a labyrinth configuration. This makes it possible to reduce mixture of impurities such as dust or dirt during passage of air into the insertion path 100Pn in the non-filling period, and further reduce entry of water during vehicle wash under high pressure, for example.
In the filler neck 100 of this embodiment, the on-off valve 52 for opening and closing the insertion path communication hole 51 is fitted as a part of the insertion side opening and closing member 11 of the first valve mechanism 10. This allows the insertion path communication hole 51 to be closed directly and simply by the driving of the insertion side opening and closing member 11 for opening the filling opening 104.
As shown in
Like the foregoing filler neck 100 of the first embodiment, the filler neck 100A functioning as an opening and closing device for a fuel tank of the second embodiment is capable of preventing or reducing discharge of liquid fuel to the outside in the fuel filling period while ensuring air permeability in the insertion path 100Pn in the non-filling situation.
As shown in
Like the foregoing filler neck 100 of the first embodiment, the filler neck 100B functioning as an opening and closing device for a fuel tank of the third embodiment is capable of preventing or reducing discharge of liquid fuel to the outside in the fuel filling period while ensuring air permeability in the insertion path 100Pn in the non-filling period.
In the filler neck 100B of the third embodiment, the arm plate 24 holding the on-off valve 52 is rotatable in the long hole 22b as a place for mounting the arm plate 24. Thus, in the filler neck 100B, the rotation of the arm plate 24 becomes available for ensuring a closed state of the insertion path communication hole 51 produced by the on-off valve 52 fitted as a part of the inner body 22. This increases the accuracy of each part such as the insertion side opening and closing member 11 or a degree of freedom in assembly clearance of each part, thereby achieving reduction in manufacturing cost and cost of assembly adjustment. Additionally, the arm plate 24 rotates while the rotary axis 24a moves along the long hole 22b and parallel to the axis of the insertion path communication hole 51. This provides uniformity to a closed state of the insertion path communication hole 51 (sealing performance) produced by the on-off valve 52.
As shown in
Like the foregoing filler neck 100 of the first embodiment, the filler neck 100C functioning as an opening and closing device for a fuel tank of the fourth embodiment is capable of preventing or reducing discharge of liquid fuel to the outside in the fuel filling period while ensuring air permeability in the insertion path 100Pn in the non-filling period.
In the filler neck 100C of the fourth embodiment, the on-off valve 52 is held by the spring plate 17 having flexibility. Thus, in the filler neck 100C, the deflection of the spring plate 17 becomes available for ensuring a closed state of the insertion path communication hole 51 produced by the on-off valve 52 fitted as a part of the insertion side opening and closing member 11. This increases the accuracy of each part such as the insertion side opening and closing member 11 or a degree of freedom in assembly clearance of each part, thereby achieving reduction in manufacturing cost and cost of assembly adjustment.
As shown in
Like the foregoing filler neck 100 of the first embodiment, the filler neck 100D functioning as an opening and closing device for a fuel tank of the fifth embodiment is capable of preventing or reducing discharge of liquid fuel to the outside in the fuel filling period while ensuring air permeability in the insertion path 100Pn in the non-filling period.
In the filler neck 100D of the fifth embodiment, the on-off valve 52 is held by the spring plate 25 having flexibility. Thus, in the filler neck 100D, the deflection of the spring plate 25 becomes available for ensuring a closed state of the insertion path communication hole 51 produced by the on-off valve 52 fitted as a part of the inner body 22. This increases the accuracy of each part such as the insertion side opening and closing member 11 or a degree of freedom in assembly clearance of each part, thereby achieving reduction in manufacturing cost and cost of assembly adjustment.
In the filler neck 100E of the sixth embodiment, the seal piece 22a forms the liquid-tight region 40 between the inner body 22 and the outer body 21, and the liquid-tight region 40 surrounds the fuel tank side opening and closing member 31 of the second valve mechanism 30 in a liquid-tight manner from a side of the insertion path 100Pn, as described above. Further, the liquid-tight region 40 communicates with the outside air passage hole 53 at the outer body 21 through the communication part 55. While the path forming part 20 is mounted in the filling room FR (see
The present disclosure is not limited to the above-described embodiments, examples, or modifications but is feasible in various configurations within a range not deviating from the substance of the invention. For example, technical features in the embodiments, those in the examples, or those in the modifications corresponding to technical features in each aspect described in SUMMARY may be replaced or combined, where appropriate, with the intention of solving some or all of the foregoing problems or achieving some or all of the foregoing effects. Unless being described as absolute necessities in this specification, these technical features may be deleted, where appropriate.
In each of the filler necks 100 to 100E of the corresponding embodiments described above, the on-off valve 52 has a horn-like shape. Alternatively, the on-off valve 52 may be an on-off valve made of an oil-resistant rubber material formed into a flat-plate shape.
In the foregoing embodiments, the second valve mechanism 30 has the positive pressure adjusting function fulfilled by the pressure adjusting mechanism 33, and the negative pressure adjusting function fulfilled through adjustment of the biasing force of the fuel tank side spring 32. Alternatively, the second valve mechanism 30 may function only to open and close the insertion path 100Pn. Still alternatively, the second valve mechanism 30 may have either the positive pressure adjusting function or the negative pressure adjusting function.
In the foregoing embodiments, while the path forming part 20 is mounted in the filling room FR, the insertion path communication hole 51 is located above the outside air passage hole 53 in the vertical direction. Alternatively, the insertion path communication hole 51 may be located below the outside air passage hole 53 in the vertical direction.
In the foregoing embodiments, the outside air passage hole 53 is located at a position shifted from the insertion path communication hole 51 around, the axis OL in the insertion path 100Pn. Alternatively, the outside air passage hole 53 may be aligned with the insertion path communication hole 51 along the axis OL in the insertion path 100Pn.
In the foregoing embodiments, the on-off valve 52 is provided at the insertion side opening and closing member 11 of the first valve mechanism 10 or the inner body 22 of the path forming part 20. Alternatively, the on-off valve 52 may be held by a telescopic support member extending from the inner wall of the outer body 21 and penetrating the insertion path communication hole 51.
Number | Date | Country | Kind |
---|---|---|---|
2017-163902 | Aug 2017 | JP | national |