The described embodiments relate generally to shrink-wrap films used for packaged products. More particularly, the embodiments relate to non-crosslinked polyolefin shrink-wrap films and doped crosslinked polyolefin films.
Many consumer products, including their packaging, are wrapped in a thin film that can protect the product from damage during shipping and discourage tampering with the product before it is sold. The thin film may be the customer's first interaction with the product.
Various embodiments are disclosed that relate to polyolefin (POF) shrink-wrap film (e.g., non-crosslinked POF shrink-wrap film or doped crosslinked-POF) and methods of shrink wrapping products with such films. The POF films can be removed by a customer by pulling a tab that propagates a pair of straight, parallel tears along the length of an underlying box, package, or product.
In some embodiments, shrink-wrapped packaged products as described herein may be a packaged in a box that is shrink wrapped with a non-crosslinked POF shrink-wrap film. The shrink-wrap film may include a first cut and a second cut in the film, each oriented in the machine direction of the shrink-wrap film. A third cut in the film may be oriented perpendicular to the machine direction and may connect to and extend between the first and second cuts. A tab may be affixed to the film, extending between the first and second cuts and overlying the first, second, and third cuts. When the tab is pulled, a tear forms at each of the first and second cuts and both tears propagate in straight, parallel lines in the machine direction of the shrink-wrap film.
In some embodiments, shrink-wrapped packaged products as described herein may be packaged in a packaging container that is shrink-wrapped with a POF shrink-wrap film that that covers the packaging container. The shrink-wrap film may include a pair of tear-initiating cuts. In some embodiments, the tear-initiating cuts are each disposed adjacent to an edge of the packaging container. Each tear-initiating cut may extend in a machine direction of the shrink-wrap film. A connecting cut extends between and connects to each of the pair of tear-initiating cuts. In response to a force applied to the shrink-wrap film between the tear-initiating cuts in a direction away from the packaging container, the shrink-wrap film tears from the pair of tear-initiating cuts to create a pair of parallel tear paths extending in the machine direction of the shrink-wrap film.
In some embodiments, methods of shrink-wrapping a box include wrapping the box with a POF film, and then heating the film to shrink wrap the film around the box, which creates high-strain areas in the machine direction of the film at edges of the box. The method also includes cutting two tear-initiating cuts through the film. When a non-crosslinked POF is used, the tear-initiating cuts may be oriented in the machine direction of the film and within the high-strain areas. When a doped crosslinked POF is used, the tear-initiating cuts may be oriented in the machine direction of the film and/or in perpendicular to the machine direction of the film. After cutting, the method includes applying a tab to the film, covering the tear-initiating cuts. The tear-initiating cuts propagate linear, parallel tears in the machine direction of the film when the tab is pulled.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
Many consumer products, including their packaging, are wrapped in a thin, clear, shrink-wrap film that can protect the product or the packaging from damage during shipping and inhibit tampering with the product before it is sold. A customer's first experience with a product may be removing this film. Existing methods for shrink wrapping an item use substances, for example PET (polyethylene terephthalate), that are crinkly and hard, which makes them noisy and difficult to open. Other methods for shrink wrapping use substances, such as OPP (oriented polypropylene), that are less noisy and softer than PET but are very costly and use more plastic than POF. Additionally, many of these films may require the use of a tool, such as scissors, a key—or even a customer's fingernails—to remove the shrink-wrap film. Some of these films can be perforated to ease the opening process, but tearing the perforation still creates a noisy, repeated popping sound and is prone to failure if the tear paths deviate from the perforations. Additionally, the process of creating the perforations in the film can sometimes cause damage the underlying package, since shrink-wrap film is in such close contact with its underlying packaging.
To improve a customer's experience when removing a product's outer film, the present inventors have uncovered and leveraged unexpected properties of films with a strong linear characteristic, such as an oriented polymer with no crosslinks (e.g., non-crosslinked polyolefin (POF)) and doped crosslinked films (e.g., crosslinked POF including a tear-alignment additive). As discussed in detail below, such films may be applied and processed in a way that makes them easily removed from the packaging in a clean, controlled manner without tools and without perforations. For example, a non-crosslinked POF film or a doped crosslinked POF film applied in accordance with embodiments of the invention allows a customer to easily separate a strip or panel of the film along straight tear lines, thereby removing the film in a clean, continuous manner with little effort, while providing a consistent tactile feedback with minimal noise. POF is less noisy than PET, and thus will not crinkle as much. Further, by not making use of a perforation as would be needed to control tear paths in other materials, such non-crosslinked POF and doped crosslinked POF do not present the typical noisy, grating sound attendant to tearing along a perforation. These polyolefin films also provide a less expensive alternative to OPP.
To make the shrink-wrap film easy to open, the film may include a tab and a series of cuts in the film that create a cut geometry that acts as a guide to start the tearing of the film. A tab may be positioned to cover the cut geometry and to provide a place for a customer to pull to remove the shrink-wrap film. When using non-crosslinked POF, when the film is wrapped around the packaging a high-strain area is formed at the edges of the package. The inventors have discovered that the high-strain area in non-crosslinked POF promotes the propagation of tear paths in straight lines from the cut geometry and along the length of the package when the intended tear line direction coincides with the machine direction of the POF film.
In some embodiments, the shrink-wrap film may be a crosslinked POF that has been doped with a tear-alignment additive that causes tears to propagate in straight lines. Like the non-crosslinked POF, the doped crosslinked POF may be wrapped around the packaging, and a series of cuts in the film may create a cut geometry. The doped crosslinked POF, however, is tension independent and will tear in straight lines both in the direction of the machine direction of the POF film and perpendicular to the machine direction of the POF film.
Thus, when either a non-crosslinked POF or a doped crosslinked POF is used to shrink-wrap a package, the customer can easily remove the shrink wrap in a controlled manner with less noise and effort by simply pulling the film or the tab and tearing in straight lines without the use of perforations or other structure aiding the removal process.
Existing methods for shrink-wrapping a package use various types of film, such as polyethylene terephthalate (PET), oriented polypropylene (OPP), and traditional crosslinked polyolefin (POF) (e.g., crosslinked POF film that has not been doped with a tear-alignment additive). These films have properties that make them conducive to use in the context of consumer packaging. For example, PET has high tensile strength, which allows for the use of thin films, and it is relatively inexpensive. OPP is less noisy than PET, and it is strong and stable in a wide range of temperatures. And traditional crosslinked POF has a high tensile strength, is durable, and is puncture resistant. However, each also has disadvantages that have been identified and overcome by the inventors. For example, PET is a stiff material that can be slippery when handled. Removal of the PET creates loud, crinkly noises as it is torn, cut, folded, or otherwise removed. OPP provides a less noisy alternative to PET, but OPP is relatively expensive. Because of the large number of consumer products that are manufactured and wrapped in a shrink-wrap film prior to being sold, at scale the expense of OPP can be a significant factor for use of OPP on consumer packaging. And as for traditional crosslinked POF, controlling tear paths can require noisy and unsightly perforations.
In many cases, shrink-wrapped packages are wrapped in film without any specific structure included for removing the film. In these cases, the customer may resort to use of a tool or significant force to remove the film. For example, a customer may use scissors, knives, or other tools to tear a hole into the film and start the removal process. In other cases, a customer may use a fingernail to break a hole in the film. Without tools or a sharp fingernail, the user is left with simply pulling film away from the box, which stretches the film until its breaking point, assuming that the customer is strong enough to do so. Once a customer has applied significant force and the film has been pulled and stretched enough, a hole or tear may form in the film that can start the removal process. Regardless whether the customer uses tools or a hand to remove the film, the customer's initial interaction with the packaging is marked by a noisy struggle to remove the film. So even though the film serves to protect underlying package, the film also provides an impediment to the customer reaching the contents of the package.
In some cases, to aid in the removal of the film, perforations are added to the shrink-wrap film. There are several disadvantages to perforations that may be negative to a high-end retailer or customer. For example, perforations alter the visual aspect of the packaging: a customer can see the perforations in the film, which distracts from the underlying package or box. Another disadvantage is the undesirable noise created when the customer removes the perforations by pulling and breaking the gaps in the perforations. With every advance in tearing or breaking of the perforations, a customer is met with a loud “pop” noise related to breaking the perforations, in addition to any noise created by the film itself due to crinkling, tearing, etc. Further, perforations can have a high failure rate, and once a tear path deviates from its perforation the tear strip can tear off entirely, leaving a customer with only a partially-opened package, left to figure out another way to get it open.
In addition to the undesirable user experience related to perforations, creating the perforations in the shrink-wrapped film presents numerous challenges. Creating the perforations requires the use of tools, such as knives, to cut the perforations in the film. But using such tools risks damage to the underlying box.
Some other existing opening techniques include films used for sealed bags (e.g., snack bags, potato chip bags, etc.) that include a small cut in one or more of the seals. These bags generally include two polymer films that are heat sealed together, and the heat-sealed portion includes a small cut that serves to break the seal. For example, a potato chip bag may have a small cut in the seal to help a customer tear through the seal at the cut to remove a corner of the bag to access the potato chips. Notwithstanding the material issues described above related to PET and OPP, these types of cuts still have many downsides, including the fact that two hands may be required to break the seal. The customer must use one hand of either side of the cut, then pull in opposite directions to break the seal and access the packaged product. These types of cuts also are not possible to use to open a single side of the packaging, and must be located through a sealed portion where multiple layers are sealed together, in order to maintain the integrity of the sealed interior. Additionally, these types of cuts not only propagate tears on opposite sides of the package, but they also produce multiple pieces of waste.
Traditional crosslinked POF films may be used as shrink-wrap films because crosslinked polymers exhibit increased tensile strength and improved durability. Other benefits of crosslinked POF film include increased puncture resistance (due to improved strength), strong seals at the seams of the shrink-wrap film, and ability to use thinner films without reduced strength. Traditional crosslinked POF films have been favored in the art because of these benefits, along with cosmetic benefits related POF. But when traditional crosslinked POF film is removed from a package (e.g., by tearing the film), the crosslink structure is strong enough to make tear lines unpredictable and not easy to control. To compensate for this unpredictability, the film can be removed using perforations to guide the tears, but perforations in traditional crosslinked POF film have the same downsides as the perforations discussed above related to PET and OPP.
In contrast, a non-crosslinked POF film as described herein can be used to shrink-wrap a box, product, or package, and the non-crosslinked POF shrink-wrap film can be easily removed without any perforations or underlying protective layers. By foregoing the crosslink structure, the underlying parallel paths of the POF are not as strongly connected to each other. The parallel paths extend in the machine direction of the POF film. This effectively creates lines of weakness extending in the machine direction, since the crosslinking structure that might otherwise be strengthening the film transverse to the machine direction is not present. Heat can be applied to shrink the shrink-wrap the film around a box, for example. And where the machine direction of the film coincides with a long corner forming an edge of the box, the film stretches around the corner, stretching the parallel POF structure transverse to its machine direction. This exacerbates the lines of weakness within a high-strain area of the film near the edge. Embodiments described herein leverage this combination of features to locate tear-initiating cuts within these high-strain areas, so that when the film is pulled, the cuts create parallel tear paths within these high-strain areas that propagate in parallel in the machine direction.
In some embodiments, crosslinked POF film may be used to similar effect as non-crosslinked POF film if it is doped with tear-alignment additives. The tear-alignment additives may be used in one or more doped interlayers between outer layers. The tear-alignment additives affect the properties of the crosslinked POF such that the crosslinked POF tears in straight lines parallel to and perpendicular to the machine direction and does not taper inward or exhibit the unpredictable tearing associated with traditional crosslinked POF. As used herein, doped crosslinked POF refers to crosslinked POF that includes a tear-alignment additive.
These and other embodiments are discussed below with reference to
The POF shrink-wrap film 300 can be removed by pulling tab 500. Pulling tab 500 applies force 710 to film 300 in a direction away from box 200 that initiates two tears (e.g., a first tear 310 and a second tear 320 shown in
First tear 310 and second tear 320 may be linear and parallel and propagate along the same side of box 200. As shown in
Shrink-wrap film 300 tears due to tear-initiating cuts in the film underneath the tab. The tear-initiating cuts are positioned to form a specific cut geometry that takes advantage of the above-discussed properties of non-crosslinked POF film and doped crosslinked POF film. For example,
Cut 400 can be formed of multiple cuts. For example, cut 400 can include three separate cuts, as shown in the detail view of
In some embodiments, as shown in
The cut geometry can be varied and have one or more cuts (e.g., 1 cut, 2 cuts, 3 cuts, 4 cuts, or 5 cuts). In some embodiments, cut 400 comprises a trapezoidal cut geometry. For example, first cut 410 may connect with a first end of third cut 430, but unlike the L-shaped cut at the connection point, the connection between first cut 410 and third cut 430 may connect to create a first obtuse angle. Second cut 420 similarly can connect with a second end of third cut 430 to create a second obtuse angle, in the opposite direction of the first obtuse angle. In some embodiments, cut 400 comprises a U-shaped cut geometry. For example, the U-shaped cut geometry may be a continuous curve from third cut 430 to first cut 410 and from third cut 430 to second cut 420. The cut geometry can comprise any geometric shape (e.g., trapezoidal, curved, straight, L-shaped, or any combination of those). In any case, regardless the size, shape, or orientation of the cut geometry, the cut geometry ensures that the tears (e.g., first tear 310 or second tear 320) initiate and propagate in straight lines down the box.
In some embodiments, film 300 includes one or more cuts on a second side of box 200. For example, as shown in
First tear 310 and second tear 320 tear along the edges of box 200 in straight, parallel lines. Especially, for non-crosslinked POF embodiments, this is in part due to high-strain areas that form near the edges of box 200 when film 300 is heated to shrink film 300 to box 200.
Adjacent polymer chains within these stretched high-strain areas 600 and 610 are under greater strain than in other areas of shrink-wrap film 300. When tab 500 is pulled, tears will propagate down the path of least resistance, which, due to the polymer structure aligning in the machine direction, will propagate the tears in machine direction 370. This is believed to be due to the fine crystallinity structure of non-crosslinked film, and low bond strength between polymer chains.
The general effect of the higher strain in shrink-wrap film 300 as it stretches around edges 202 and 204 is to help the tear paths stay straight, within the high-strain area. Specifically, as the tension in the high-strain area increases, the POF material in that area thins, and an increased force develops in the transverse direction towards the edge of the box. This force overrides any force due to transverse bonds of the polymer chains that would otherwise pull the tear paths toward each other. Thus, first tear 310 and second tear 320 follow straighter tear paths, guided by lines of weakness between adjacent polymer chains within high-strain areas 600 and 610.
Additionally, as the heating time of film 300 (discussed below) increases, the tension in the high-strain areas increases. A high-strain area of shrink-wrap film 300 is an area under sufficiently great strain as to guide tear paths parallel with machine direction 370 in the manner described herein. For example, a high-strain area at an edge of product package 100 may be an area under a strain that is greater than 125% of a strain in the shrink-wrap film at a position equidistant from the edge and an adjacent edge. In some embodiments, a high-strain area extending from an edge of box 200 has a width that extends between 1.5 mm and 6 mm from the edge.
Thus, the high-strain areas allow for the non-crosslinked POF (e.g., film 300) to easily tear along straight, parallel paths inside the high-strain areas and in the machine direction when a customer pulls tab 500. As discussed above, traditional crosslinked POF has typically been used in shrink-wrap application, but traditional crosslinked POF films are uncontrollable when torn without additional perforating cuts. As such, if a traditional crosslinked POF was torn as described related to non-crosslinked POF above, the tears would start at the pair of cuts, but then the center force would cause the tears to taper towards the center. This would bring the two tears together toward the center of box 200, forming a V-shape where the tear paths ultimately merge prematurely. This V-shape prevents the tears from extending continuously along the length of the box.
Further, as shown in
In some embodiments, film 300 can be a multilayered film and other layers may improve the properties of the non-crosslinked POF film. For example, the strength of the non-crosslinked POF film can be improved by using a multilayered film.
In some embodiments, a doped crosslinked POF (i.e., crosslinked POF that includes a tear-alignment additive) may be used instead of a non-crosslinked POF. The doped crosslinked POF may be used in a similar manner as the non-crosslinked POF embodiments described above. The tear-alignment additive may be part of one or more doped interlayers, or the additive may be incorporated within the film itself. In either case, the additive affects the properties of the crosslinked POF such that the straight tears can propagate in the machine direction or perpendicular to the machine direction of the doped crosslinked POF film without tapering or otherwise deviating from a straight line (e.g., as discussed above related to traditional crosslinked POF). For example the, additive may affect the crystallinity of the crosslinked POF to enable straight tears in the machine direction of the film or perpendicular to the machine direction of the film. In some embodiments, the doped crosslinked POF may include numerous layers (e.g., 3 layers, 5 layers, 7 layers, 10 layers, 15 layers, 20 layers, 25 layers, or 30 layers). One or more of the layers may be doped with the tear-alignment additive.
The doped crosslinked POF is tension independent, which means the doped crosslinked POF does not rely on the above-described high-strain areas for tearing straight and will tear straight in the machine direction or perpendicular to the machine direction independent of the strain at the location of the tear-initiating cuts. In some embodiments, the tear initiating cuts have a similar cut geometry as those discussed above related to non-crosslinked POF (e.g., as show
Because the doped crosslinked POF can tear straight not only in the machine direction, but also perpendicular to the machine direction, additional cut geometries are possible. For example, in some embodiments, the tear initiating cuts are oriented to form the geometry as shown in
Box 200 may be a packaged product shrink wrapped according to various methods. Box 200 may be wrapped with a non-crosslinked POF of a doped crosslinked POF. In some embodiments, the method of shrink-wrapping involves orienting the box so that its areas along which tear paths are intended to be created align with the machine direction (for non-crosslinked POF) and/or are perpendicular to the machine direction (for doped crosslinked POF), wrapping the box with the film, and heating the film to shrink the film. The film may be heated in an oven at a temperature between 120° C. and 150° C. (e.g., between 130° C. and 140° C.) for 10 seconds to 35 seconds (e.g., for 20 seconds to 25 seconds). The shrinking of the film creates the high-strain areas discussed above (e.g., first high-strain area 600 and second high-strain area 610) at the corners of the box.
Especially for non-crosslinked POF embodiments, the degree of strain within high-strain areas 600 and 610 can be influenced by focused application of heat to these areas during or as a separate operation from the shrink-wrap operation. For example, if higher strain is desired along corners of product package 100 or 120 than would be attendant to the normal heat-shrinking operation, focused blasts of hot air may be applied along these corners to thin the POF and increase the strain in these areas.
After the film has been heated to create a shrink-wrapped film around the box, a hot knife may be used to cut a series of cuts in the film. This cutting step may include applying a vacuum to an area of the film to pull that area and its surrounding area of the film away from contact with the box, extending a hot knife through the film to cut one or more cuts, then removing the vacuum so the film is released back in contact with the box. In some embodiments, the cutting step involves using the hot knife to cut a first cut, a second cut, and a third cut (e.g., cuts 410, 420, and 430 as shown in
Following the cutting step, a tab (e.g., tab 500 shown in
Once a product package has been prepared as described above, the product package may be sold by a retailer to a customer. The customer's interaction with the package starts with pulling tab 500. As the customer pulls tab 500, force is applied to the film away from box 200. Once sufficient force is applied, first gap 340 and second gap 350 break (see, e.g.,
After first gap 340 and second gap 350 break, as the customer continues to pull tab 500, first tear 310 and second tear 320 form in the machine direction of the film (e.g., machine direction 370 shown in
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application claims the benefit of U.S. Provisional Patent Application No. 62/665,393, filed May 1, 2018, and U.S. Provisional Patent Application No. 62/702,758, filed Jul. 24, 2018, each of which is incorporated herein in its entirety by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
3175752 | Stabenow | Mar 1965 | A |
3273302 | Walter | Sep 1966 | A |
3344975 | Stoker, Jr. | Oct 1967 | A |
3403840 | Howard | Oct 1968 | A |
3442436 | Kirby, Jr. | May 1969 | A |
4188443 | Mueller | Feb 1980 | A |
4781294 | Croce | Nov 1988 | A |
5067612 | Tsuchiya | Nov 1991 | A |
5375718 | Honma | Dec 1994 | A |
5423423 | Sato | Jun 1995 | A |
5518119 | Takahashi | May 1996 | A |
5556674 | Meilhon | Sep 1996 | A |
6006907 | Sato | Dec 1999 | A |
7216764 | Forman | May 2007 | B2 |
8342389 | Mills | Jan 2013 | B2 |
9561889 | Dayrit | Feb 2017 | B2 |
10189621 | Dayrit | Jan 2019 | B2 |
10202229 | Huerta | Feb 2019 | B2 |
20140231493 | Andersen et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1564772 | Apr 1980 | GB |
Number | Date | Country | |
---|---|---|---|
20190337672 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62702758 | Jul 2018 | US | |
62665393 | May 2018 | US |