The present invention relates to an opening device for spinning machines, especially open-end spinning machines, that is provided with a clothing wire or opening ring for individualizing fibers of a supplied sliver. In addition, the invention relates to a method of producing such an opening device.
It is necessary in the manufacture of yarns in certain work steps to separate the fibers to be processed from each other, that is, to open their composition with each other. It is necessary, for example, in other manufacturing steps, to align fibers as parallel to each other as possible. This procedure is called parallelization. The fibers to be processed enter into a mechanical contact with the processing devices during opening as well as during the parallelization of the fibers. As a consequence of the mechanical contact, a mechanical wear occurs on the devices that is, on the one hand, disadvantageous for the service life of the devices and, on the other hand, for the quality of the produced products. Such wear phenomena are especially noticeable in opening devices of open-end spinning machines wherein the opening rollers rotate at speeds of a few thousand rotations per minute. The projection or “cam” elements fastened on their circumference strike the fibers to be individualized at a high speed and accelerate them, while sharply abrasive forces act on the corresponding structural parts of the devices. One possibility of designing the cam elements consists in providing an opening roller with a plurality of needle elements that separate fibers, e.g., from a sliver at every rotation and entrain them. Another technical solution provides designing the cams in the form of a working surface with sawteeth. In this instance, clothing wires in particular have proven themselves that consist of a long metal wire from which the saw-toothed contour is stamped out. The wire produced in this manner is then fastened to the opening roller with a helical groove. Another solution provides designing the opening rollers in one piece. In this instance saw-toothed geometries are formed into a single-piece workpiece, e.g., by turning and grinding.
The surface of the cams must therefore be as resistant as possible on account of the high mechanical wear. Moreover, there is the requirement of manufacturing such wear parts as economically as possible and therewith keeping the assembly cost as low as possible. Thus, e.g., especially hard surface coatings or top structures are known; however, they can either not be worked or can only be worked with great difficulty. Furthermore, the surface properties placed on the materials to be worked must be adapted, as result of which the use of certain surfaces that are easier to work is partially excluded.
The present invention therefore has the problem of creating an opening device and a method of manufacturing it that permit an improved service life with an especially uniform quality of the products produced along with a simple working and that can also be coordinated particularly well with the products to be worked. Additional objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
This problem is solved with an opening device characterized in that in particular the clothing wire is pre-bent in accordance with the geometry of a carrier ring and/or the ring has the desired geometry of the finished part. According to the invention, the particular workpiece surfaces have an at least two-layer construction in which an outer layer is a substance layer consisting entirely or partially of especially hard hard-substance components that rests on a substrate layer below it. As the shaping advantageously takes place prior to the application of the outer layer, even especially hard and brittle outer layers can be applied as required onto the wear-stressed surfaces of the opening devices that would otherwise frequently result in exfoliations in a subsequent shaping. Moreover, the qualities of the surface can be varied by varying the hard-substance components inside the outer layer. Thus, a higher amount of hard-substance component results in a surface that is especially resistant but also harder relative to the fibers to be processed and vice versa. In addition to the component, the type of the hard substances worked into the outer layer can be varied as required. This coordination can be adjusted in accordance with the needs of the user, especially the spinning technology requirements.
Outer layers have proved to be especially advantageous in this connection whose hardness is greater than 1500 HV [Vickers pyramid hardness], especially greater than 2000 HV. These hardness ranges have proven themselves in practical use and offer especially good service lives with an acceptable handling of the individual fibers at the same time. Even greater hardness values of 2500 HV and more can be achieved in the outer layer, if needed, with the present invention by a suitable selection of the hardness components and their handling.
It proved to be advantageous for the application of the outer layer to apply it using a CVD, PVD or plasma CVD method. All methods have the fact in common that they ensure an especially uniform layer thickness. Especially in the PVD and the plasma CVD methods, however, the application of the outer layer can take place at particularly low temperatures. This means that while the method is being carried out, only very slight changes are produced in the grain or texture structures of the substrate materials.
It proved to be especially advantageous for the composition of the outer layer if the hard-substance components of the outer layer selectively comprise one or several of the compounds CrN, CN, CrCN, TiN, TiTN, TiAIN, AlTiN, ZrN, NbN, WC or have the qualities of diamond-like carbon steel (DLC). Each of the compounds or materials cited can be used by itself or in combination with one or several of the others. Thus, their qualities can be combined with each other in an advantageous manner as required.
The application of the outer layer takes place in an advantageous embodiment of the invention in such a form that the outer layer is designed as a single-component layer. In the single-layer mode of application the outer layer can be applied, as already mentioned, with a freely selectable hard-substance component and/or one or several types of hard substances directly onto the substrate layer. As a result, the quantity and the quality of the outer layer containing hard substances can be especially well adapted to the particular requirements. It is possible in this embodiment already to adapt the wear resistance and the behavior of the material surface to the fibers to be processed by a suitable selection of the type and quantity of the hard-substance components used.
In another preferred embodiment of the invention, the outer layer is designed as a multilayer coating. The outer coating is built up in this instance from a plurality of layers. An alternating arrangement of relatively elastic coatings with especially resistant and hard coatings proved to be especially advantageous in this instance. The construction corresponds in this embodiment to a type of sandwich construction. The alternating arrangement of elastic and hard coatings has the advantage that, on the one hand, an especially resistant surface is created and at the same time the flexibility of the structural component is extensively retained by the elastic coatings. This substantially reduces the danger of exfoliations or other separations of the hard surface.
Another preferred embodiment of the invention provides that the outer coating contains dispersedly dissolved hard-substance particles with sizes in the nanometer range. So-called nanoparticles are permanently anchored in the outer coating on account of their especially small geometric dimensions and therefore do not separate out of the coating during operation. The particles can distinctly increase the wear resistance of the structural component on account of their hardness and are arranged at the same time in an elastic base body.
In order to improve the ability to resist wear, an advantageous embodiment of the invention provides that the outer coating is precipitation-hardened. Precipitation-hardening methods are already known in the state of the art; however, they offer a possibility in conjunction with the present invention of further improving the positive qualities of the devices in accordance with the invention. In particular, the outer coating can be designed to be even more wear-resistant after a precipitation hardening by the selection of suitable dispersedly dissolved hard-substance particles in ηm size.
Another advantageous embodiment of the invention provides that the substrate coating, in particular the surface of the wear-stressed sections of the opening device, is tempered prior to the application of the outer coating preferably at the application temperatures of the outer coating. A structural transformation possibly occurring during the application of the outer coating is already anticipated by the tempering. Therefore, the tempering preferably takes place at the same temperature that also prevails during the subsequent application of the outer coating. As already mentioned, the PVD method and the plasma CVD method offer the advantage in this connection of particularly low application temperatures.
Coating thicknesses of the outer coating between 2 and 8 μm proved to be especially advantageous. In this range, the applied outer coatings are capable on the one hand of protecting to a sufficient degree the substrate coatings located below them. At the same time, it is assured that the coating thicknesses are not so great that e.g., exfoliations or other separations occur.
An entirely different, advantageous embodiment of the invention provides that a carrier layer is applied between the outer coating and the substrate coating. This carrier layer or coating has two functions. The first function is to produce a reliable adhesion between'the substrate coating and the outer coating located above it. The second function of the carrier coating is based on the fact that it compensates rugosities and non-uniform areas in the substrate coating and thus creates an especially uniform bearing area or contact surface for the outer coating. An embodiment provides that the carrier coating is a coating applied by a chemical method. A carrier coating is advantageously used for this purpose that is a chemically applied nickel-phosphorus coating. Chemically applied coatings, especially of the previously cited type, have the advantage that they have extremely uniform coating thicknesses.
In order to achieve an especially protective handling of the fibers to be processed, it proved to be especially advantageous if the outer coating is deburred and/or polished. This can basically take place by means of all known deburring means and methods, but chemical and electrochemical deburring have proved to be especially suitable. The especially smooth surfaces of the clothing wires and/or rings worked in this manner handle the fibers to be processed in an extremely protective manner and consequently generate an especially low development of dust during the spinning process. In addition to deburring or instead of it, it is also suitable to polish the outer coating. This can take place, e.g., by a relative motion between the structural component designed in accordance with the invention and a polishing fluid. The polishing fluid conducts hard-substance particles that smooth the surface of the structural component by repeatedly striking it. Examples of hard-substance particles can be, e.g., diamond particles, corundum, silicon carbide or silicon nitride, that all have an especially high degree of hardness. If, for example, an opening device is allowed to rotate for a rather long time in such a polishing fluid, an especially smooth and resistant surface is obtained.
Another preferred embodiment of the invention provides that the carrier coating is a coating applied by a galvanic method. It proved to be especially advantageous in this instance if this coating is a galvanically applied nickel coating. Galvanically applied coatings are especially economical to manufacture and can be applied with a sufficient uniformity.
An entirely different embodiment of the invention advantageously provides that the carrier coating is an additional hard-substance coating. In contrast to the previously described outer coating with hard-substance components, this hard-substance coating designed as the carrier coating can be optimized, e.g., by a suitable selection of material as regards to a high degree of elasticity and an excellent coupling or adhesion characteristics.
The coating thickness of the carrier coating is advantageously between 3 and 10 μm and is therefore slightly thicker than the coating thickness of outer coating. In this instance, as the coating thickness of the carrier coating increases, its ability to compensate rugosities on the substrate coating grows.
Certain advantageous embodiments of the invention provide that the carrier coating is tempered at temperatures of 320° C. to 370° C., especially at 350° C. If, e.g., a chemical, applied nickel-phosphorus coating is used as carrier coating, a hardness of 900–100 HV can be achieved by such a tempering in the carrier coating. This is an especially resistant coating on which an outer coating applied to it finds on the one hand especially good adhesion and on the other hand an especially firm base.
In the method of the invention for manufacturing opening devices, the particular workpiece surfaces are provided with an at least two-coat construction in which an outer coating is applied onto a substrate coating underneath it, which outer coating is a hard-substance coating and consists entirely or partially of especially hard hard-substance components. The method furthermore suggested by the invention is characterized in that the clothing wire is advantageously pre-bent in accordance with the geometry of a carrier ring and/or that the opening ring is manufactured with the desired geometry of the finished part. Other advantageous embodiments of the invention result from the particular associated subclaims.
The invention is explained in detail in conjunction with the following exemplary embodiments and the drawings.
Reference is now made to embodiments of the invention, one or more of which are illustrated in the drawings. Each embodiment is provided by way of explanation of the invention, and not meant as a limitation of the invention. For example, features illustrated or described as part of one embodiment may be used with another embodiment to yield still a further embodiment. It is intended that the present invention include these and other modifications and variations.
The present invention is not limited to the exemplary embodiment shown, but rather numerous variations of the invention are possible within the scope of the claims. Thus, e.g., instead of the hard-substance components cited in the subclaims other suitable materials and compounds with other properties can be used. Also, the coating constructions described for the opening device can be used on other wear-stressed structural components of textile machines such as, e.g., yarn draw-off nozzles or rotors. Furthermore, it is conceivable to mix the hard-substance components with other materials, to alloy them or to use them in a pure form.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 029 659 | Jun 2004 | DE | national |
10 2004 051 676 | Oct 2004 | DE | national |
10 2004 053 427 | Nov 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4358922 | Feldstein | Nov 1982 | A |
5528799 | Bach et al. | Jun 1996 | A |
6006511 | Hofmann et al. | Dec 1999 | A |
6012278 | Schermer | Jan 2000 | A |
6062015 | Schurmann et al. | May 2000 | A |
6293083 | Schneider | Sep 2001 | B1 |
6475565 | Lukschandel et al. | Nov 2002 | B1 |
6866619 | Schermer | Mar 2005 | B2 |
6978594 | Schuller et al. | Dec 2005 | B2 |
20020124546 | Schuller et al. | Sep 2002 | A1 |
20040079069 | Burchert | Apr 2004 | A1 |
20040137279 | Richter et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
4101680 | Jul 1992 | DE |
0599286 | Feb 1997 | EP |
0052225 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060026946 A1 | Feb 2006 | US |