This disclosure relates to an arrangement for a laboratory room and a method for operating an arrangement for a laboratory room.
Modern laboratory rooms, as for example clean room facilities, need particularly clean and isolated environments. For example, nanotechnology experiments are extremely sensitive and need to be screened from disturbances. Therefore, laboratories should be insulated as much as possible from external disturbances. Researchers feel it desirable to have vibration acoustic effect minimized, electromagnetic fields reduced and fluctuations in the temperature and humidity minimized. Hence, one may call the desired experimental environment a noise-free lab.
Conventionally, active and passive isolation systems are utilized to reduce external influences affecting the interior of a laboratory room.
In one embodiment, a method for operating the arrangement for a laboratory room confined by a floor, a ceiling and walls connecting the floor with the ceiling, including inducing an air flow from an air inlet through a platform to an air outlet in a substantially laminar fashion. The arrangement includes a main base suspended on the floor; a tool base arranged on the main base; a platform arranged around the tool base, wherein the platform is permeable for air, and the platform is suspended at the walls; the air inlet arranged below the platform; the air outlet arranged above the tool base; and air guides for directing an air flow upwards.
In the following, embodiments of arrangements for laboratory rooms and methods relating to the operation of such arrangements are described with reference to the enclosed drawings.
Like or functionally like elements in the drawings have been allotted the same reference characters, if not otherwise indicated.
It is an aspect of the present disclosure to provide improved arrangements for laboratory rooms.
According to an embodiment of a first aspect of the invention an arrangement for a laboratory room that is confined by a floor, a ceiling and walls connecting the floor with the ceiling is disclosed.
The arrangement comprises: a main base suspended on the floor, a tool base arranged on the main base; a platform arranged around the tool base, wherein the platform is permeable for air, and the platform is suspended at the walls; an air inlet arranged below the platform; an air outlet arranged above the tool base; and air guides for directing an air flow upwards.
According to an embodiment the air guides are arranged below the platform for directing or guiding the air flow from the air inlet upwards to the platform.
According to an embodiment the arrangement is suitable, for example, for a cuboid-shaped laboratory room that has concrete walls, floors and ceilings.
According to an embodiment the air guides are arranged for directing the air flow upwards at least partially parallel to the main base and/or the tool base.
As used herein the term “laboratory room” or “lab room” may refer to any room or confinement where isolation from external influences is desired. For example, a fabrication facility, a clean room, a measurement chamber, gauging facility or the like may be considered a “lab room”.
According to an embodiment the main base on which the tool base is arranged isolates against vibrations due to its preferably large mass and a suspension system. The suspension may be active or passive. For example, one may contemplate of a suspension in terms of controlled actuation devices that compensate detected vibrations coupled to the laboratory room confinement. The tool base is preferably adapted to carry machinery and/or transportation devices.
A platform may be, for example, an intermediate floor that is suitable to be walked on by, for example, an operator, a user, a scientist or researcher, inside the laboratory room. Preferably, the platform is further adapted to support transportation devices, machinery and/or other equipment used in the room. The platform is permeable for air, for example in terms of tiny openings or through holes such that air, as for example, conditioned air, may pass vertically through the platform. The resulting air flow is preferably a laminar flow with minimized turbulence. The platform is suspended at the walls, e.g., in terms of supporting beams or fixtures.
According to an embodiment, the floor of the laboratory room, the ceiling and the platform are arranged in parallel to each other and horizontally situated. The walls may be oriented vertically with respect to gravity.
“Below” or “above” is to be understood as having a lower or higher level in a vertical direction, i.e., with respect to gravity. For example, due to the position of the air inlet at a lower level with respect to the platform, conditioned air may enter the laboratory room from below and rises upwards to be drawn of from the room through the outlet.
The air guides preferably prevent an air flow from impinging, more or less perpendicularly, to a surface of the main base or the tool base. As a result, the air conditioning and the vibration isolation can be decoupled from each other. According to an embodiment a direct air flow against the main base and/or the tool base is substantially prevented by the air guides. This can avoid a vibrational excitation of the main base and/or the tool base by the air flow.
Some embodiments provide the air inlet below the platform and above the main base.
In embodiments of the arrangement, the arrangement is operable to provide an air flow from the inlet, through the platform to the outlet. Since the outlet is preferably arranged at a level, for example, in the ceiling or at wall portions, higher than the main base or the tool base, the ventilation of air is realized from bottom to top. Hence, an essentially laminar air flow that starts vertically through the platform is sucked out at an upper part of the laboratory room. This may be implemented, for example, by a pressure difference between the air inlet and the air outlet.
The main base may be, for example, suspended by air springs. One may also contemplate of other suspensions, as for example, actor suspensions where the actuator may provide for an anti-sound for reducing or compensating vibrations or noise.
Preferably, a gap is provided between the platform and the tool base. As a result, there is no mechanical or rigid body coupling between the platform and the tool base. Therefore, the influence of an operator or user walking on the platform to the experimental setup on the tool base is minimized or prevented.
In embodiments of the arrangement the air inlet is provided above the main base. Hence, a potential air flow is arranged between the intermediate floor, or platform, to the ceiling. This direction of an air stream is, for example, compatible with natural convection which leads warmed-up air to rise. Hence, an air flow from bottom to top minimizes acoustic noise or turbulences. Essentially, a laminar air flow is realized according to an embodiment.
Embodiments of the arrangement may comprise air guides that include a shielding structure arranged between the main base and the platform, wherein the shielding structure surrounds the tool base for shielding the tool base from an air flow. The shielding structure can have the form of an apron or flange that prevents air from directly impinging on the surface of the tool base potentially causing vibrations.
According to an embodiment, the shielding structure comprises an upper frame protruding from the platform and a lower frame protruding from the main base. For example, the upper frame and the lower frame may extend towards each other. Hence, the upper frame stretches from the down surface of the platform towards the floor of the laboratory room while the lower frame protrudes from a main base upwards. The upper frame and the lower frame preferably do not touch each other. However, the two frames can overlap for realizing an air-flow tight apron or flange. For example, in some embodiments there is a horizontal gap between the upper frame and the lower frame in.
This non-contact flange system or apron prevents air flow around the tool base and reduces a vibration and excitation of the main base. Because the two parts are not rigidly coupled the user or operator walking on the platform does not excite the tool base and/or tool. The guiding structure prevents direct air flow against the main base and/or the tool base.
In embodiments of the apron-like shielding structure a bottom part has through holes for cables and/or tubes. Since the lower frame is attached to the main base, one can attach cables in a stiff manner to the main base. This allows the tool or experiment to be wired without interfering with the shielding structure, the air flow or the vibration isolation. When cables are not free-hanging but attached to the main base, vibrations can be reduced.
In other embodiments, the guiding structure comprises a plurality of ducts for guiding air from the inlet to the platform. Preferably the ducts guide the air such that an air flow flows substantially normal through openings in the platform. The ducts may be implemented as tubes, hoses, conduits or the like.
For example, a plurality of ducts or tubes may guide conditioned air to openings in the platform. As a result, air flows substantially vertically from the platform towards the ceiling of the room.
Other embodiments of the arrangements further comprise a suspended ceiling arranged below the air outlet. Preferably, the suspended ceiling is permeable for the air. For example, there may be openings in the suspended ceiling. Embodiments of the suspended ceiling comprise a cooling web or fin for cooling air. The ceiling having an integrated cooling function may replace an external air condition device so that noise stemming from conditioning means is reduced and preferably eliminated. Air that may be heated by the tool or experiment at or on the tool base rising from the bottom region of the lab room to its top is then efficiently cooled, and the heat load is drawn out of the interior of the laboratory room.
The arrangement may further comprise an opening below the air inlet for passing cables. Additional openings that are cladded by an isolating material may be provided in the main base.
Embodiments of the arrangement have the walls cladded with a mu-metal. The mu-metal leads to a good electromagnetic isolation and prevents external electromagnetic fields from penetrating through the walls, floor or ceiling into the laboratory. The mu-metal cladding leads to both an electrostatic and magnetic screening.
Embodiments of the arrangement may further comprise one or more of the following features: cooling ceiling, a loaded air spring as suspension for the tool and/or the main base, sound absorbing wall coatings, efficient LED illumination, compensating Helmholtz coils for compensating internal electromagnetic fields in the room, air conditioning devices preferably outside the room for cooling and dehumidifying air, non-magnetic reinforcements for the main base, as for example a glass fiber enforcement, perforated plates or segments in the platform allowing for air permeability, passages for cables and wise in the main base and/or the lower frame of the shielding structure, water cooling elements in or above the suspended ceiling, DC current power supplies for illumination devices or fans, wooden floor bars or beams, active or passive sound suppressing devices.
According to an embodiment of a further aspect a method for operating an arrangement for a laboratory room is provided, wherein the laboratory room is confined by a floor, a ceiling and walls connecting the floor with the ceiling. The arrangement comprises at least a main base suspended on the floor, a tool base arranged on the main base, a platform arranged around the tool base wherein the platform is permeable for air and the platform is suspended at the walls, an air inlet arranged below the platform, an air outlet arranged above the tool base and guides for directing an air flow upwards at least partially parallel to the main base and/or the tool base. The method comprises: inducing an air flow from the air inlet through the platform to the air outlet in a substantially laminar fashion.
The method may further comprise cooling or conditioning air, feeding air to the air inlet, decreasing the temperature of air above the tool, cooling air above the tool base and, in particular, above a suspended ceiling, preventing a direct air flow against the main base and/or the tool base, eliminating low frequency contributions in wires or cables in the room.
Certain embodiments of the presented arrangement and the method for operating the arrangement may comprise individual or combined features, method steps or aspects as mentioned above or below with respect to exemplary embodiments.
For improving the isolation with respect to external noise or disturbances, the laboratory room 2 is insulated and shielded through a plurality of measures. The arrangements provide for vibration isolation, temperature and humidity control, and electromagnetic screening.
Inside the laboratory room 2 a main base 9 is suspended, for example, by means of a pneumatic suspension 10 on the floor 3. The main base 9 may be pneumatically damped, for instance, by air coils or air springs 10. The main base 9 can also be actively controlled. An active suspension control may include actor devices, controllable springs and the like. For example, the main base is made of concrete and weighs between 30 and 80 tons. The main base 9 may be implemented as a concrete block which is reinforced by non-magnetic material. One may contemplate of glass fiber reinforcements for the main base 9.
The floor 3 can occupy a space of approximately 5 by 5 meters, wherein the main base 9 covers about 80% of the floor 3. The walls 5, 6, 7, 8 may have a height of eight meters as well.
A tool base 11 is suspended onto the main base 9 and is suitable for carrying the actual experiment or tool 17 used by the operators or scientists inside the laboratory room. The tool base 11 may weigh between 2 and 5 tons and covers about 20%-30% of the entire room area. The main base 9 may weigh approximately 8-10 times the tool base weight. Larger ratios between the main base weight and the tool base weight can improve the vibration damping effects.
There is a platform or intermediate floor 12 arranged around the tool base 11 allowing access to the actual tool experiment or measurement setup 17. The floor 12 is mechanically decoupled from the main base 9 and the tool base 11 by a gap 23. It is suspended at the sidewalls 5, 6, 7, 8. For example, wooden or non-magnetic beams, bars or timbers can be used to support the platform 12. The platform 12 itself is permeable for air. Hence, the platform 12 divides the laboratory room into a lower part below the platform 12 and an upper part above the platform 12. A person, user, scientist or operator of the laboratory equipment 17 may stand and walk on the floor of the platform 12. As the platform 12 is arranged to be air permeable, for example by use of perforated plates, through-holes in the floor, a fleece or membrane material, pressure exchange between the lower part and the upper part is available.
There is further a suspended ceiling 20 above the tool 17 and below the ceiling 4. For example, the intermediate or suspended ceiling 20 is suspended on bars 21. The ceiling 20 is preferably air-permeable. The platform 12 and the suspended ceiling 20 divide the room 2 vertically into sections, and a pressure exchange may occur between the sections in the lab room 2.
The arrangement 1 for the laboratory room 2 includes an air inlet 14 which is situated below the platform 12 and preferably above, i.e., on a higher level than the highest surface of the main base 9. The air inlet 14 allows for the entry of conditioned air 18 into the laboratory room 2. An air outlet 15 is provided above the tool 17, and more preferably, above the suspended ceiling 20. The air outlet 15 allows for drawing out air 19 from the laboratory room interior. An air conditioning device (not shown) is situated outside of the laboratory room 2 and provides the temperature adapted and dehumidified air 19 to the inlet 14. The temperature inside the laboratory room 2 may be controlled through the external air conditioning within a range of 0.2° C. of the desired temperature.
There are air guides 22 that direct an air flow 16 upwards at least partially parallel to a vertical surface of the main base 9 and eventually vertically upwards. One can see in
The temperature can be controlled within a range of 0.2° C. or, if required, also within a range of 0.1° C. A typical air stream 18 at the inlet 14 is between 0.1 m/s and 0.4 m/s depending on the size of the air inlet. Preferably, the air stream 18 is between 0 and 0.1 m/s. For example, the resulting air stream from the platform to the ceiling is 0.05 m/s. Since the air flows from the floor 3 to the ceiling 4, for example, between the platform 12 and the suspended ceiling 20 in a laminar fashion air that is heated, for example, by the experimental tool 17, runs along the physical convection. Hence, turbulences can be reduced or minimized.
The setup or arrangement 1 depicted in
A platform 12 is supported by wooden balks or beams 112 which are mounted at the side walls 5, 7. There is no mechanical coupling between the platform 12 and the tool 17 or tool base 11. The platform 12 is air-permeable by air through holes or perforations 24. Similarly, a suspended ceiling 20 is provided with perforations or openings 24 allowing an air flow through the ceiling 20. The air inlet 14 is situated on a level of the tool base 11 and allows for conditioned air 18 to enter the interior of the laboratory room 2. The air outlet 15 is situated above the suspended ceiling 20. Air 19 can be drawn out or sucked out through the outlet 15.
Around the tool base 11 an air-guiding structure 122 is placed. A more detailed sectional view of the apron-like air guides 122 is shown in
For example, a coupling device 28 is attached to the lower surface of the platform 12 and holding a wooden beam 27. A board 31 is attached to the beam 27 and reaches towards the main base 9. An aluminum angle 29 coupled by a wooden coupling piece 30 to the beam 27 provides for a closure around the tool base. The edge of the angle 29 surrounds the tool base. Although, shown as a sectional view in
The board 31 is not in contact with either one of the aluminum profiles 32 and 33. Rather, there is a gap 34 between the board 31 of the upper frame and the two aluminum profiles 32, 33 of the lower frame. Hence, the platform 12 remains vibrationally decoupled from the main base 9.
Nevertheless, an air flow 16 is diverted upwards through the apron 122. As a result, a laminar upward air flow 16 develops as indicated in
The air guides for creating a laminar air flow 16 from bottom to top are not explicitly shown and can be implemented as depicted above. In addition to the vibrational isolation by using the heavy main base 9 and a controlled flow of air 16, the walls, the floor 3 and the ceiling 4 of the interior are furnished with a metal shielding 107. The metal shielding 107 provides for an electromagnetic field rejection and allows for a practically electromagnetic noise-free environment inside the laboratory room 102, 103. For example, the metal shielding 107 includes a mu-metal. Mu-metals have a very high magnetic permeability and therefore allow for an efficient screening of oscillating magnetic fields.
Additionally, Helmholtz coils 38 are provided in the direction of all space axes (x, y, z), for example in the corners of the room(s) 102, 103 and/or optionally at several other places inside. The coils 38 are controlled to compensate for electromagnetic disturbances arising inside the laboratory room 102, 103. The coils 38 may also compensate for DC components of stray fields from the outside.
The operator or entry room 103 is preferably acoustically, electromagnetically, vibrationally and thermally decoupled from the experimental room 102, where the experimental setups 17 are installed.
Further, the suspended ceiling 20 is provided with water cooling elements or fins 37. The temperature inside the lab can be adjusted by heating or cooling the uprising air 16 in the vicinity of the suspended ceiling 20. By using a cooling arrangement in or at the ceiling 4, 20 in terms of the fins 37, warmed-up air, for example, during operation of an experiment, can be cooled before sucked or drawn out through the outlet.
When operating a laboratory room, the air flow may be arranged from bottom to top. This allows for a laminar air stream 16 without coupling the air carrying acoustic noise to the main base 9 or tool (base) 11, 17. Hence, the experiment may be carried out in a vertically noise-free environment. Further, during the operation cables and wires leading inside or outside the enclosure of the laboratory room 102 do not carry low-frequency currents or emit mid-low frequency radiation. Additionally, sound absorbing coatings can be applied to the surfaces inside the laboratory room, and preferably LED or FL illumination is used inside the lab room. Optionally, cranes or auxiliary equipment, for example, for moving the experimental setup can be installed and included into the arrangements shown.
Referring to
Embodiments of the arrangement of the laboratory room provide for a virtually noise free lab environment. Temperature stability is ensured by the cylindrical air conditioning system based on a laminar air flow without causing turbulences. Floor vibrations a decoupled from the actual experiment by the platform which is mechanically decoupled from the main base and the tool base. Vibrations are reduced by the heavy main base. Electromagnetic fields are shielded by preferably a mu-metal cladding and actively controlled Helmholtz coils for compensating internal fields in the room. Further, various stages or sound suppressors can be used to reduce the acoustic noise. Further, a cooling ceiling that in principle may make a noise prone air conditioning obsolete. Using the cooling ceiling, the temperature control of the interior of the laboratory room can be realized by convection.
One may add acoustically damping materials at the walls, the ceiling, the tool base, the main base etc. to reduce acoustic emissions from the experiment. Sound reflection at walls and ceiling can therefore be reduced. Also a potential sound emission from the air-spring suspended main base can be reduced by special coatings.
Number | Date | Country | Kind |
---|---|---|---|
11166421 | May 2011 | EP | regional |
This application is a continuation of U.S. patent application Ser. No. 13/466,205, filed May 8, 2012, now U.S. Pat. No. 8,844,221, which claims priority to European Patent Application No. 11166421.5, filed 17 May 2011, and all the benefits accruing therefrom under 35 U.S.C. §119, the contents of which in its entirety are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5067155 | Bianco et al. | Nov 1991 | A |
5261200 | Sasaki et al. | Nov 1993 | A |
5358443 | Mitchell et al. | Oct 1994 | A |
5692954 | Lee et al. | Dec 1997 | A |
6402612 | Akhtar et al. | Jun 2002 | B2 |
6574970 | Spinazzola et al. | Jun 2003 | B2 |
6612084 | Rapisarda et al. | Sep 2003 | B2 |
6669163 | Davis, Jr. | Dec 2003 | B2 |
6745579 | Spinazzola et al. | Jun 2004 | B2 |
7568360 | Bash et al. | Aug 2009 | B1 |
8434804 | Slessman | May 2013 | B2 |
8498114 | Martini | Jul 2013 | B2 |
8641492 | Meyer | Feb 2014 | B2 |
8844221 | Duerig et al. | Sep 2014 | B2 |
20020059804 | Spinazzola et al. | May 2002 | A1 |
20030177724 | Botting | Sep 2003 | A1 |
20050225936 | Day | Oct 2005 | A1 |
20100041327 | Desler | Feb 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120295531 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13466205 | May 2012 | US |
Child | 13490766 | US |