The invention relates to the field of dimmable operating devices for light sources, specifically to dimmable operating devices for the combined operation of gas discharge lamps and semiconductor light sources.
The invention is based on dimmable operating devices for the combined operation of gas discharge lamps and semiconductor light sources in accordance with the precharacterizing clause of the main claim. Until now, each light source has been considered individually in the case of luminaires which also use semiconductor light sources such as light-emitting diodes in addition to the gas discharge lamps which have long been used. In the case of dimmable luminaires, each light source can be dimmed individually, but both light sources are not considered to be one unit.
U.S. Pat. No. 7,052,157 B1 has disclosed a luminaire in which LEDs are also used in addition to compact fluorescent lamps. The light sources can be dimmed independently of one another. A common dimming mechanism in which both types of light source are used is not described here.
Although fluorescent lamps can be dimmed with a corresponding degree of technical complexity down to 1% of the nominal light, the efficiency is reduced considerably at these low dimming settings. The color locus of the emitted light can also change since, at very low powers, the lamp cools down to a significant extent and it gives more weight to the argon discharge in comparison with the mercury discharge.
It is therefore desirable to provide a light source which can be dimmed more effectively, such as a semiconductor light source, for example, for very low dimming settings. In order to keep the complexity of the driving of the two light sources low, it is expedient to operate both light sources using one operating device.
The object of the invention is to provide a dimmable operating device for the combined operation of gas discharge lamps and semiconductor light sources which includes common dimming control for both light sources, by means of which dimming control the light emitted by the light-emitting means of the operating device can be dimmed down from a nominal luminous intensity to 1% or less.
The object is achieved according to the invention by the features of apparatus claim 1 and method claim 10.
Advantageous developments of the invention are given in the dependent claims.
For this purpose the operating device includes circuits which can operate both light-emitting means with dimming. An input which can represent an interface to an analog or digital light control bus is provided for the dimming control. A 1-10 V bus is generally used as the analog bus, and the DALI protocol is usually used as the digital interface. The digital interface also identifies light control commands and light scenarios which are stored in the operating device. If a signal is input to this input, the operating device controls the light emission of the two light sources corresponding to the input dimming level.
In this case, one light-emitting means or the other is used, depending on the dimming level, and internal control ensures that the transition from one light-emitting means to the other is hidden from the human eye. Both light-emitting means are used for a certain dimming range in order to be able to realize a very soft transition.
The two different light sources should be positioned in the luminaire in such a way that the light distribution of the two light-emitting means is similar. Only in this way can the luminaire be dimmed in a wide range without any physical optical discrepancies.
The LEDs or OLEDs emit light in the lower dimming range, for example from 1% to 10%. Above a dimming setting of 3%, the gas discharge lamps are additionally connected. At the time of starting of the lamps, simultaneously the luminous efficiency of the LEDs is reduced suddenly in order not to change the overall luminous intensity of the luminaire. In order to compensate as well as possible for the short flash of light from the gas discharge lamp which it emits during starting, it would also be conceivable to entirely disconnect the LEDs for the instant of lamp starting. In the range between 3% and 10%, both light-emitting means are run up successively in terms of their luminous efficiency. At the dimming setting of 10%, the LEDs are disconnected and the power of the gas discharge lamp is increased suddenly in order again to maintain the quantity of light emitted. From this point on, the gas discharge lamp is dimmed down to its rated power.
These measures ensure that the transitions between the categories of light-emitting means can barely be perceived by the human eye. However, there is still a problem as regards the color locus of the emitted light. Although fluorescent lamps have a defined color locus at a rated power, this can change depending on the dimming state. Primarily at low dimming settings the lamp cools down. This results in the mercury discharge dropping off since the mercury condenses out at cool points on the lamp and is therefore no longer available for the discharge. However, the proportion of argon discharge therefore increases, which results in a migration of the color locus into the red.
The transition between the two categories of light-emitting means can therefore become visible despite the same brightness. This is primarily the case if the luminaire has been operated for a relatively long period of time in the lower dimming range, in which the gas discharge lamp is dimmed to a significant degree or entirely switched off. The lamp then cools down and changes its color or is cooled down at the start to such an extent that it emits a slightly different color than during nominal light operation.
The operating device in the second embodiment therefore has outputs for light-emitting diodes of different colors. There are preferably three outputs for diodes emitting colored light. These diodes can then emit red, green and blue light, and the light of all of the semiconductor light sources can thus be matched to the light color of the gas discharge lamp.
For this purpose, a family of characteristics which describes the dependence of the temperature of the gas discharge lamp as a function of the dimming setting, the time and the color locus can be stored in the operating device. At low dimming settings at which the semiconductor light sources are switched on, the operating device then sets the color locus of the semiconductor light sources which emit light of different colors to the color locus of the gas discharge lamp. The semiconductor light sources can naturally be organized in groups, with the result that a plurality of semiconductor light sources are also provided for each color.
Another possibility consists in using a sensor for the overall brightness and the color locus and controlling the lamps in such a way that the values for the individual brightnesses, for the overall brightness and for the two color loci of the different light sources can be measured and adjusted. For this purpose, the measurements need to be conducted when only the light-emitting means to be measured is switched on. This is relatively simple in the lower dimming range since the light sources are driven by pulses and there are therefore always times at which only the light-emitting means to be measured is emitting light. If no suitable time results from the driving, the control of the operating device can switch off all of the light-emitting means which are not to be measured for a measurement. Since this period of time is very short, it cannot be perceived by the human eye.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 013 742.9 | Mar 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/052290 | 2/26/2008 | WO | 00 | 9/20/2009 |