The present invention relates to an operating device for a vehicle door latch.
In JP2012-12810A, an operating device for a vehicle door latch comprises, an outside lever connected to an outside handle on the door outside a vehicle, an inside lever connected to an inside handle on the door inside the vehicle, a locking lever for changing a door latch in a locking state and an unlocking state and an electric actuator for moving the locking lever to a locking position and an unlocking position on a base plate fixed in a door,
In the device, an inside handle detecting switch is exposed on the base plate and is not suitable in view of water resistance. Electric wires connected to the inside-handle detecting switch are too long and increase the costs.
In view of the disadvantages in the prior art, it is an object of the present invention to provide an operating device for a vehicle door latch improving water resistance and reducing manufacturing costs.
It is another object of the present invention to provide an actuator for the operating device for a vehicle door latch, improving water resistance of a detecting switch for detecting swinging of the levers.
An embodiment of the present invention will be described with respect to the drawings. In the following description, the left and right sides are deemed as “front” and “rear” of a vehicle respectively in
In
On the outer panel of the door 1, an outside handle unit OH for opening and closing the door is provided, and on the inner panel of the door 1, an inside handle unit IH for opening and closing the door is provided. In the door 1, a motion-connecting section 5 controls operation by the outside handle unit OH and inside handle unit IH.
The fully-closing door latch units 2,3 engage with front and rear strikers (not shown) of a vehicle body respectively when the door 1 is fully closed. The fully-open door latch unit 4 engages with a striker (not shown) of the vehicle body when the door 1 is fully open.
In
The inside handle IH3 is usually held in a neutral position. In order to open the door 1, door-opening action or rearward turning is possible from the neutral position as shown by an arrow R in
In
In
The outside lever 7 is pivoted via a shaft 15 extending transversely of the vehicle in the middle of the base plate 6 facing outside of the vehicle and is held in a neutral position in
A slit 71 is formed in the lower part of the outside lever 7. To the slit 71 is coupled a motion-transmitting member 16 for transmitting to the outside lever 7 power of the release actuator ACT operable according to a switch (not shown) in the driver's seat and a portable remote control switch. The end of the motion-transmitting member 16 slides in the slit 71. Hence, the release actuator ACT works to allow the motion-transmitting member 16 to move as shown by an arrow in
A slit 72 is formed under the slit 71 in the lower part of the outside lever 7. In the slit 72 is slidably connected one end of a motion-transmitting member 17 the other end of which is coupled to the outside handle OH. Hence, when the outside handle OH is operated to open the door, the motion-transmitting member 17 moves as shown by an arrow in
At the top of the outside lever is provided a pushing portion 73 with which the releasing action of the outside lever 7 can be transmitted to the crank lever 9. On the rear part of the outside lever 7 is provided a pushing portion 74 with which the releasing action of the outside lever 7 can be transmitted to the connect lever 13.
At the bottom of the outside lever 7 is disposed a detected portion 75 which can come in contact with a sensor 291 of a first detecting switch 29 for detecting the releasing action of the outside lever 7.
The crank lever 9 pivots on a pivot shaft 18 extending transversely of the vehicle above the shaft 15 on a surface of the base plate 6 facing the inside of the vehicle 6. The crank lever 9 is forced by a spring 21 one of which is mounted to the crank lever 9 and the other end of which is mounted to the base plate 6 counterclockwise in
A slit 91 is formed in the upper part of the crank lever 9, and a connecting hole 92 is formed in the lower part thereof. To the slit 91 is slidably the rear end of the motion-transmitting member 22 via which door-closing action of the inside handle IH3 is transmitted to the crank lever 9. To the connecting hole 92 is coupled the front end of the motion-transmitting member 23 the rear end of which is coupled to a release lever (not shown) of the fully-open door latch unit 4. When the door 1 is in a fully-open position by engaging the fully-open door latch unit 4 with the striker, the inside handle IH3 is operated to close the door 1, and the motion-transmitting member 22 moves rearward as shown by an arrow in
On the lower part of the crank lever 9 is provided a pushed portion 93 which comes in contact with the pushing portion 73 of the outside lever 7. By the releasing action of the outside lever 7, the pushing portion 73 of the outside lever 7 comes in contact with the pushed portion 93, so that the crank lever 9 swings from the neutral position in the releasing direction similarly to the door-closing action of the inside handle IH3, and the fully-open door latch unit 4 is released.
The inside lever 8 pivots on the shaft 15 which is the same axis as that of the outside lever 7 to the base plate 6. The inside lever 8 is forced clockwise in
A slit 82 is formed in the upper part of the inside lever 8. The slit 82 is coupled to the end of the motion-transmitting member 25 via which door-opening action of the inside handle IH3 can be transmitted. The inside handle IH3 is operated to open the door 1, and the motion-transmitting member 25 moves forward in a direction by an arrow in
Furthermore, a control hole 81 is formed in the upper part of the inside lever 8. In the control hole 81 slides a control pin 28 which moves vertically based on motion of the childproof lever 12 to an unlocking or locking position (later described).
The childproof lever 12 pivots on a pivot shaft 20 to the base plate 6. The childproof lever 12 moves manually and is elastically held in the unlocking position in
In the front of the childproof lever 12 is provided a projection 121 which is operated manually only when the door 1 is open. In the lower end of the childproof lever 12 is provided a contacted portion 122 which can contact a sensor 301 in
The control pin 28 can move vertically in the control hole 81 of the inside lever 8 according to unlocking/locking action of the childproof lever 12 and can move forward according to releasing action of the inside lever 8. When the childproof lever 12 is in the unlocking position, the control pin 28 is positioned in the lower part of the control hole 81 and is in the unlocking position where the releasing action of the inside lever 8 can be transmitted to the connect lever 13. When the childproof lever 12 is in the locking position, the control pin 28 is positioned in the upper part of the control hole 81 and is in the locking position in
The connect lever 13 pivots on the shaft 15 on which the outside lever 7 and inside lever 8 pivot to the base plate 6 and is forced clockwise in
At the top of the connect lever 13 is provided a contacted portion 131 with which the control pin 28 can come in contact when the childproof lever 12 is in the unlocking position and with which the control pin cannot contact when the childproof lever 12 is in the locking position. Hence, when the childproof lever 12 and control pin 28 is in the unlocking position, the releasing action of the inside lever 8 is transmitted to the connect lever 13 via the control pin 28 and contacted portion 131 thereby allowing the connect lever 13 to swing from the neutral position against the spring 31 in the releasing direction. When the childproof lever 12 and control pin 28 are in the locking position, the control pin 131 cannot come in contact with the contacted portion 131, so that the releasing action of the inside lever 8 is not transmitted to the connect lever 13.
At the back of the connect lever 13 is provided a pushed portion 132 with which the pushing portion 73 of the outside lever 7 comes in contact upward. Hence, when the outside lever 7 moves for releasing, the pushing portion 74 of the outside lever 7 comes in contact with the pushed portion 132 of the connect lever 13 upward, so that the connect lever 13 moves for releasing against the spring 31 regardless of the position of the childproof lever 12.
In the lower part of the connect lever 13 is formed a vertical slit 133 in which a control pin 33 connected to the locking lever 11 slides vertically.
The locking lever 11 pivots on a pivot shaft 19 positioned below the shaft 15 to the base plate 6 and is elastically held by a turnover spring 32 which engages at one end with the locking lever 11 and at the other end with the base plate 6 in an unlocking position in
A motion-transmitting member 44 operated by a knob handle IH4 is coupled to the lower part of the locking lever 11. Thus, the locking lever 11 moves to the locking position with unlocking action of the knob handle IH4 and to the unlocking position with locking action thereof.
The lower end of the locking lever 11 is coupled to an output lever 34 (later described) of the actuator 14. The locking lever 11 moves to the unlocking and locking positions by the output lever 34.
At the rear of the locking lever 11 is formed a slit 111 in which the control pin 33 slides longitudinally of the vehicle.
To the base plate 6, the release lever 10 pivots on the shaft 15 on which the outside lever 7, inside lever 8 and connect lever 13 pivot, and is held in the neutral position in
To connecting holes 101,102 formed on the upper part of the release lever 10, one end of a motion-transmitting member 26 the other end of which is coupled to a cancelling lever (not shown) of the fully-closing front door latch unit 2 and one end of a motion-transmitting member 27 the other end of which is coupled to a cancelling lever (not shown) are coupled respectively. Hence, the release lever 10 is moved counterclockwise in
An L-shaped control opening 103 in which the control pin 33 slides is formed in the lower part of the release lever 10.
The control pin 33 slides through the slit 133 of the connect lever 13, the control opening 103 of the release lever 10, and the slit 111 of the locking lever 11. Thus, when the locking lever 11 is in the unlocking position, the control pin 33 is in an unlocking position of an upper part of the control opening 103 and when the locking lever 11 is in the locking position, the control pin 33 is in a locking position of a lower part 103a of the control opening 103.
When the connect lever 11 and control pin 33 are in the unlocking position, the releasing action of the connect lever 13 is transmitted to the release lever 10 via the control pin 33. According to the releasing action of the release lever 10, the fully-closing door latch units 2,3 can be released. When the locking lever 11 and control pin 33 is in the locking position, even if the releasing action is carried out by the connect lever 13, the control pin 33 merely moves rearward through the lower part 103b of the control opening 33, so that the releasing action of the connect lever 13 is not transmitted to the release lever 10. Thus, the fully-open door latch units 2,3 cannot be released.
In the following description, “unlocking state” of the motion-connecting section 5 means that the locking lever 11 and control pin 33 are in the unlocking position, and “locking state” means that the locking lever 11 and control pin 33 are in the locking position. The actuator 14 changes to the unlocking state or locking state depending on change in state of the motion-connecting unit 5.
Then, with respect to
To the base plate 6, the release lever 10, connect lever 13, inside lever 8 and outside lever 7 overlap in order axially so as to rotate independently.
On the surface of the base plate 6, an annular projection 64 around the shaft 15 is formed by embossing to project toward the rear surface of the release lever 10. Thus, without subjecting to effect in variation of thickness of the matrix of the base plate 6 made of sheet metal, it is possible to make the distance t0 between the rear surface of the base plate 6 and the top surface of the annular projection 64 as determined formerly.
On the surface of the release lever 6, an annular projection 104 having a diameter D1 larger than the diameter D around the shaft 15 is formed by embossing to project toward the rear surface of the connect lever 13. At the same time with the embossing, an annular recess 105 corresponding to the annular projection 104 is formed on the rear surface of the release lever 10.
Without subjecting to the effect in variation of thickness of matrix of the release lever 10 formed from sheet metal, it is possible to make the distance t1 between the rear surface of the release lever 120 and the top surface of the annular projection 104 as determined formerly. Since the diameter D of the annular projection 64 of the base plate 6 differs from the diameter D1 of the annular projection 104 of the release lever 10, the annular projection 63 of the base plate 6 does not fit in the annular recess 105 of the release lever 10 to enable the release lever 10 to rotate smoothly.
On the surface of the connect lever 13, an annular projection having a diameter D2 smaller than the diameter D1 around the shaft 15 projects toward the rear surface of the inside lever 8 is formed embossing. At the same time with the embossing, an annular recess 135 corresponding to the annular projection 134 is formed on the rear surface of the connect lever 1.
Without subjecting to the effect of variation in thickness of the matrix of the connect lever 13 made of sheet metal, it is possible to make the distance t2 between the rear surface of the connect lever 13 and the top surface of the annular projection 134 as determined formerly. Since the diameter of the annular projection 104 of the release lever 10 differs from the diameter D2 of the annular projection D2, the annular projection 104 of the release lever 10 does not fit in the annular recess 135 of the connect lever 13 to enable the release lever 10 to rotate smoothly with the connect lever 13.
On the surface of the inside lever 8, an annular projection 83 having a diameter D3 smaller than the diameter D2 around the shaft 15 is formed by embossing to project toward the rear surface of the outside lever 7. In the embossing, an annular recess 84 corresponding to the annular projection 83 is formed on the rear surface of the inside lever 8.
Without subjecting to the effect of variation in thickness of the matrix of the inside lever 8 made of sheet metal, it is possible to determine the distance t3 between the rear surface of the inside lever 8 and the top surface of the annular projection 83 as determined formerly. Since the diameter D2 of the annular projection 134 of the connect lever 13 differs from the diameter D3 of the annular projection 83 of the inside lever 8, the annular projection 134 of the connect lever 13 does not fit in the annular recess 84 of the inside lever 8 to enable the connecting lever 13 to rotate smoothly with the inside lever 8.
The annular projections 64,104,134,83 are formed by embossing on the surfaces of the base plate 6, release lever 10, connect lever 13 and inside lever 8. Even in the structure in which a plurality of levers 10,13,8,7 pivot on the same shaft to the base plate 6, it is possible to avoid the effect by variation in thickness of the matrix of the levers 10,13,8,7. It prevents the levers 10,13,8,7 from loosening axially with larger gaps between the levers and it prevents the levers 10,13,8,7 from turning heavily with no gaps between the levers, enabling the levers to turn smoothly. Furthermore, the surfaces of the levers do not contact one another to enable the levers to turn more smoothly. The axial distances of the levers 10,13,8,7 can be made as determined formerly to enable the number of steps formed on the shaft 15 to become smaller than the number of the levers, so that the manufacturing costs of the shaft 15 can be reduced.
The actuator 14 will be described.
In
The housing 141 includes the motor 37; a worm wheel 39 which pivots via a pivot shaft 38 below the motor 37; an active lever 40 which pivots via a pivot shaft 35 to turn with the output lever 34; the first detecting switch 29 for directly detecting the position of the outside lever 7; a second detecting switch 30 for directly detecting the position of the childproof lever 12; an active-lever detecting switch 41 for directly detecting the position of an active lever 40; an inner detected lever 42 which turns with the detected lever 36; and an inside-handle detecting switch 43 for directly detecting the operation of the inside handle IH3 via the detected lever 36 and inner detected lever 42.
Furthermore, within the housing 141, a plate 142 is fixed to cover the inside of the housing 141 from the inside of the vehicle. In
The worm wheel 39 meshes with a worm 371 fixed to the shaft of the motor 37, rotates reversibly by the motor 37 and has engagement portions 391 projecting axially on the rotary surfaces. The engagement portions 391 provided on the rotary surface facing the outside of the vehicle are omitted.
Based on the rotation of the worm wheel 39 counterclockwise in
The output lever 34 pivots with the active lever 40 and is coupled at the upper end to the lower end of the locking lever 11. Thus, with the rotation of the motor 37, the output lever 34 moves with the active lever 40 to the unlocking and locking positions, so that the locking lever 11 moves to the unlocking and locking positions.
When the motion-connecting section 5 and inside handle unit IH are connected in the door 1, the detected lever 36 pivots on the pivot shaft 45 on the surface facing the inside of the vehicle and the inside handle IH3 in the housing 141, and engages in the connecting portion 33 of the inside handle IH3 in a direction of turning of the inside handle IH3. The detected lever 36 swings forward by door-opening action of the inside handle IH3 and swings rearward by door-closing action thereof.
The inner detected lever 42 turns forward or rearward with the detected lever 36 in the housing 141. The inner detected lever 36 is directly coupled to the inside handle IH3 with the detected lever 36, but is not connected indirectly to the inside handle IH3 via the motion-transmitting member such as a cable or a rod, enabling the inner detected lever 36 to move with the inside handle IH3 securely. The inside-handle detecting switch 43 detects the motion of the detected lever 36 via the inner detected lever 42 to enable the motion of the inside handle IH3 to be detected securely.
The inside-handle detecting switch 43 is attached in a vertical room 141f of the housing 141 and detects a swinging direction of the detected lever 36 and inner detected lever 42 thereby detecting a direction of action of the inside handle IH3 and transmitting a detected signal to control circuits. On the basis of the detected signal from the inside-handle detecting switch 43, the control circuits controls the electric opening unit 100 to move the door 1 to open when door-opening signal is inputted, and controls the electric opening unit 100 to move the door 1 to close.
The first detecting switch 29 for detecting the outside lever 7 is fixed in a horizontal room 141c extending rearward of the housing 141 such that only the sensor 291 is exposed from the upper surface of the housing 141 or a small hole 141 which faces a detected portion 75 of the outside lever 7. The small hole 141a of the housing 141 is tightly covered with a switch body 292 of the first detecting switch 29 so as to prevent rain water from coming into the housing 141. At each side of the sensor 291 of the first detecting switch 29, guides 141d,141d for guiding the detected portion 75 of the outside lever 7 are provided.
With releasing action of the outside lever 7, the detected portion 75 of the outside lever 7 comes in contact with the sensor 291 of the first detecting switch 29 which detects that the outside lever 7 is on releasing action and a detected signal is transmitted to the control circuits. Based on the detected signal of the first detecting switch 29, the control circuits controls the electric opening unit 100 to open the door 1 if the door 1 is in the fully-closed position, and to close the door 1 if the door 1 is in the fully-open position. The detected portion 75 of the outside lever 7 is guided by the guides 141d,141d to ensure that it is in contact with the sensor 291 securely thereby enabling the first detecting switch 29 to detect the action of the outside lever 7 securely.
The second detecting switch 39 for detecting the childproof lever 12 is fixed in the vertical room 141f extending upward in the housing 141 such that only the sensor 301 is exposed from the top surface of the housing 141 or a small hole 141b facing the detected portion 122 of the childproof lever 12. The small hole 141b of the housing 141 is tightly covered with a switch body 302 of the second detecting switch 30 so as to prevent rain water from coming into the housing 141. At the side of the sensor 301 of the second detecting switch 30 in the housing 141, guides 141a for guiding the detected portion 122 of the childproof lever 12 are provided.
When the childproof lever 12 moves to the locking position to allow the detected portion 122 of the childproof lever 12 to come in contact with the sensor 301 of the second detecting switch 30, the second detecting switch 30 detects that the childproof lever 12 moves to the locking position in the childproof locking state, so that a detected signal is transmitted to the control circuits. The detected portion 122 of the childproof lever 12 is guided by the guides 141a to ensure that the detected portion 122 is in contact with the sensor 301 enabling the action of the childproof lever 12 to be detected securely.
As mentioned above, in the housing 141 of the actuator 14, the motor 37, detecting switches 29,30,41,43 and terminal plate 143 electrically connected to the switches 29,30,41,43 are disposed. Hence, it is not necessary to provide the detecting switches 41,30,29 for detecting the levers 11,12,13, the inside-handle detecting switch 43 for detecting the action of the inside handle IH3 or electric wires electrically connected to the detecting switches 29,30,41,43, improving water tightness on the detecting switches 29,30,41,43 and reducing the costs for electric wires electrically connected to the switches 29,30,41,43 outside the housing 141. It is also possible to connect wiring for the motor 37 with wiring for the switches 29,30,41,43 thereby reducing the costs. The housing 141 for the actuator 14 is shaped like “L” and fixed to the lower part of the rectangular base plate 6 in front of the base plate 6, and the detecting switches 29,30,41,43 are not disposed on the base plate 6, thereby improving flexibility in layout of the levers on the base plate 6.
The function of the embodiments will be described with respect to
The outside handle OH is operated to open the door when the door 1 is held in the fully-closed state, and when the motion-connecting section 5 and childproof lever 12 are in the unlocking state and unlocking position respectively.
When the door 1 is held in the fully-closed position, the fully-closing door latch units 2,3 engage with the strikers. When the motion-connecting unit 5 is in the unlocking state, the locking lever 11, control pin 33, output lever 34 and active lever 40 are in the unlocking position respectively.
In the unlocking state in
In
The releasing action of the release lever 10 is transmitted to the fully-closing door latch units 2,3 via the motion-transmitting members 26,27 to release the fully-closed door latch units 2,3. Right after latch releasing is completed, the control circuits controls the electric opening unit 100 based on detected signal of the first detecting switch 29. Thus, the door 1 slides open by the electric opening unit 100.
In the unlocking state in
The inside handle IH3 is operated to open the door when the door 1 is in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the unlocking state and unlocking position respectively.
When the inside handle IH3 is operated to open the door in
The actuator 14 is operated to lock the door when the door 1 is held in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the unlocking state and unlocking position respectively.
When the motor 37 of the actuator 14 rotates in the locking direction in
The knob handle IH4 is operated to lock the door when the door 1 is held in the fully-closed state and when the motion-connecting section 5 and childproof lever 12 are in the unlocking state and unlocking position respectively.
When the knob handle IH4 is operated to lock the door in
The outside handle OH is operated when the door 1 is held in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the locking state and unlocking state respectively.
When the motion-connecting section 5 is in the locking state, the locking lever 11, control pin 33, output lever 34 and active lever 40 are in the locking position.
The outside handle OH is operated in
The inside handle IH3 is operated for door-opening when the door 1 is held in the fully-closed position and when the motion-connecting section 5 and childproof lever 12 are in the locking state and unlocking position respectively.
When the inside handle IH3 is operated to open the door in
The actuator ACT is unlocked when the door 1 is held in the fully-closed position and when the motion-connecting section 5 and childproof lever 12 are in the locking state and unlocking position respectively.
When the motor 37 of the actuator ACT rotates in the unlocking direction in
The knob handle IH4 is operated to unlock the door when the door 1 is held in the fully-closed position and when the motion-connecting section 5 and childproof lever 12 are in the locking state and in the unlocking position respectively.
The knob handle IH4 is operated to unlock the door in
The outside handle OH is operated when the door 1 is held in the fully-closed position and when the motion-connecting section 5 and childproof lever 12 are in the unlocking state and in the locking position respectively.
When the outside handle OH is operated in
The inside handle IH3 is operated to open the door when the door 1 is held in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the unlocking state and locking position respectively.
When the childproof lever 12 is in the locking position in
The outside handle OH is operated when the door 1 is in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the locking state and locking position respectively.
When the outside handle OH is operated in
The inside handle IH3 is operated to open the door when the door 1 is held in the fully-closed position and when the motion-connecting section 5 and childproof lever 12 are in the locking state and locking position respectively.
When the inside handle IH3 is operated to open the door in
The outside handle OH is operated when the door 1 is held in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the unlocking state and unlocking position respectively.
When the door 1 is held in the fully-open position, the fully-open door latch unit 4 engages with the striker.
When the outside handle OH is operated in the unlocking state in
The inside handle IH3 is operated for door-closing when the door 1 is held in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the unlocking state and unlocking position respectively.
When the inside handle IH3 is operated for door-closing in
The outside handle OH is operated when the door 1 is held in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the locking state and unlocking position respectively.
When the outside handle OH is operated in the locking state in
The inside handle IH3 is operated for door-closing when the door 1 is held in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the locking state and unlocking position respectively.
When the inside handle IH3 is operated for door-closing in
The childproof lever 12 is operated for locking when the door 1 is held in the fully-open position and when the motion-connection section 5 and childproof lever 12 are in the uncloking state and unlocking position respectively.
When the projection 121 of the childproof lever 12 exposed from the front end face of the door 1 is manually pushed down in
When the childproof lever 12 and control pin 28 move to the locking position, the detected portion 122 of the childproof lever 12 moves rearward along the upper surface of the housing 141 of the actuator 14 and comes in contact with the sensor 301 of the second detecting switch 30. Hence, the second detecting switch 30 detects that the childproof lever 12 moves to the locking position, and a locking-detected signal is transmitted to the control circuits.
The outside handle OH is operated when the door 1 is held in the fully-open position and when the motion-connecting unit 5 and childproof lever 12 are in the unlocking state and locking position respectively.
When the outside handle OH is operated in
The inside handle IH3 is operated for door-closing when the door 1 is held in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the unlocking state and locking position respectively.
When the inside handle IH3 is operated for door-closing in
The outside handle OH is operated when the door 1 is held in the fully-open position and when the motion-connecting section 5 and childproof lever in the locking state and locking position respectively.
When the outside handle OH is operated in
The inside handle IH is operated for door-closing when the door is held in the fully-open position and when the motion-connecting section 5 and childproof lever 12 are in the locking state and locking position.
When the inside handle IH3 is operated for door-closing in
The embodiment of the present invention is described, and without departing from the scope of claims, various changes and modifications may be possible.
One or both of the sensors of the first and second detecting switches 20,30 may be exposed from the side of the housing 141. In this case, the detected portions 75 and 122 of the outside lever 17 and/or childproof lever 12 may move along the side of the housing 141.
Number | Date | Country | Kind |
---|---|---|---|
2012-145835 | Jun 2012 | JP | national |
2012-145836 | Jun 2012 | JP | national |