The invention relates to the rocket and space engineering, and can find use in development of reusable rocket complexes for placing various space objects in orbit.
Known from the technical literature (see: “Kosmomavtika Na Rubezhe Tysyachilety” (Cosmonautics At The Boundary of Millennia. Results And Prospects)—M.: Mashinostroenie/Mashinostroenie-Polyot (Machine Building/Machine Building-Flight) Publishers, 2001, pp. 325-327, 369-372) is a method of operating launch vehicles, said method comprising the steps of: one-time using expendable rocket boosters for the 2nd stages within launch vehicles; and reusing nonexpendable rocket boosters for the 1st stages within the same launch vehicles.
Known from the same reference is a set of rocket boosters for operating launch vehicles, comprising expendable and nonexpendable rocket boosters. The reference assumes the development of nonexpendable boosters at maximum use of already existing expendable rocket boosters.
The prior art method of operating launch vehicles has a number of disadvantages: a great number (up to 100) of cycles for functioning a nonexpendable booster resulting in the necessity to ensure a long service life and lifetime of its compartments, equipment and communications with respective increase in mass and in development, manufacture, test, and operation costs.
The prior art set of rocket boosters for operating launch vehicles has a number of disadvantages: significant distinctions inclusive of those arising due to significant differences of service life and resources among expendable and nonexpendable boosters in a design, a composition and arrangement of compartment housings, equipment, electrical, pneumatic, hydraulic and other communications; a low weight efficiency, a low reliability and safety, high costs of development, manufacture, testing and operating a expendable booster due to its required long service life and lifetime.
There are objects to be accomplished by the invention to provide a method and a set of rocket boosters for operating launch vehicles, said boosters allowing reduction of expenses for developing, testing and operating said launch vehicles with a respective reduction in the cost of placing various space objects in orbit.
It is another object of the invention to improve parameters of reliability and safety of functioning launch vehicles as a whole.
Said objects are accomplished by that, in a method of operating launch vehicles, comprising the steps of one-time using at least a part of at least one expendable rocket booster within at least one launch vehicle, and reusing at least a part of at least one nonexpendable rocket booster within at least one launch vehicle, ACCORDING TO THE INVENTION, there are the steps of replacing at least one serviceable part of at least one nonexpendable rocket booster for a new one before at least one repeated use of the at least one nonexpendable rocket booster, and mounting the replaced part onto at least one expendable rocket booster. The step of mounting the replaced part onto the at least one expendable rocket booster is performed before each use of said booster within the at least one launch vehicle during at least two launches of the latter. The replacing step is performed for a part having the least remaining lifetime. The replacing step is performed for a part having the least remaining service life. There is the step of storing the at least one replaced part before the step of mounting the same. There is the step of using at least one part of at least one nonexpendable rocket booster within at least two different launch vehicles.
The aforementioned technical objects are accomplished also by that, in a set of rocket boosters for operating launch vehicles, having at least one expendable rocket booster and at least one nonexpendable rocket booster, ACCORDING TO THE INVENTION, at least one part of equipment of the expendable booster and at least one part of equipment of the nonexpendable booster are replaceably mounted on said boosters and are capable to be interchangeable. At least a part of interchangeable equipment is made interconnected to another part of said equipment by at least a part of communications and structurally united into at least one interchangeable module by at least a part of a housing of at least one compartment of a booster. At least a part of the interchangeable equipment of said rocket boosters is capable of being mounted onto at least one launch vehicle. At least a part of the interchangeable equipment of said rocket boosters is capable of being mounted onto at least two different launch vehicles.
The invention will no be described with reference to the accompanying drawings where
A set of rocket boosters for operating, for example, a launch vehicle 1 comprises, for example, one expendable rocket booster 2 and, for example, two nonexpendable rocket boosters 3, 4 (see
For example, a set of rocket boosters for operating a launch vehicle 5 comprises, for example, one expendable rocket booster 6 and, for example, one nonexpendable rocket booster 7 (see
For example, the boosters 2, 3, 4 are capable of being mounted onto the launch vehicle 1 (see
For example, the booster 7 is capable of being mounted onto the launch vehicle 5 (see
For example, the boosters 3, 4, 7 fulfill functions of boosters for the 1st stages, respectively, of the launch vehicles 1 and 5 (see
The booster 2 fulfills, for example, functions of a booster for the 2nd stage of the launch vehicle 1 (see
The booster 6 fulfills, for example, functions of a booster for the 2nd stage of the launch vehicle 5 (see
A number of both the expendable and nonexpendable boosters within the launch vehicles 1, 5 may vary depending on a required load-carrying capacity and adopted schemes for launching the launch vehicles 1, 5 (see
For example, the boosters 2, 3, 4, 7 comprise housings of compartments wherein equipment is mounted, for example (see
Additionally, the booster 2 comprises, for example, an intermediate compartment 12, the booster 7 comprises, for example, intermediate compartment 13, and the boosters 3, 4 comprise, for example, fore compartments 14 (see
Equipment required for functionality of the boosters 2, 3, 4 within the launch vehicles 1, 5, for example, units of the sustainer propulsion system (sustainer engines 15 with units of a pneumatic and hydraulic system), means for providing thermal conditions and fire control, instruments for control systems, terrestrial measurements and telemetry monitoring, sensor devices (see
The boosters 2, 3, 4 can be united within the launch vehicle 1 by inter-booster connections 16 mounted, for example, in the intermediate compartment 12, the fore compartments 14, and the tail compartments 8 (see
The boosters 3, 4, 7 can be provided with means having different compositions and designs and being designed for returning to a cosmodrome.
Thus, the means for returning, for example, the boosters 3, 4 may include, for example (see
A portion of the return means for the boosters 3, 4 can be mounted on housings of their fore compartments 14 (see
A portion of the return means for the boosters 3, 4 can be mounted on housings of the tail compartments 8 (see
The booster 7 can be provided with the return means identical to said return means for the boosters 3, 4 (see
Parts of equipment of the boosters 2, 3, 4, 7, for example, their sustainer engines 15 can be replaceably and interchangeably mounted (see
Parts of equipment of the boosters 2, 3, 4, 7, for example, sustainer engines 15 with a portion of units of the pneumatic-hydraulic system can be coupled, for example, by hydraulic communications and can be structurally united by the housings of the tail compartments 8, for example, into tail interchangeable modules 29 replaceably mounted on the boosters 2, 3, 4, 7 (see
Parts of equipment of the boosters 2, 3, 4, 7, for example units of the sustainer propulsion system (sustainer engines 15 with units of the pneumatic and hydraulic system), means for maintaining thermal conditions and fire control, instruments for control systems, terrestrial measurements and telemetry monitoring, sensor devices, and others, can be made interconnected by electrical, pneumatic, hydraulic, and other communications and structurally united by the housings of the compartments 8, 9, 10, 11, for example, into interchangeable rocket modules 30 replaceably mounted on the boosters 2, 3, 4, 7 (see
During reuse of the nonexpendable boosters 2, 3, 4, 5, 7, possible are different schemes of their functioning.
Thus, a scheme of functioning of, for example, the boosters 3, 4 can include the following steps (see
The steps C, D, E, F, G, H (see
It is possible to detach the boosters 3, 4 from a launch vehicle when they complete to fulfill upon completion of fulfillment of their functions, for example, after the rocket fuel components' stock in the sustainer propulsion system 15 has been spent (see
During the ballistic flight of the boosters 3, 4 in the upper atmosphere layers, it would be reasonable to provide reduction in a spread of path parameters and in effective loads. To this end, the boosters 3, 4 can be oriented, for example, using the jet nozzles 17 of the jet control system 18, and they can be, for example, passively stabilized and preliminarily braked using the pivoted flaps 19 (see
The pad 32 prepared for helicopter-aided landing the boosters 3, 4 can be located, for example, in vicinity of a railway, an aerodrome, a river port or a seaport. Further, the pad can be located, for example, on board of river- or sea-going ships and be advanced to the gripping area a certain time period ahead of the launch of the launch vehicle 1.
The transportation of the boosters 3, 4 a cosmodrome is possible by railway, aircraft, river, sea, automobile, and other means of transportation.
During preparation of the boosters 3, 4 for repeated use, diagnostics of their conditions can be carried out. To simplify the diagnostics, on-board return control complexes 25 for the boosters 3, 4 can be equipped, for example, with means for recording and storing data pertaining to external factors that act to the boosters during their operation.
Upon diagnostics of condition of the boosters 3, 4, their unserviceable (out-of-order, with expired service life, with completed lifetime) equipment and structural components can be replaced.
A scheme of functioning the booster 7 can be similar to the above-mentioned one of the boosters 3, 4 (see
Also possible is a mode of operating the launch vehicle 1 (see
Also possible is a mode of operating the launch vehicle 1 (see
Also possible is a mode of operating two launch vehicles 1, 5 (see
Also possible are embodiments of the method of operating the launch vehicles 1, 5 that are based, for example, on combinations of the above-mentioned schemes of operating (see
Thus, the method and the set of rocket boosters for operating, for example, the launch vehicles 1, 5, as described herein, allow:
Number | Date | Country | Kind |
---|---|---|---|
PV 2002-2897 | Aug 2002 | CZ | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/RU03/00372 | 8/20/2003 | WO | 7/21/2005 |