This application claims the benefit of priority under 35 U.S.C. § 119 of DE 10 2004 055 838.8 filed Nov. 19, 2004, the entire contents of which are incorporated herein by reference.
The present invention pertains to an operating room light fixture with a light fixture housing, in which at least one lighting unit with at least one light source is arranged, with a handle, which is arranged on the side of the light fixture housing facing the operating area.
Furthermore, the present invention pertains to a device for actuating an operating room light fixture with a control unit for switching over from a first lighting unit having a first light source and an external reflector to a second lighting unit having a second light source and an internal reflector.
An operating room light fixture with two lighting units is known from DE 199 56 337 A1, wherein a first lighting unit having a first light source and an external reflector is arranged in front of a second lighting unit having a second light source and an internal reflector in the direction in which the light emerges. The operating room light fixture has a control unit, which switches over to the second lighting unit as a function of a sensor signal, which detects the failure of the first lighting unit. The first lighting unit acting as the main lighting unit is replaced now because of its defect by the second lighting unit as a reserve lighting unit.
An operating room light fixture with a light fixture housing, in which a lighting unit with a light source is arranged, is known from DE 101 19 215 A1. On the side facing the operating area, the light fixture housing has a handle, by means of which the operator (surgeon) can direct the lighting unit toward the surface to be lit in the operating area. The operating room light fixture is fastened to a ceiling of the operating room by means of a suspension in an articulated manner. Control elements are provided in a wall box fastened to a wall of the operating room for the remote control of the operating room light fixture, the control signals being transmitted to the operating room light fixture by means of a transmitter-receiver unit in a wireless manner. The drawback of the prior-art operating room light fixture is the relatively limited operating comfort.
The object of the present invention is therefore to provide an operating room light fixture and a device for actuating same, so that the operating comfort is improved and better illumination of the operating area is guaranteed.
According to the invention, an operating room light fixture is provided with a light fixture housing, in which at least one lighting unit with at least one light source is arranged, with a handle, which is arranged on a side of the light fixture housing facing the operating area. The handle comprises a control element for setting and/or adjusting the luminous intensity of the light source.
The special advantage of the operating room light fixture according to the present invention is that the operator (surgeon) can set two functions of the operating room light fixture simultaneously by operating the operating room light fixture at one site. On the one hand, he can direct the operating room light fixture toward the operating area in space by grasping the handle, so that improved illumination of the operating area is guaranteed. On the other hand, the operator can set or adjust the luminous intensity of the light source by operating the control element integrated in the handle, so that optimal illumination of the operating area can be performed relatively simply and rapidly.
According to a preferred embodiment of the present invention, the control element is designed as a rotary element, so that the luminous intensity of the light source can be adapted to the needs by rotation in an easy-to-operate manner.
According to a special embodiment of the present invention, the handle is designed such that it can be sterilized. The control element is advantageously arranged in a central handle, which has a sterile design and thus makes possible the independent control of the light fixture by the sterile operating personnel.
According to a variant of the present invention, the control unit is arranged at the light fixture housing, so that the control of the operating room light fixture, the actuating unit of the operating room light fixture and the lighting unit of the operating room light fixture are arranged in or at a common housing. The operating room light fixture has a compact design as a result.
According to a variant of the present invention, a first lighting unit with a first light source and with an external reflector associated with same and a second lighting unit with a second light source and with an internal reflector associated with same are provided. The first lighting unit is used to generate a surface light, while the second lighting unit is used to achieve an additional in-depth illumination. As a result, it is advantageously unnecessary to bundle the light to achieve in-depth illumination. A constant light field diameter is always obtained due to the combination of the lighting units.
According to this further aspect of the invention the first light source of the first lighting unit and the second light source of the second lighting unit can be interconnected, such that an optical variable is set between a minimum and a maximum according to a preset control curve by actuating the single control element.
The special advantage of the device according to the present invention is that two lighting units can be actuated by means of a preset control mode such that illumination of the operating area corresponding to the needs is made possible.
According to a preferred embodiment of the device according to the present invention, the luminous intensity of the operating room light fixture is used as the actuating variable, so that adaptation of the luminous intensity is guaranteed with the combination of at least two lighting units. The in-depth illumination of the operating room light fixture can be optionally improved with the second lighting unit.
According to a variant of the device according to the present invention, the first and second lighting units are superimposed at least in one area of the control curve, which can be used especially to change the in-depth illumination.
According to a variant of the present invention, the control of the lighting units can be performed by means of a central handle arranged on a side of the operating room light fixture facing the operating area to be illuminated or by means of a stationarily arranged wall-mounted control unit. The wall-mounted control unit may be connected with the control unit arranged in the light fixture housing of the operating room light fixture in a wireless manner or via a cable.
An exemplary embodiment of the present invention will be explained in greater detail below on the basis of the drawings. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which the preferred embodiment of the invention is illustrated.
In the drawings:
Referring to the drawings in particular, an operating room light fixture 1 is provided according to the present invention. The operating room light fixture 1 is used, for example, in operating rooms of hospitals. The operating room light fixture 1 comprises essentially a light fixture housing 2, in which a first lighting unit 3 and a second lighting unit 4 are arranged. The light fixture housing 2 is fastened to a ceiling of the operating room via a suspension, not shown, the adjustment in space of the light fixture housing 2 being guaranteed by pivot bearings.
The first lighting unit 3 has a first light source 5 and an external reflector 6 associated with same. The second lighting unit 4 is arranged in front of the first lighting unit 3 in the direction 7 in which the light emerges and has a second light source 8 as well as an internal reflector 9 associated with same.
The first light source 5 and the second light source 8 are arranged on a common optical axis 10 of the operating room light fixture 1. The first light source 5 is designed as a gas discharge lamp and generates a first light bundle 11 with the relatively large-area external reflector 6 to form a shadowless surface light. The second light source 8 is designed as a halogen lamp and generates, in cooperation with the relatively small-area internal reflector 9, a second light bundle 12 to generate an additional in-depth illumination. A lens 13 for guiding the light as well as a filter 14, which are arranged between the light sources 5, 8 and the reflectors 6, 9, are associated with the light sources 5, 8. The filter 14 is used to absorb the infrared radiation.
A side on which the light emerges 15 of the light fixture housing 2 is formed essentially by a transparent glass pane. A handle 17 projects downward from the side on which the light emerges 15 in a central area 16 of the side on which the light emerges 15. The handle 17 is designed as a rotary element (control element) and is used to operate the first lighting unit 3 and the second lighting unit 4. The handle 17 is mounted rotatably around an axis of rotation, which coincides with the optical axis 10. The axis of rotation is directed in parallel to the direction 7 in which the light emerges. The handle 17 is connected with a relative incremental transducer 171, which sends an electric signal to a control unit 18 of the operating room light fixture 1. A camera 19 may optionally also be installed in the handle 17. The handle 17 is designed such that it can be sterilized and makes possible the direct operation of the lighting units 3, 4 by the operator (surgeon). As a result, direct adjustment (optically and in space) of the operating area by the operator is guaranteed.
The incremental transducer 171 may be designed without a stop. The incremental transducer 171 may optionally have a mechanical lock for certain angle of rotation segments.
The control unit 18 is preferably arranged at the light fixture housing 2. As an alternative, it may also be arranged on a suspension, not shown.
As is apparent from
Moreover, the power supply unit 20 may be connected with a stationarily arranged control unit 23. This control unit 23 is preferably fastened to a wall and is used to operate the lighting units 3 and 4 as well as to operate an additional indirect illuminating unit 24, which is arranged on the suspension or on a top side of the light fixture housing 2. This additional illuminating unit generates a diffuse light in order to set a certain basic brightness in the operating room when the lighting units 3, 4 are switched off, without the surgical procedure being hindered. This additional illuminating unit 24 is used for indirect illumination for microinvasive surgery.
The control unit 23 is coupled with the power supply unit 20 via an electric line, which passes on the electric signals to the power supply unit 20 and the control unit 18 via sliding contacts in the hinges of the suspension without stops. The control unit 23 is thus used for nonsterile control just as the control by means of an interface 25 (RS-232 interface) integrated in the power supply unit 20. This interface 25 may be arranged either at the ceiling tube or at an external switch box. It makes possible the coupling of a control unit, not shown, via a USB cable or in a wireless manner by means of infrared radiation. In addition, a wall-mounted control unit 33 may be provided for controlling the camera 19.
The additional illuminating unit 24 can be actuated directly by the power supply unit 20, wherein the first and second lighting units 3 and 4 can be actuated via the control unit 18. The handle 17 is mechanically connected with the incremental transducer 171 and with the camera 19.
The lighting units 3, 4 of the operating room light fixture 1 are controlled as follows: When the operating room light fixture 1 is switched on, the first lighting unit 3 has its maximum luminous intensity value L1. The second lighting unit 4 is switched off. The handle 17 assumes such a position that it corresponds to an angle of rotation of φ=45°. By rotating the handle 17 in a first direction, the luminous intensity 30 of the second lighting unit 4 can be superimposed to the luminous intensity 29 of the first lighting unit 3, angle of rotation range 45° to 90° in
The handle 17 may be optionally rotated beyond the maximum angle of rotation of 45° in the first direction of rotation, for which case a mechanical lock is provided. Switching is performed now in a pure in-depth illumination mode, in which the first lighting unit 3 is dimmed to the extent possible or is switched off.
When the handle 17 is rotated in a second direction of rotation opposite the first direction after switching on the operating room light fixture 1, the overall luminous intensity 26 is determined exclusively by the luminous intensity curve 29 of the first lighting unit 3. The first lighting unit 3 is actuated in this first luminous intensity range such that starting from a switch-on angle 45°, the luminous intensity 29 is reduced in an angle range totaling 45° to approx. 70% of the nominal luminous intensity of the first lighting unit 3. This corresponds to about 80 kLx, the minimum 27 of the total luminous intensity curve 26.
A mechanical lock, which signals to the operator the switching on of the additional illuminating unit 24, may be optionally provided during the further rotation of the handle 17 beyond the angle of rotation range of 45° in the first luminous intensity range. The first lighting unit 3 can be dimmed now, and the radiation from the light fixture housing 2 in the direction of the operating area is very extensively hindered. The illumination takes place in this state of switching essentially by the additional illuminating unit 24. This can be brought about, for example, by moving up the first light source 5, and the light is radiated upward by means of an auxiliary reflector. As an alternative, the emergence of the light radiation in the direction of the operating area can be hindered by covering the first lighting unit in the downward direction.
According to an alternative of the operating room light fixture 1, not shown, the control unit 18 may also actuate the lighting units 3, 4 such that the first illumination range and the second illumination range comprise a different angle of rotation range or more than two illumination ranges are provided. The luminous intensity curves 29, 30 of the lighting units 3, 4 may also be combined such that a nonlinear course of the control curve 26 is obtained. For example, the control unit 18 may actuate the lighting units 3, 4 such that the second lighting unit 4 is switched on additionally already beginning from an angle of rotation φ at which the first lighting unit 3 has not yet reached its maximum nominal luminous intensity.
As an alternative, other optical variables of the lighting units 3, 4 may also be combined with one another.
As an alternative, the first lighting unit 3 and the second lighting unit 4 may also have light sources 5, 8 of the same type with equal or different nominal power.
While a specific embodiment of the invention has been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 055 838 | Nov 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2002313 | Doane | May 1935 | A |
2215634 | Collins et al. | Sep 1940 | A |
2356592 | Kolbert et al. | Aug 1944 | A |
2896066 | Quetin | Jul 1959 | A |
4135231 | Fisher | Jan 1979 | A |
4280167 | Ellett | Jul 1981 | A |
4316237 | Yamada et al. | Feb 1982 | A |
4651257 | Gehly | Mar 1987 | A |
4884008 | Bossler et al. | Nov 1989 | A |
5001616 | Gehly et al. | Mar 1991 | A |
5067064 | Gehly et al. | Nov 1991 | A |
5331530 | Scholz | Jul 1994 | A |
5951139 | Smith et al. | Sep 1999 | A |
6135602 | Chuang | Oct 2000 | A |
6402351 | Borders | Jun 2002 | B1 |
6443596 | Bulko et al. | Sep 2002 | B1 |
6572234 | Maier et al. | Jun 2003 | B1 |
6582092 | Marka | Jun 2003 | B1 |
20030165055 | Scholz | Sep 2003 | A1 |
20060109650 | Hunerbein et al. | May 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060109664 A1 | May 2006 | US |