This disclosure relates to operating table top assemblies and related devices.
Operating tables are used to support patients during surgical procedures. Some operating tables are modular systems that include multiple different table top components that can be releasably coupled to one another. The components can be coupled together in a manner to provide an operating table top configuration that meets the demands of a particular surgical procedure to be performed.
In one aspect of the invention, an operating table top assembly includes a first table top component, a receiver assembly attached to or integrally formed with the first table top component, a second table top component, and a hook assembly attached to or integrally formed with the second table top component. The receiver assembly includes first and second spaced walls that define a central recess therebetween. The first wall has an outer side surface and a projection that extends laterally from the outer side surface. The projection defines an undercut. The hook assembly includes an elongate hook member attached to or integrally formed with a housing. The hook member has a tip portion. The housing is configured to be at least partially disposed within the central recess of the receiver assembly, and the tip portion of the hook member is configured to matingly engage the undercut defined by the projection of the receiver assembly. The housing of the hook assembly is at least partially disposed within the central recess of the receiver assembly when the first table top component is coupled to the second table top component, and the tip portion of the hook member of the hook assembly matingly engages the undercut defined by the projection of the receiver assembly when the first table top component is coupled to the second table top component.
In another aspect of the invention, an operating table includes a central column and an operating table top assembly that includes a first table top component mounted on the central column, a receiver assembly attached to or integrally formed with the first table top component, a second table top component that can be coupled to the first table top component, and a hook assembly attached to or integrally formed with the second table top component. The receiver assembly includes first and second spaced walls that define a central recess therebetween. The first wall has an outer side surface and a projection that extends laterally from the outer side surface. The projection defines an undercut. The hook assembly includes an elongate hook member attached to or integrally formed with a housing. The hook member has a tip portion. The housing is configured to be at least partially disposed within the central recess of the receiver assembly, and the tip portion of the hook member is configured to matingly engage the undercut defined by the projection of the receiver assembly. The housing of the hook assembly is at least partially disposed within the central recess of the receiver assembly when the first table top component is coupled to the second table top component, and the tip portion of the hook member of the hook assembly matingly engages the undercut defined by the projection of the receiver assembly when the first table top component is coupled to the second table top component.
In an additional aspect of the invention, an operating table top coupling device includes a receiver assembly including first and second spaced walls that define a central recess therebetween. The first wall has an outer side surface and a projection that extends laterally from the outer side surface. The projection defines an undercut. The operating table coupling device also includes a hook assembly including an elongate hook member attached to or integrally formed with a housing. The hook member has a tip portion. The housing is configured to be at least partially disposed within the central recess of the receiver assembly, and the tip portion of the hook member is configured to matingly engage the undercut defined by the projection of the receiver assembly.
In a further aspect of the invention, an operating table top coupling device includes a receiver assembly including first and second spaced walls that define a central recess therebetween. The first wall has an outer side surface and a projection that extends laterally from the outer side surface. The projection defines an undercut. The central recess is configured to receive at least a portion of a housing of a hook assembly when the hook assembly is coupled to the receiver assembly, and the undercut is configured to matingly engage a tip portion of a hook member of the hook assembly when the hook assembly is coupled to the receiver assembly.
In an additional aspect of the invention, an operating table top coupling device includes a hook assembly including an elongate hook member attached to or integrally formed with a housing. The hook member has a tip portion. The housing is configured to be at least partially disposed within a central recess of a receiver assembly when the hook assembly is coupled to the receiver assembly, and the tip portion of the hook member is configured to matingly engage an undercut defined by a projection of the receiver assembly when the hook assembly is coupled to the receiver assembly.
In another aspect of the invention, an operating table top assembly includes a first table top component, a first coupling member attached to or integrally formed with the first table top component, a second table top component, and a second coupling member attached to or integrally formed with the second table top component. The first coupling member includes first and second spaced walls that define a central recess therebetween. One of the first and second walls defines an aperture. The second coupling member is configured to matingly engage the first coupling member in a manner to couple the first table top component to the second table top component. The second coupling member includes a housing configured to be at least partially disposed within the central recess of the first coupling member, a spring-loaded member that can be moved between an extended position in which the spring-loaded member extends from a side surface of the housing and a retracted position in which the spring-loaded member is retracted into the housing, an actuator that is operably connected to the spring loaded member in a manner such that movement of the actuator can move the spring-loaded member from the extended position to the retracted position, and a locking mechanism configured to retain the spring-loaded member in the retracted position when the housing of the second coupling member is matingly engaged with the first coupling member such that the housing of the second coupling member is at least partially disposed within the central recess of the first coupling member.
In a further aspect of the invention, an operating table includes a central column and an operating table top assembly including a first table top component mounted on the central column, a first coupling member attached to or integrally formed with the first table top component, a second table top component, and a second coupling member attached to or integrally formed with the second table top component. The first coupling member includes first and second spaced walls that define a central recess therebetween. One of the first and second walls defines an aperture. The second coupling member is configured to matingly engage the first coupling member in a manner to couple the first table top component to the second table top component. The second coupling member includes a housing configured to be at least partially disposed within the central recess of the first coupling member, a spring-loaded member that can be moved between an extended position in which the spring-loaded member extends from a side surface of the housing and a retracted position in which the spring-loaded member is retracted into the housing, an actuator that is operably connected to the spring loaded member in a manner such that movement of the actuator can move the spring-loaded member from the extended position to the retracted position, and a locking mechanism configured to retain the spring-loaded member in the retracted position when the housing of the second coupling member is matingly engaged with the first coupling member such that the housing of the second coupling member is at least partially disposed within the central recess of the first coupling member.
In yet another aspect of the invention, an operating table top coupling device includes a housing, an elongate hook member attached to or integrally formed with the housing, a spring-loaded member that can be moved between an extended position in which the spring-loaded member extends from a side surface of the housing and a retracted position in which the spring-loaded member is retracted into the housing, an actuator that is operably connected to the spring loaded member in a manner such that movement of the actuator can move the spring-loaded member from the extended position to the retracted position, and a locking mechanism configured to retain the spring-loaded member in the retracted position when the operating table top coupling member is matingly engaged with an associated operating table top coupling member.
Embodiments can include one or more of the following features.
In some embodiments, the first wall is positioned outwardly of the second wall relative to the first table top component, and the hook assembly is configured such that the hook member extends along the outer side surface of the first wall of the receiver assembly when the first table top component is coupled to the second table top component.
In certain embodiments, the hook member of the hook assembly and the lateral projection of the receiver assembly are visible along a side surface of the operating table top such that a user can visually determine whether the tip portion of the hook member is matingly engaged with the undercut defined by the projection of the receiver assembly.
In some embodiments, a width of the central recess of the receiver assembly is no more than about 1.5 mm greater than a width of the housing of the hook assembly.
In certain embodiments, a gap is formed between a portion of the housing and the hook member of the hook assembly, and the gap is configured to receive a portion of the second wall of the receiver assembly when the first table top component is coupled to the second table top component.
In some embodiments, the hook member is attached to or integrally formed with a side wall extension of the housing, and the gap is adjacent the side wall extension.
In certain embodiments, a width of the gap is no more than about 1.0 mm greater than a width of the portion of the second wall of the receiver assembly.
In some embodiments, the hook assembly further includes a spring-loaded member that can be moved between an extended position in which the spring-loaded member extends from a side surface of the housing and a retracted position in which the spring-loaded member is retracted into the housing, and one of the first and second walls of the receiver assembly defines an aperture configured to receive a portion of the spring-loaded member when the spring-loaded member is in the extended position.
In certain embodiments, the spring-loaded member is completely retracted into the housing when the spring-loaded member is in the retracted position.
In some embodiments, the second wall of the receiver assembly defines the aperture.
In certain embodiments, the second wall is positioned inwardly of the first wall relative to the first table top component.
In some embodiments, the spring loaded-member is a spring-loaded pin.
In certain embodiments, the hook assembly further includes an actuator assembly having an actuator that is operably connected to the spring loaded member in a manner such that movement of the actuator can move the spring-loaded member from the extended position to the retracted position.
In some embodiments, the hook assembly further includes a locking mechanism that retains the spring-loaded member in the retracted position while the housing of the hook assembly is at least partially disposed within the central recess of the receiver assembly.
In certain embodiments, the locking mechanism includes a ball spring that engages a surface of the spring-loaded member while the housing of the hook assembly is at least partially disposed within the central recess of the receiver assembly and the spring-loaded member is retracted.
In some embodiments, the ball spring engages a surface of a tab extending from the spring-loaded member.
In certain embodiments, the ball spring engages a depression formed in a surface of the spring-loaded member.
In some embodiments, the ball spring protrudes from a bottom surface of the housing and contacts an upper surface of a third wall extending between the first and second walls of the receiver assembly while the housing of the hook assembly is at least partially disposed within the central recess of the receiver assembly.
In certain embodiments, the one of the first and second walls of the receiver assembly that defines the aperture configured to receive the portion of the spring-loaded member has a ramp portion arranged to depress the spring-loaded member as the housing of the hook assembly is slid into the central recess of the receiver assembly.
In some embodiments, the receiver assembly further includes a third wall that extends between the first and second walls and that defines an opening configured to receive a boss extending from the housing.
In certain embodiments, the opening is configured to receive only bosses of hook assemblies attached to or integrally formed with second table top components that are intended for use with the first table top component to which the receiver assembly is attached.
In some embodiments, the tip portion of the hook member is located at a first end region of the hook member, and the hook member includes a lobe extending from a central region of the hook member. The projection of the receiver assembly further defines a depression configured to receive the lobe when the first table top component is coupled to the second table top component.
In certain embodiments, the receiver assembly is attached to or integrally formed with a first side region of the first table top component and the hook assembly is attached to or integrally formed with a first side region of the second table top component.
In some embodiments, the operating table top assembly further includes a second receiver assembly attached to or integrally formed with a second side region of the first table top component and a second hook assembly attached a second side region of the second table top component. The second hook assembly is configured to releasably engage the second receiver assembly when the first table top component is coupled to the second table top component.
In certain embodiments, the receiver assembly is attached to or integrally formed with a first end region of the first table top component.
In some embodiments, the operating table top assembly further includes a second receiver assembly attached to or integrally formed with a second end region of the first table top component. The first end region is opposite the second end region.
In certain embodiments, the second receiver assembly is configured to releasably engage a hook assembly attached to or integrally formed with a third table top component when the third table top component is coupled to the first table top component.
In some embodiments, the hook assembly is attached to or integrally formed with a first end region of the second table top component, and a receiver assembly is attached to or integrally formed with a second end region of the second table top component. The first end region is opposite the first end region.
In certain embodiments, the receiver assembly attached to or integrally formed with the second end region of the second table top component is configured to releasably engage a hook assembly attached to or integrally formed with a third table top component when the third table top component is coupled to the second table top component.
In some embodiments, the first table top component is configured to mount on a column of an operating table.
In certain embodiments, the second table top component is mounted to a first end region of the first table top component and a third table top component is mounted to a second end region of the first table top component. The first end region is opposite the second end region.
In some embodiments, the first table top component is a seat and back component, the second table top component is a head component, and the second table top component is a leg component.
In certain embodiments, the locking mechanism includes a ball spring that engages a surface of the spring-loaded member while the housing of the second coupling member is at least partially disposed within the central recess of the first coupling member and the spring-loaded member is retracted.
In some embodiments, the ball spring engages a surface of a tab extending from the spring-loaded member.
In certain embodiments, the ball spring engages a depression formed in a surface of the spring-loaded member.
In some embodiments, the ball spring protrudes from a bottom surface of the housing and is arranged to contact a wall of the associated operating table top coupling member when the operating table top coupling member is matingly engaged with the associated operating table top coupling member.
In certain embodiments, the spring-loaded member is completely retracted into the housing when the spring-loaded member is in the retracted position.
In some embodiments, the spring loaded-member is a spring-loaded pin.
In certain embodiments, the operating table top coupling device further includes a receiver assembly having a side wall forming an aperture configured to receive a portion of the spring-loaded member when the hook assembly is coupled to the receiver assembly and the spring-loaded member is in the extended position.
Embodiments can include one or more of the following advantages.
In some embodiments, the hook member of the hook assembly is positioned outwardly of the outer side surface of the receiver assembly when the hook assembly and receiver assembly are engaged. This can provide the surgeon and surgical staff with clear visualization of the mated features of the hook and the projection extending from the outer wall of the receiver assembly. As a result, the surgeon and surgical staff can readily determine visually whether the hook assembly and receiver assembly are properly engaged.
In certain embodiments, the hook member extends forwardly beyond the front edge of the table top component to which the hook assembly is attached and the receiver assembly extends rearwardly beyond the rear edge of the component to which the receiver assembly is attached. As a result of this arrangement, the surgeon or surgical staff member can clearly see the initial contact between the hook member and the receiver assembly when he or she couples the first and second table top components to one another. This can help the surgeon or surgical staff member to ensure that the hook member is properly aligned with the receiver assembly during the initial phases of the coupling process.
In some embodiments, the lateral projection of the receiver assembly forms a ramp along which the hook member slides when the hook assembly is being coupled to the receiver assembly. In this way, the lateral projection of the receiver assembly can carry some of the weight of the table top component to which the hook assembly is attached as that table top component is being coupled to the table top component to which the receiver assembly is attached. This can make it easier for the surgeon or surgical staff member to couple the table top components to one another.
In certain embodiments, the hook assembly includes a spring-loaded member that can be configured in an extended position in which it engages an aperture in a wall of the receiver assembly in order to secure the hook assembly to the receiver assembly and can be configured in a retracted position in which it does not engage the aperture of the wall of the receiver assembly. The hook assembly can further include a locking mechanism that automatically holds the spring-loaded member in the retracted position when the hook assembly is coupled with the receiver assembly. Locking the spring-loaded member in this way allows the surgeon or surgical staff to decouple the hook assembly from the receiver assembly without having to apply a constant force to hold the spring-loaded member in the retracted position.
In some embodiments, the locking mechanism is configured so that once the hook assembly has been removed from the receiver assembly, the locking mechanism will automatically release the spring-loaded member allowing the spring-loaded member to return to its naturally biased extended position. As a result, the hook assembly will be ready for reattachment to the receiver assembly or to a different receiver assembly without the need for the surgeon or surgical staff member to reset the spring-loaded member to its extended position.
In some embodiments, the wall of the receiver assembly that contacts the spring-loaded button of the hook assembly during engagement of those assemblies includes a ramped segment that depresses the spring-loaded button into its retracted position. As a result, there is no need for the surgeon or surgical staff member to manually or otherwise retract the spring-loaded member prior to mating the hook assembly with the receiver assembly. This can reduce the time and effort required to couple the hook assembly to the receiver assembly.
In certain embodiments, the wall of the receiver assembly that includes the aperture in which the spring-loaded member is received is spaced inwardly from a side edge of the operating table. For example, the receiver assembly can include an outer wall and an inner wall that is inwardly spaced from the outer wall and the side of the operating table and that defines the aperture. Spacing the aperture inwardly from the side of the operating table in this way results in the aperture and the spring-loaded member protruding therefrom being positioned below the operating table. Due to this positioning, the likelihood of the aperture and spring-loaded member being exposed to body fluids and other surgical byproducts that might obstruct the aperture and negatively affect the operability of the spring-loaded member can be reduced. As a result, the reliability and life spans of the receiver assembly and the hook assembly may be increased.
In some embodiments, the spring-loaded member of the hook assembly engages the aperture of the wall of the receiver assembly when the hook assembly is coupled to the receiver assembly. This provides a mechanical connection that helps to secure the hook assembly to the receiver assembly. In addition, the tip portion of the hook member matingly engages the undercut of the projection of the receiver assembly when the hook assembly is coupled to the receiver assembly. This also provides a mechanical connection that helps to secure the hook assembly to the receiver assembly. The engagement between the tip portion of the hook member and the undercut of the projection will advantageously provide a secure connection between the hook assembly and the receiver assembly in the event that the spring-loaded member fails to properly engage the aperture. Further, the mechanical engagement resulting from both the engagement between the spring-loaded member and the aperture and the engagement between the tip portion of the hook member and the undercut of its associated projection can occur automatically as part of the coupling process. There is typically no need for the surgeon or surgical staff member to perform an additional locking step, such as tightening a knob, in order to properly secure the hook assembly to the receiver assembly.
In certain embodiments, the operating table top assemblies include various different table top components that can be configured in different ways to provide different table top configurations. In such embodiments, the hook assemblies and receiver assemblies of those table top components can use a mechanical coding system to prevent table top components from being connected to other table top components that are not designed to support the loads that would result from that configuration. The coding system can advantageously be provided by the interaction between a boss extending from the housing of the hook assembly and an opening formed in a transverse wall of the receiver assembly. In such cases, the table top components that are capable of bearing large loads include receiver assemblies with large windows, while the table top components that are capable of bearing only small loads include receiver assembly with smaller windows. Similarly, the table top components that are heavy or will produce large loads during use are equipped with hook assemblies that include large bosses, while the table top components that are light or will produce small loads during use are equipped with hook assemblies that include smaller bosses. In this way, the table top components that are light or that will produce small loads during use can be coupled to table top components that are capable of bearing small loads and table top components that are capable of bearing large loads. In contrast, the heavy table top components cannot be coupled to table top components that are only capable of bearing small loads because the boss of the heavy table top component will be too large to fit within the window of the table top component that can only bear small loads. This type of coding system provides an easy way to alert the user that an improper combination of table top components has been selected for use by preventing the corresponding hook assemblies and receiver assemblies of those components from fully engaging during the coupling process.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages of the invention will be apparent from the description and drawings, and from the claims.
As shown in
The left coupling device 112, which couples the left side of the head component 108 to the seat and back component 106, is a mirror image of the associated right coupling device 112. Similarly, the left coupling device 113, which couples the left side of the leg component 110 to the seat and back component 106, is a mirror image of the associated right coupling device 113. Therefore, the right and left coupling devices 112, 113 will not be separately described in detail.
Referring to both
The hook member 122 is typically sized so that it does not significantly impact the ability of a use to slide accessories on and off a side rail of the table that is adjacent the hook member 122 when the hook assembly 116 is coupled to the receiver assembly 114. In some embodiment, the hook member has a thickness of about 11 mm.
As shown in
Still referring to
In addition to being depressed by an outward force applied to the pin 144, the pin 144 can be moved from the extended position to a retracted position and vice versa through operation of an actuator assembly that includes an actuator 146 located on the outer surface of the hook member 122. As shown in
Referring to
As shown in
Referring again to
As shown in
Referring to both
Typically, the lateral projection 126 is integrally formed with the outer wall 170. For example, the outer wall 170 and the lateral projection 126 can be die cast, injection molded, or machined from a single plate of material. However, the lateral projection 126 and the outer wall 170 can alternatively be formed as separate components that are secured to one another using mechanical fasteners, such as bolts or screws, or using thermal bonding techniques, such as laser welding.
As noted above, the opening or window 166 that receives the boss 164 that extends from the bottom surface of the housing 134 of the hook assembly 116 when the hook assembly 116 is coupled to the receiver assembly 114 is formed in the transverse wall 172. The size of the opening 166 depends on the type of table top component to which the receiver assembly 114 is attached. Receiver assemblies 114 used on table top components capable of bearing heavy loads will generally have large openings 166, while receiver assemblies 114 used on table top components capable of bearing only light loads will generally have small openings 166. This can ensure that hook assemblies 116 that are coupled to heavy table top components or table top components that will be subjected to heavy loads during use (i.e., hook assemblies that have large bosses 164 extending from their housings) can only be coupled to receiver assemblies 114 attached to table top components that are capable of bearing large loads. The large bosses 164 extending from the housings 134 of hook assemblies 116 attached to such heavy table top components would be too large to fit within the small openings 166 in the transverse walls 172 of receiver assemblies 114 that are used with table top components that are only capable of bearing small loads. As discussed above, because the hook assembly 116 that is secured to the head component 108 is intended for use with the receiver assembly 114 that is secured to the seat and back component 106, the boss 164 of the hook assembly 114 illustrated in
Still referring to
The actuator 146 of the hook assembly 116, as shown in
As shown in
The various components of the hook assembly 116 and the receiver assembly 114 are typically formed of lightweight materials that are able to withstand the loads that their coupled table top components experience during use. In certain embodiments, for example, the various components of the hook assembly and the receiver assembly are formed of nickel plated aluminum alloy (e.g., 7075-T6 aluminum alloy having a nickel plating on the order of 0.25 mm thick), which is significantly lighter than certain conventional materials, such as stainless steel. By reducing the weight of these components (as compared to similar components formed of certain conventional materials), the overall weight of the head component 108 and the leg component 110 can be reduced. As a result, the surgeon or surgical staff member can more easily hold and maneuver these table top components during the coupling process.
The surgical staff member continues to advance the head component 108 toward the seat and back component 106 until the crook 120 of the hook member 122 of the hook assembly 116 comes into contact with the central region of the lateral projection 126 of the receiver assembly 114, as shown in
As the surgical staff member continues to push the head component 108 toward the seat and back component 106, the crook 120 of the hook member 122 slides beyond the ramp formed by the central region of the lateral projection 126 and drops into a recessed region at the front of the lateral projection 126, as shown in
Referring to
Because the hook member 122 and the lateral projection 126 are the outermost components of the hook and receiver assemblies 116 and 114, respectively, in the region in which the hook member 122 and the lateral projection 126 engage with one another, it is possible for someone standing at the side of the operating table to easily determine whether the hook assembly 116 has been properly engaged with the receiver assembly 114 and to thus determine whether the head component 108 has been properly secured to the seat and back component 106.
After use of the operating table 100, it may be desirable to remove the head component 108 from the seat and back component 106. This can be done, for example, in order to reconfigure the operating table 100 for a different type of surgical procedure. Referring to
As the housing 134 of the hook assembly 116 is removed from the space between the inner and outer walls 168, 170 of the receiver assembly 114, the ball spring 160 is no longer urged upward by the transverse wall 172 of the receiver assembly 114. As a result, the ball spring 160 drops downward and the spring-loaded pin 144 automatically returns to its extended position. Consequently, there is no need for the surgical staff member to reactivate the pin 144 (e.g., by moving the actuator 146 upward) prior to the next use of the head component 108.
While the methods described with respect to
Apart from squeezing the lever 194 instead of sliding an actuator to retract the spring-loaded pin 144, the operation of the hook assembly 186 is generally the same as the operation of the hook assembly 116 described in detail above. Therefore, the method of coupling the leg component 110 to the seat and back component 106 will not be described in further detail.
While the actuator assembly components disposed within the housing 190 of the hook assembly 186 are slightly different than the actuator assembly components disposed within the housing 134 of the hook assembly 116, in certain implementations, the actuator assemblies of those respective hook assemblies are designed such that the actuator assembly components disposed within the housings of those respective hook assemblies are identical. This can increase the ease and efficiency of manufacturing the various table top components because the same housing can be used for multiple different types of table top components.
While the actuator assemblies used to retract the spring-loaded pins 144 of the hook assemblies 116, 186 discussed above have been described as including slidable levers or squeezable levers, other types of actuators can alternatively be used. Examples of other types of actuators that can be used include quarter turn knobs, depressible paddles, triggers, and spring-loaded cuffs.
While the assembly used to lock the spring-loaded pin 144 in the retracted position has been described as including the ball spring 160 that engages the tab 162 that extends from the spring-loaded pin 144, other types of locking mechanisms can alternatively be used. In some embodiments, for example, the ball spring 160 is arranged to slide along the block-shaped member of the spring-loaded pin 144 and to protrude directly into a recess formed in the block-shaped member of the spring-loaded pin 144 in order to retain the spring-loaded pin 144 in its retracted position. Similarly, while the ball spring 160 has been described as being positioned below the spring-loaded pin 144, in some embodiments, the locking mechanism can alternatively be positioned above the spring-loaded pin 144. In such embodiments, the locking mechanism can include a pin or other projection that, due to gravity, drops into a recess formed along the top surface of the spring-loaded pin 144 as the spring-loaded pin 144 is retracted in order to retain the spring-loaded pin 144 in its retracted position.
While the receiver assembly 114 has been described as being attached to the seat and back component 106 and the hook assemblies 116, 186 have been described as being attached to the head component 108 and the leg component 110, respectively, in certain implementations, hook assemblies are attached to the seat and back component and receiver assemblies are attached to the table top components, such the head and leg components, to be coupled to the seat and back component.
While the receiver and hook assemblies 114, 116 have been described as being attached to the frames of their respective table top components 106, 108, in some implementations, the receiver assembly is intergrally formed (e.g., die cast or injection molded) with the frame of its respective table top component. Similarly, the hook assembly can be intergrally formed (e.g., die cast or injection molded) with the frame of its respective table top component.
While the receiver assembly 114 has been described as being formed of multiple discrete walls 168, 170, 172 that are secured together, in certain implementations, the receiver assembly is a unitary device. In such embodiments, for example, the receiver assembly can be die cast or injection molded.
While the opening 166 of the transverse wall 172 of the receiver assembly 114 has been illustrated as being generally rectangular, the opening 166 can have any of various other shapes. Similarly, while the openings 166 of the transverse walls 172 in the receiver assemblies 114 associated with different table top components (e.g., table top components capable of bearing different weights) have been described as having the same general shape but different sizes, in certain embodiments, the shape of the openings 166 in the transverse walls 172 can differ from one receiver assembly 114 to another to ensure that only intended types of hook assemblies 116 can be coupled to the receiver assemblies 114. As an example, the transverse walls of receiver assemblies attached to table top components capable of bearing heavy loads can have cross-shaped openings that generally match the cross-shaped openings, while the transverse walls of receiver assemblies attached to table top components capable of bearing heavy loads can have rectangular openings. Similarly, the hook assemblies attached to table top components that are heavy or that are intended to bear heavy loads during use can have cross-shaped bosses that match the cross-shaped openings, while the hook assemblies attached to table top components that are light or that are intended to bear only light loads during use can have rectangular bosses that match the cross-shaped openings. The cross-shaped bosses of the hook assemblies attached to heavy table top components could be disposed within the cross-shaped openings of the receiver assemblies capable of bearing heavy loads but could not be disposed within the rectangular openings of the receiver assemblies capable of bearing only light loads. In contrast, the rectangular bosses of the hook assemblies attached to light table top components could be disposed within the rectangular openings of the receiver assemblies capable of bearing only light loads and within the cross-shaped openings of the receiver assemblies capable of bearing heavy loads. Other combinations of different shapes that provide this type of coding function can also be used.
While the various components of the hook assembly and the receiver assembly have been described as being formed of nickel plated aluminum alloy, other materials can be used in some cases. Examples of other suitable materials include titanium and certain beryllium aluminum alloys.
While the operating table 100 has been described as including the seat and back component 106, the head component 108, and the leg component 110, various other types of table top components can alternatively or additionally be coupled together to form table tops having different configurations. Examples of other types of table top components that can be equipped with the coupling devices described herein include cantilevered support members, pelvic extensions (e.g., radiolucent pelvic extensions), fracture setting members, boom mounts, therapy delivery mounts, transfer tables, etc. These table top components and various other table top components, like the table top components discussed above, can be equipped with receiver assemblies and hook assemblies. Each receiver assembly can have an opening in its transverse wall that is sized according to a load bearing capacity of the table top component to which it is attached, and each hook assembly can include a boss sized according to the load expected to be applied by the table top component to which it is attached to a coupled table top component during use. Sizing the openings of the receiver assemblies and the bosses of the hook assemblies in this way can provide a coding system that helps to ensure that each of the various table top components can only be coupled to another table top component if that other table top component is capable of bearing the weight of the table top component being coupled to it.
Many of the table top components described herein can be equipped with hook assemblies at one end that engage receiver assemblies of another table top component and receiver assemblies at the opposite end that receive hook assemblies of yet another table top component. In this way, it is possible, for example, to secure one table top component directly to the seat and back component 106 and to secure another table top component on the back of the table top component that is secured to the seat and back component 106. This can allow the surgical staff member to extend the length of the operating table. In many cases, the table top component that is secured directly to the seat and back component 106 will include receiver assemblies that are coded differently (e.g., include differently sized or shaped openings 166) than the receiver assemblies of the seat and back component 106, and the table top component that is secured to the back end of the table top component that is directly secured to the seat and back component 106 will include receiver assemblies that are coded differently than the receivers of both the seat and back component 106 and the table top component that is directly secured to the seat and back component 106 or will include no receiver assemblies at all.
Other embodiments are within the scope of the following claims.