The present disclosure relates to an operation device having a tilting stem and an operation knob formed of an elastic material covering the stem.
Patent Document 1 discloses an invention relating to a push button device in which a switch unit is turned on in both a vertical direction pressing operation and a lateral direction pressing operation.
The push button device includes a first stem and a second stem below the first stem. Both when the first stem is pushed vertically and when the first stem is tilted by applying a lateral force, the second stem is pushed down, and the switch unit is turned on by the second stem.
The first stem and the second stem are covered with a finger hook member formed of silicone rubber and the inside is sealed. A hook member is provided inside the finger hook member. The hook member is disposed so as to surround the circumference of the first stem. When a push force is applied to the finger hook member in a lateral direction or a diagonal direction, the push force is applied to the first stem via the hook member.
In the push button device disclosed in Patent Document 1, when the finger hook member is pushed laterally or diagonally, the hook member directly hits the first stem and the first stem is tilted. In this structure, feeling of resistance when the hook member directly hits the first stem is transmitted to the finger through the finger hook member, which may deteriorate the operation feeling. In order to soften the operation feeling, the hook member is formed of a silicone rubber which is elastic and easily deformable.
Therefore, the hook member and the first stem are set vertically long such that, when a large operating force is applied and the finger hook member is greatly deformed and stretched, the hook member does not get over the first stem. Accordingly, it is prevented that the first stem cannot return to the original shape due to being disengaged from the outside of the hook member.
However, if the hook member or the first stem is set long, the height dimension of the push button device increases, and the size of the push button device also increases.
The present disclosure solves the above-described conventional problem and an object of the present disclosure is to provide an operation device which has a good operation feeling when the operation knob is pressed and can reduce the height dimension of the push button device.
The present disclosure is an operation device including a support portion, a stem configured to tilt to the support portion, a switch portion located below the stem and operated by a tilting operation of the stem, and an operation knob formed of an elastic material that covers at least a portion of the stem. A downward inner surface portion located below the upper end portion of the stem and a housing recess, formed by being recessed upwardly from the inner surface portion, that houses an upper portion including at least the upper end portion of the stem are formed inside of the operation knob. A reinforcing surface is exposed on the inner surface portion, and the reinforcing surface is disposed continuously or intermittently in a direction surrounding the stem.
In the operation device according to the present disclosure, it is preferable that the reinforcing surface has a smaller coefficient of friction on a surface than the elastic material forming the operation knob.
In the operation device according to the present disclosure, it is preferable that a minimum distance from a downward opening edge of the housing recess to the reinforcing surface is shorter than a radius of the stem.
In the operation device according to the present disclosure, it is preferable that the reinforcing surface includes an inclined surface that is directed downward as a distance from the stem increases.
Further, at least a peripheral edge of the upper end portion of the stem is an inclined surface that is directed downward as a distance from a center of the stem increases.
The operation device according to the present disclosure further includes a reinforcing member provided in the operation knob continuously or intermittently in a direction surrounding the housing recess. The reinforcing surface is a bottom surface of the reinforcing member.
In the operation device according to the present disclosure, it is preferable that the reinforcing member has higher rigidity than the elastic material forming the operation knob.
In the operation device according to the present disclosure, it is preferable that the reinforcing member is embedded inside of the operation knob, and the elastic material forming the operation knob is provided between the reinforcing member and the stem.
In the operation device according to the present disclosure, the stem is movably supported in a direction along the center line thereof, and the switch portion can be operated even when the stem is pressed downward along the center line by the operation knob.
In the operating device according to the present disclosure, the downward inner surface portion is formed on the operation knob made of an elastic material, and at least a part of the stem is housed in the housing recess formed in the inner surface portion. Further, the reinforcing surface is exposed on the inner surface portion. In this configuration, even when the operation knob is pushed in the lateral direction or the diagonal direction with a large force, the operation knob is greatly deformed, and the inner surface portion rides on the tip surface of the stem, the reinforcing surface exposed on the inner surface slides on the tip surface of the stem. Accordingly, the operation knob can be easily restored to the original shape. Therefore, as it is not required to provide a vertically long housing recess or stem, the height dimension of the device can be reduced.
Further, by embedding a reinforcing member having a reinforcing surface in the operation knob and disposing an elastic material of the operation knob between the stem and the reinforcing member, the operation feeling when operating the stem by pushing the operation knob is improved.
An operation device 1 of an embodiment of the present invention illustrated in
In the operation device 1, the Z1 direction is an upward direction and the Z2 direction is a downward direction. However, the operation device 1 may use the Z1-Z2 direction in any direction in the space of the operating parts of various electronic devices.
The operation device 1 includes a lower case 2 and an upper case 3. In the lower portion of the upper case 3, a holding recess 3a is formed in a portion facing the lower case 2. An inner case 4 is provided in the space inside the upper case 3. The inner case 4 includes a flange portion 4a that extends in a circumferential direction at a lower end portion. A flexible wiring board 5 is provided between the lower case 2 and the flange portion 4a. The lower case 2 and the upper case 3 are fixed to the flange portion 4a when the flange portion 4a is fitted to the holding recess 3a. In the operation device 1, a “support portion” is constituted by the lower case 2, the upper case 3, and the inner case 4. The lower case 2, the upper case 3, and the inner case 4 are formed of a synthetic resin material.
A cylindrical operation space 4b extending vertically is formed inside the inner case 4. A switch portion 6 is housed inside the operation space 4b. The switch portion 6 includes a switch mechanism portion 6a and a push button portion 6b. The switch mechanism portion 6a includes a switching contact and a return spring for preloading the push button portion 6b upward (in the Z1 direction) inside the housing. The housing of the switch mechanism portion 6a is fixed so as not to move below the operation space 4b. The switching contact has a fixed contact and a movable contact, and the fixed contact is conductive to the conductive layer on the surface of the flexible wiring board 5.
In the push button portion 6b, a lower portion is housed in the switch mechanism portion 6a, and an upper portion protrudes upward from the switch mechanism portion 6a. When the push button portion 6b is pressed in the Z2 direction, the movable contact is depressed by the push button portion 6b, and a switch circuit is switched on. Further, the push button portion 6b is always preloaded in the Z1 direction by the return spring in the switch mechanism portion 6a.
An upper support wall portion 4c is formed at the upper portion of the inner case 4 to close the upper portion of the operation space 4b, and an operation hole 4d is opened in the upper support wall portion 4c. Inside the operation space 4b, a stem 7 is disposed between an upper end portion 6c of the push button portion 6b and the upper support wall portion 4c. The stem 7 is formed of a synthetic resin material. The stem 7 includes a shaft portion 7b which protrudes upwardly through the operation hole 4d and a fulcrum flange portion 7a which is integrally formed in the lower portion of the shaft portion 7b and faces the lower surface of the upper support wall portion 4c provided at the upper portion of the inner case 4. In
An operation knob 10 is provided in the operation device 1. The operation knob 10 is an elastic material having elasticity and is formed of synthetic rubber or elastomer. The operation knob 10 of the present embodiment is formed of silicone rubber.
The operation knob 10 includes a lower cylindrical portion 11 and a flange portion 12 located at a lower side (on the Z2 side) of the cylindrical portion 11. As illustrated in
As illustrated in
As illustrated in
As illustrated in
Inside the operation knob 10, a ceiling surface 13a of the interior space 13 is a downwardly oriented inner surface portion 15. The inner surface portion 15 is located below the upper end portion 7c of the stem 7. The housing recess 16 is open to the inner surface portion 15. The reinforcing surface 19 which is the lower surface of the flange portion 18b of the reinforcing member 18 is exposed on the inner surface portion 15. As illustrated in
Further, a lower surface of the elastic material located within the inner space 18e of the reinforcing member 18, that is, a lower surface 15a of the inner surface portion 15 around the opening edge of the housing recess 16, is also an inclined surface that tilts in the same direction as the reinforcing surface 19.
The reinforcing member 18 formed of PBT resin has higher rigidity than the operation knob 10 formed of silicone rubber. Further, a coefficient of static friction with respect to the stem 7 of the reinforcing surface 19 which is the lower surface of the reinforcing member 18 is smaller than a coefficient of static friction with respect to the stem 7 of the silicone rubber forming the operation knob 10.
Next, operations of the operation device 1 will be described.
As illustrated by an arrow in
The reinforcing member 18 is embedded within the operation driving portion 14 of the operation knob 10, and the ceiling portion 18c of the reinforcing member 18 is located such that the peripheral portion of the through hole 18d covers the upper end portion 7c of the stem 7. The elastic material of the operation knob 10, the ceiling portion 18c thereon, and the elastic material thereon are sequentially stacked above the upper end portion 7c of the stem 7. Since the operating force F1 is transmitted to the stem 7 through the highly rigid ceiling portion 18c, the stem 7 and the push button portion 6b can be pushed down reliably against the force of the return spring in the switch mechanism portion 6a. Further, the operating force F1 is applied to the upper end portion 7c of the stem 7 from the ceiling portion 18c through the elastic material, and the ceiling portion 18c and the stem 7 do not come into direct contact with each other, so that the operation feeling is good.
When the operating force F2 illustrated in
Also in this case, since the operating force F2 is applied to the stem 7 from the cylindrical portion 18a of the reinforcing member 18 through the elastic material, the stem 7 and the push button portion 6b can be operated reliably against the force of the return spring in the switch mechanism portion 6a. Further, the operating force F2 is applied from the cylindrical portion 18a to the side of the stem 7 through the elastic material inside the cylindrical portion 18a, and the cylindrical portion 18a and the stem 7 do not come into direct contact with each other, so that the operation feeling is good.
Further, the reinforcing member 18 is embedded inside the operation driving portion 14 of the operation knob 10 and the peripheral portion and the upper portion of the operation driving portion 14 of the operation knob 10 are covered by the reinforcing member 18. Therefore, no matter which part of the operation driving portion 14 of the operation knob 10 is pressed, it is possible to prevent the elastic material forming the operation knob 10 from being compressed and deformed more than required and to prevent the elastic material from being stretched more than required. Accordingly, fatigue of the operation driving portion 14 that is constantly pressed by a finger can be reduced.
When the large lateral operating force F3 is applied to the operation knob 10, as in the case of
At this time, the reinforcing surface 19, which is the lower surface of the reinforcing member 18, is exposed to the inner surface portion 15 which is the ceiling surface 13a of the inner space 13, and the reinforcing surface 19 is mainly rides on the upper end portion 7c of the stem 7. The reinforcing surface 19 has higher rigidity than the silicone rubber forming the operation knob 10 and has a lower coefficient of static friction with respect to the stem 7. Accordingly, due to the contraction force of the stretched silicone rubber, the reinforcing surface 19 slides on the upper end 7c of the stem 7 and the operation knob 10 immediately returns to the initial shape illustrated in
In particular, the reinforcing surface 19 is provided with an inclined surface of the angle θ and the lower surface 15a of the elastic material inside the reinforcing member 18 is also provided with an inclined surface. Further, the peripheral edge of the upper end portion 7c of the stem 7 also has the inclined surface 7d. Therefore, due to the elastic contraction force of the silicone rubber, the inner surface portion 15 including the reinforcing surface 19 slides easily on the upper end portion 7c, and the operation knob 10 easily returns to the initial shape illustrated in
As described above, in the operation device of the present invention, even when the operation knob is pushed in the lateral direction or the diagonal direction with a large force, the operation knob is greatly deformed, and the inner surface portion rides on the tip surface of the stem, the operation knob is easily restored to the original shape. Therefore, it is not required to provide a vertically long housing recess or stem to absolutely prevent the inner surface from riding the tip surface of the stem even when a large force is applied. Accordingly, the height dimension of the device can be reduced. This enables to reduce restrictions on the size and location of the device. Alternatively, when operating in the lateral direction or the diagonal direction, since the distance from the fulcrum of the tilt of the stem can be controlled to reduce the operation stroke in the lateral or the diagonal direction, the degree of freedom in stroke setting can be increased. Further, by embedding the reinforcing member having the reinforcing surface in the operation knob and disposing the elastic material of the operation knob between the stem and the reinforcing member, the operation feeling at the time of operating the stem by pressing the operation knob is improved.
In the above embodiment, when the operation knob 10 is pressed laterally, the stem 7 is tilted with the contact portion (i) as a fulcrum, and the push button portion 6b of the switch portion 6 is pressed by the stem 7 to operate the contact point in the switch mechanism portion 6a. However, the present invention is not limited to the above embodiment, for example, a lifting stem that moves up and down may be provided instead of the push button portion 6b, and the lifting stem may be used to operate a switch portion such as a membrane switch located below the switch. Alternatively, a diagonally operating stem 7 can directly operate a switch portion such as a membrane switch.
Further, a reinforcing member such as a ring that only forms a reinforcing surface 19 may be embedded inside the operation knob 10, so that the circumference and the upper portion 7e of the stem 7 are not covered with the reinforcing member.
Number | Date | Country | Kind |
---|---|---|---|
2019-195905 | Oct 2019 | JP | national |
This application is a continuation of International Application No. PCT/JP2020/039771, filed on Oct. 22, 2020 and designating the U.S., which claims priority to Japanese Patent Application No. 2019-195905, filed Oct. 29, 2019. The contents of these applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4715569 | Essig | Dec 1987 | A |
20220244751 | Kimura | Aug 2022 | A1 |
20220246374 | Gorai | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
203647310 | Jun 2014 | CN |
H05-211987 | Aug 1993 | JP |
2003-305000 | Oct 2003 | JP |
2005-011597 | Jan 2005 | JP |
3937670 | Jun 2007 | JP |
2014-117574 | Jun 2014 | JP |
2018134355 | Aug 2018 | JP |
Entry |
---|
Machine translation of CN 203647310U, Shiboda et al., Jun. 18, 2014 (Year: 2014). |
Machine translation of JP 2018134355A, Togashi, Aug. 30, 2018 (Year: 2018). |
Machine translation of JP 3937670B2, Jun. 27, 2007 (Year: 2007). |
International Search Report for PCT/JP2020/039771 dated Dec. 22, 2020. |
Number | Date | Country | |
---|---|---|---|
20220236759 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/039771 | Oct 2020 | US |
Child | 17658723 | US |