The present invention relates to a semiconductor device, a method for driving the semiconductor device, and the like. The present invention relates to a display device, a method for driving the display device, and the like.
Note that in this specification, a semiconductor device means a circuit having a semiconductor element (e.g., a transistor or a diode) and a device having the circuit. The semiconductor device also means any device that can function by utilizing semiconductor characteristics. Examples of the semiconductor device include an integrated circuit, a chip including an integrated circuit, a display device, a light-emitting device, a lighting device, and an electronic device.
Low-power consumption is an added value of a liquid crystal display device. For example, it has been reported that a reduction in power consumption is achieved by reducing the frequency of data rewriting in a period during which a still image is displayed (see the following references).
An object of one embodiment of the present invention is to provide a display device with excellent display quality. Another object of one embodiment of the present invention is to provide an eye-friendly display device. Another object of one embodiment of the present invention is to provide a display device with low power consumption. Another object of one embodiment of the present invention is to provide a display device with a reduced change in voltage written to a pixel. Another object of one embodiment of the present invention is to provide a novel display device.
Note that the descriptions of these objects do not disturb the existence of other objects. In one embodiment of the present invention, there is no need to achieve all the objects. Other objects will be apparent from and can be derived from the description of the specification, the drawings, the claims, and the like.
One embodiment of the present invention is an operation method of a display device including a comparison circuit and a first display portion including a first pixel and a second pixel adjacent to the first pixel. Grayscale levels of an image displayed on the first display portion are CX at maximum. A first image signal is written to the first display portion. A grayscale level of the first image signal written to one of the first pixel and the second pixel is higher than or equal to 0.8CX and a grayscale level of the first image signal written to the other of the first pixel and the second pixel is lower than or equal to 0.2CX. The first image signal and a second image signal are compared with each other before the second image signal is written. The writing of the second image signal is performed once when the grayscale levels of the second image signal written to the first pixel and the second pixel are each 0.8CX or higher, or 0.2CX or lower. The writing of the second image signal is performed an odd number of times greater than or equal to three times when the grayscale levels of the second image signal written to the first pixel and the second pixel are each higher than 0.2CX and lower than 0.8CX. An interval between the writing of the first image signal and the writing of the second image signal is longer than or equal to 1 second and shorter than or equal to 10,000 hours.
In the above mode, it is preferable that the first display portion include a first display element and the first display element include a liquid crystal element. In the above mode, it is preferable that the first display element be configured to express a grayscale level by utilizing light reflection, a second display portion be included, the second display portion include a pixel including a second display element, and the second display element be a light-emitting display element. In the above mode, it is preferable that the pixel included in the first display portion include a transistor and the transistor include a metal oxide in a channel formation region.
One embodiment of the present invention is an operation method of a display device including a first display portion, a source driver, and a source line. The first display portion includes a pixel including a first display element. A first image is displayed on the first display portion. Then, a second image is displayed on the first display portion. The second image is written to the first display portion an odd number of times greater than or equal to three times when one of the first image and the second image is image data including a letter and the other of the first image and the second image is not image data including a letter. The second image is written to the first display portion once when each of the first image and the second image is image data including a letter or is not image data including a letter. A first signal is supplied to the source line by the source driver. A polarity of the first signal in odd-numbered writing in the writing performed the odd number of times is opposite to a polarity of the first signal in even-numbered writing in the writing performed the odd number of times. The writing performed the odd number of times greater than or equal to three times is performed at a frequency of greater than or equal to 30 Hz and less than or equal to 240 Hz.
In the above mode, it is preferable that the first display element be configured to express a grayscale level by utilizing light reflection. In the above mode, it is preferable that the first display element include a liquid crystal element. In the above mode, it is preferable that the pixel include a transistor and the transistor include a metal oxide in a channel formation region.
According to one embodiment of the present invention, a display device with excellent display quality can be provided. According to one embodiment of the present invention, an eye-friendly display device can be provided. According to one embodiment of the present invention, a display device with low power consumption can be provided. According to one embodiment of the present invention, a display device with a reduced change in voltage written to a pixel can be provided. According to one embodiment of the present invention, a novel display device can be provided.
Note that the description of these effects does not preclude the existence of other effects. One embodiment of the present invention does not necessarily achieve all the effects listed above. Other effects will be apparent from and can be derived from the description of the specification, the drawings, the claims, and the like.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the following description and it is easily understood by those skilled in the art that the mode and details can be variously changed without departing from the scope and spirit of the present invention. Accordingly, the present invention should not be construed as being limited to the description of the embodiments below.
In this specification and the like, a semiconductor device refers to a device that utilizes semiconductor characteristics, and means a circuit including a semiconductor element (e.g., a transistor or a diode), a device including the circuit, and the like. The semiconductor device also means any device that can function by utilizing semiconductor characteristics. For example, an integrated circuit, and a chip including an integrated circuit are semiconductor devices. Moreover, a storage device, a display device, a light-emitting device, a lighting device, an electronic device, and the like themselves might be semiconductor devices, or might each include a semiconductor device.
Furthermore, in this specification and the like, an explicit description “X and Y are connected” means that X and Y are electrically connected, X and Y are functionally connected, and X and Y are directly connected. Accordingly, without being limited to a predetermined connection relationship, for example, a connection relationship shown in drawings or texts, another connection relationship is included in the drawings or the texts. Here, X and Y each denote an object (e.g., a device, an element, a circuit, a wiring, an electrode, a terminal, a conductive film, and a layer).
Note that a transistor includes three terminals: a gate, a source, and a drain. A gate is a node that controls the conduction state of a transistor. Depending on the channel type of the transistor or levels of potentials applied to the terminals, one of two input/output nodes functions as a source and the other functions as a drain. Therefore, the terms “source” and “drain” can be switched in this specification and the like. In this specification and the like, the two terminals other than the gate may be referred to as a first terminal and a second terminal.
A node can be referred to as a terminal, a wiring, an electrode, a conductive layer, a conductor, an impurity region, or the like depending on the circuit configuration, the device structure, or the like. Furthermore, a terminal, a wiring, or the like can be referred to as a node.
In many cases, a voltage refers to a potential difference between a certain potential and a reference potential (e.g., a ground potential (GND) or a source potential). Thus, a voltage can be referred to as a potential and vice versa. Note that the potential indicates a relative value. Accordingly, “ground potential” does not necessarily mean 0 V.
In this specification and the like, the terms “film” and “layer” can be interchanged depending on the case or circumstances. For example, in some cases, the term “conductive film” can be used instead of the term “conductive layer,” and the term “insulating layer” can be used instead of the term “insulating film.”
In this specification and the like, ordinal numbers such as first, second, and third are used to avoid confusion among components, and the terms do not limit the components numerically or do not limit the order.
In the drawings, the size, the layer thickness, or the region is exaggerated for clarity in some cases. Therefore, the size, the layer thickness, or the region is not limited to the illustrated scale. Note that the drawings are schematic views showing ideal examples, and embodiments of the present invention are not limited to shapes or values shown in the drawings. For example, the following can be included: variation in signal, voltage, or current due to noise or difference in timing.
In this specification, terms for describing arrangement, such as “over”, “above”, “under”, and “below”, are used for convenience in describing a positional relationship between components with reference to drawings in some cases. Furthermore, the positional relationship between components is changed as appropriate in accordance with a direction in which each component is described. Thus, there is no limitation on terms used in this specification, and description can be made appropriately depending on the situation.
The positional relation of circuit blocks illustrated in a block diagram is specified for description. Even when a block diagram shows that different functions are achieved by different circuit blocks, one circuit block may be actually configured to achieve different functions. The functions of circuit blocks are specified for description, and even in the case where one circuit block is illustrated, blocks might be provided in an actual circuit block so that processing performed by one circuit block is performed by a plurality of circuit blocks.
In this specification and the like, a metal oxide means an oxide of metal in a broad sense. Metal oxides are classified into an oxide insulator, an oxide conductor (including a transparent oxide conductor), an oxide semiconductor (also simply referred to as an OS), and the like. For example, a metal oxide used in a semiconductor layer of a transistor is called an oxide semiconductor in some cases. That is to say, a metal oxide that has at least one of an amplifying function, a rectifying function, and a switching function can be called a metal oxide semiconductor, or OS for short. In addition, an OS FET is a transistor including a metal oxide or an oxide semiconductor.
In this specification and the like, a metal oxide including nitrogen is also called a metal oxide in some cases. Moreover, a metal oxide including nitrogen may be called a metal oxynitride.
In this specification and the like, “c-axis aligned crystal (CAAC)” or “cloud-aligned composite (CAC)” may be stated in some cases. CAAC refers to an example of a crystal structure, and CAC refers to an example of a function or a material composition.
In this specification and the like, a CAC-OS or a CAC metal oxide has a conducting function in a part of the material and has an insulating function in another part of the material; as a whole, the CAC-OS or the CAC metal oxide has a function of a semiconductor. In the case where the CAC-OS or the CAC metal oxide is used in a semiconductor layer of a transistor, the conducting function is to allow electrons (or holes) serving as carriers to flow, and the insulating function is to not allow electrons serving as carriers to flow. By the complementary action of the conducting function and the insulating function, the CAC-OS or the CAC metal oxide can have a switching function (on/off function). In the CAC-OS or CAC metal oxide, separation of the functions can maximize each function.
In this specification and the like, the CAC-OS or the CAC metal oxide includes conductive regions and insulating regions. The conductive regions have the above-described conducting function, and the insulating regions have the above-described insulating function. In some cases, the conductive regions and the insulating regions in the material are separated at the nanoparticle level. In some cases, the conductive regions and the insulating regions are unevenly distributed in the material. The conductive regions are observed to be coupled in a cloud-like manner with their boundaries blurred, in some cases.
Furthermore, in the CAC-OS or the CAC metal oxide, the conductive regions and the insulating regions each have a size of more than or equal to 0.5 nm and less than or equal to 10 nm, preferably more than or equal to 0.5 nm and less than or equal to 3 nm and are dispersed in the material, in some cases.
The CAC-OS or the CAC metal oxide includes components having different bandgaps. For example, the CAC-OS or the CAC metal oxide includes a component having a wide gap due to the insulating region and a component having a narrow gap due to the conductive region. In the case of such a composition, carriers mainly flow in the component having a narrow gap. The component having a narrow gap complements the component having a wide gap, and carriers also flow in the component having a wide gap in conjunction with the component having a narrow gap. Therefore, in the case where the above-described CAC-OS or the CAC metal oxide is used in a channel region of a transistor, high current drive capability in the on state of the transistor, that is, high on-state current and high field-effect mobility, can be obtained.
In other words, CAC-OS or CAC metal oxide can be called a matrix composite or a metal matrix composite.
In this embodiment, a display device of one embodiment of the present invention will be described.
<Display Device 200>
The display device 200 preferably includes a display portion 104. The display portion 102, the display portion 104, and the touch sensor 114 are preferably placed so as to overlap with each other.
The display portion 102 includes a plurality of pixels 61. The display portion 104 includes a plurality of pixels 62.
The display portion 102 includes a display element 101 (the display element 101 is illustrated in
The reflective liquid crystal element uses external light as a light source. A display device using the reflective liquid crystal element provides a clear and beautiful image. In addition, no backlight is necessary; thus, power consumption can be reduced. The response speed of the reflective liquid crystal element is higher than that of electronic paper or the like. The power consumption of the display device using the reflective liquid crystal element can be significantly reduced by using IDS driving (which is described later) in the display device. The display device with the combination of the reflective liquid crystal element and IDS driving has low power consumption and excellent display image quality and is therefore suitable as a portable terminal to display a book, especially a book including drawings or images (such as a textbook or a reference book).
The display portion 104 includes a display element 103 (the display element 103 is illustrated in
The display portion 102 and the display portion 104 each include a plurality of pixels. The pixels include switching elements (e.g., a transistor 63 and a transistor 66 in
As an example of the pixel included in the display portion 102, the pixel 61 is illustrated in
As an example of the pixel included in the display portion 104, the pixel 62 is illustrated in
The pixel 61 and the pixel 62 are preferably adjacent to each other. The pixel 61 and the pixel 62 may partly overlap with each other.
In the case where the display portion 102 and the display portion 104 display the same image, the same image signal is written to the pixel 61 and the pixel 62, for example. When the display portion 102 and the display portion 104 display the same image, an image with a unique texture, for example, can be obtained. In some cases, an eye-friendly image can be obtained.
The control portion 152 includes a comparison circuit 121, a storage circuit 122, a measurement circuit 123, and a write circuit 124.
The measurement circuit 123 controls the hold time of an image that is displayed on the display portion 102 and the display portion 104.
The storage circuit 122 has a function of storing an Nth video signal and an (N+1)th video signal.
The comparison circuit 121 compares the (N+1)th video signal supplied to the comparison circuit 121 and the Nth video signal stored in the storage circuit 122 and outputs a comparison result. The write circuit 124 writes the (N+1)th video signal predetermined times depending on the comparison result of the comparison circuit 121 and the interval between writing of the Nth video signal and writing of the (N+1)th video signal. The number of times of writing to the display portion 102 is determined to be one or an odd number of three or more.
Data from the write circuit 124 is supplied to the gate driver 112 and the source driver 113. An image is displayed on the display portion 102 and the display portion 104 depending on the data supplied to the gate driver 112 and the source driver 113.
Data from the touch sensor 114 is supplied to the input portion 151 and the measurement circuit 123. When data is supplied to the touch sensor 114 by a user, a display switch signal or the like is supplied to the input portion 151, for example.
In the control portion 152, for example, a start pulse (GSP), a clock signal (GCLK), and the like are generated as signals for controlling the gate driver 112, and a start pulse (SSP), a clock signal (SCLK), and the like are generated as signals for controlling the source driver 113. Note that such signals may each be a group of signals instead of a single signal.
The control portion 152 also includes a power control unit and controls the supply of a power source voltage to the drivers (112, 113) and the suspension thereof.
When GSP is input to the gate driver 112, a gate signal is generated in accordance with GCLK and output to each gate line sequentially. The gate signal selects a pixel to which a data signal is to be written.
The source driver 113 processes an image signal (Video) to generate a data signal and outputs the data signal to the source line. When SSP is input to the source driver 113, a data signal is generated in accordance with SCLK and output to source lines sequentially.
<Operation Method of Display Portion 102>
A case where the display portion 102 displays an image which does not change over time (such as a still image) or an image which changes with low frequency is considered here. The off-state leakage of an OS-FET is extremely low. When an OS-FET is used as the transistor 63 that is a switching transistor in a pixel with a liquid crystal element, leakage can be minimized. Thus, data degradation can be suppressed, and data can be held for an extremely long time. For example, the frequency of refresh can be lowered when a still image with no change in image data or an image with a low frequency of change in image data is displayed for a long time. Thus, display can be performed with low frequency. A decrease in display frequency enables a reduction in power consumption of the display device.
For example, in the case of displaying a still image or the like, the display frequency can be lower than or equal to 1 Hz, preferably lower than or equal to 0.3 Hz, further preferably less than or equal to 0.1 Hz. In some cases, driving of the display device with such a low display frequency of less than or equal to 1 Hz is referred to as “IDS driving.” The details of “IDS driving” will be described later.
With the use of such excellent characteristics of an OS-FET, excellent display with little degradation of image quality can be achieved even at a low frequency of rewriting.
On the other hand, “burn-in” occurs in a liquid crystal element in some cases. The term “burn-in” here refers to a state in which, when ionic impurities and the like are included in a liquid crystal element in addition to liquid crystal molecules, which are a major component, a grayscale level is gradually changed because the liquid crystal molecules are affected by the impurities in a long hold period, for example.
For example, in the case of switching from display with high transmissivity (high grayscale level display) to halftone display, the transmissivity is increased gradually after the switching, in some cases. In the case of switching from display with low transmissivity (low grayscale level display) to halftone display, the transmissivity is decreased gradually after the switching, in some cases. In the case where the refresh rate is extremely low as in IDS driving, such a small change over time may lead to a reduction in display quality.
Thus, the influence of the burn-in of a liquid crystal element is preferably reduced in terms of displaying a better image using IDS driving.
By performing high grayscale level display or low grayscale level display (high-contrast grayscale level display), the influence of the burn-in in a liquid crystal element can be reduced. In contrast, when halftone display is performed, the burn-in in a liquid crystal element causes a reduction in display quality in some cases. By successively writing the same data twice or more for example, the influence of the burn-in in the liquid crystal element can be reduced.
[The Number of Writing Times]
Then, gray was written again at Time t2 to the liquid crystal elements 101a and 101b having different reflectances due to the burn-in, and the gray was held. The results are shown in
The dipole moment of each of the liquid crystal elements used in the evaluation shown in
In contrast, a region where the transmissivity is lower than or equal to 20% and a region where the transmissivity is higher than or equal to 80% are affected less easily by a change in the voltage applied to the liquid crystal element than the region where the transmissivity is higher than 20% and lower than 80%.
The grayscale levels of an image that is displayed on the display portion 102 are CX at maximum, where CX is a positive integer, e.g., 16 or 256.
The high-contrast grayscale level refers to a grayscale level of 0.7CX or higher, or 0.3CX or lower, preferably, a grayscale level of 0.8CX or higher, or 0.2CX or lower, for example. In this specification and the like, a grayscale level that is 0.7CX or higher, preferably 0.8CX or higher is referred to as near white, and a grayscale level that is 0.3CX or lower, preferably 0.2CX or lower is referred to as near black. Furthermore, a grayscale level that is higher than 0.3CX and lower than 0.7CX, preferably higher than 0.2CX and lower than 0.8CX, e.g., a grayscale level that is higher than or equal to the 52nd grayscale level and lower than or equal to the 204th grayscale level (higher than or equal to 51 and lower than or equal to 203) in the case of 256 grayscale levels (from 0 to 255), is referred to as halftone in some cases.
[Process Flowchart]
An operation method of the display device of one embodiment of the present invention will be described with reference to a flowchart in
In the display device 200, Image X is displayed (Step S00).
First, in Step S01, an image signal and a hold time of an image that is displayed after Image X (an image that is displayed at present) is displayed are provided. The image that is displayed after Image X is displayed is hereinafter referred to as Image Y. Image X here is an Nth image signal, for example. Image Y here is an (N+1)th image signal, for example.
When the hold time of Image Y is longer than or equal to t in Step S02, the process proceeds to Step S03. When the hold time of Image Y is shorter than t, the process proceeds to Step S05. Here, t is preferably 1 second, further preferably 3 seconds, still further preferably 10 seconds.
The hold time of Image Y is preferably longer than or equal to 1 second and shorter than or equal to 10,000 hours, further preferably longer than or equal to 3 seconds and shorter than or equal to 1,000 hours, still further preferably longer than or equal to 10 seconds and shorter than or equal to 200 hours.
In the case where the process proceeds to Step S03, Image X and Image Y are compared with each other using the comparison circuit 121. Then, it is determined from the comparison result in Step S04 whether there are adjacent pixels having a large contrast difference in Image X. When adjacent pixels having a large contrast difference exist, the process proceeds to Step S06. When adjacent pixels having a large contrast difference do not exist, the process proceeds to Step S05. In the flowchart shown in
In the case where the process proceeds to Step S06, Image Y is analyzed in Step S06. When the pixels that are determined to have a large contrast difference in Step S04 perform halftone display in Image Y, the process proceeds to Step S07. When the pixels do not perform halftone display in Image Y, the process proceeds to Step S05.
In the case where the process proceeds to Step S05, Image Y is written to the display portion only once in Step S05. After that, Image Y is held in Step S08.
In the case where the process proceeds to Step S07, Image Y is written an odd number of times greater than or equal to three times in Step S08. Then, Image Y is held in Step S08.
After Step S08, an image switch signal, e.g., an (N+2)th image signal here, is supplied from an external portion or an internal portion to a touch sensor or the like in Step S09. After that, Steps S01 to S09 are performed while the (N+1)th image signal and the (N+2)th image signal are used as Image X and Image Y, respectively.
Steps S01 to S09 are repeatedly performed every time an image is switched.
The comparison between Image X and Image Y in Steps S04 to S07 is described with reference to
As shown in
The case is considered where one of an image signal for Image X that is written to the pixel 11 and an image signal for Image X that is written to a pixel adjacent to the pixel 11 has a grayscale level of near black, e.g., 0.2CX or lower, and the other image signal has a grayscale level of near white, e.g., 0.8CX or higher. In the example shown in
In the case where data of an image signal for Image Y that is written to the pixel 11 and at least one of the pixels 12 to 14 is halftone, e.g., data of higher than 0.2CX and lower than 0.8CX, the influence of the burn-in of liquid crystals is large in some cases. In the example shown in
In the case where image signals for Image Y that are written to the pixels 11 to 14 each have a grayscale level of near black or near white (0.2CX or lower, or 0.8CX or higher, in this example), i.e., the image signals each have a high-contrast grayscale level, the influence of the burn-in of liquid crystals is small.
The pixel 61 shown in
Comparing the pixel 11 with the pixels adjacent thereto has been described using
[Timing Chart]
Writing to the display portion 102 is described using timing charts shown in
Then, in a period 33, an image signal for Image Y is written three times at a frequency of 60 Hz. In the period 33, a negative voltage is applied in the first writing and the third writing, and a positive voltage is applied in the second writing. After the third writing, image data is held in a period 34. In the hold period, the data can be held by turning off the pixel transistor and setting the input signal in an off state.
In the period 32, data is held at the positive voltage. In the period 34, data is held at the negative voltage. By setting the number of writing to an odd number as described above, the polarity of the hold period can be changed alternately, so that the degradation of the liquid crystal element is suppressed.
The number of writing is three in
In the example shown in
First, in a first frame (Frame 1), in response to an input of GSP, the gate driver 112 generates a gate signal in accordance with GCLK and outputs the gate signal to gate lines. The source driver 113 (not illustrated), when supplied with SSP (not illustrated), processes an image signal in accordance with SCLK (not illustrated) to generate Vdata and outputs Vdata sequentially to source lines. At that time, Vdata with a positive polarity is generated.
Next, in a second frame (Frame 2), a gate signal and Vdata are generated in a similar procedure. In the second frame, Vdata with a negative polarity is generated.
Next, in a third frame (Frame 3), a gate signal and Vdata are generated in a similar procedure. In the third frame, Vdata with a positive polarity is generated.
In the case where a still image is displayed, the same signal is used in Frame 1, Frame 2, and Frame 3. Note that in Frame 2, the polarity of the signal is opposite to the polarity of the signal in Frame 1 and Frame 3.
Next, from a fourth frame (Frame 4), the transistor 63 that is a switching transistor in a pixel is turned off, and the written image is held. Since data rewriting is suspended from Frame 4, the supply of GSP and GCLK can be suspended. The supply of GVDD may also be suspended.
[Image Information]
As described above using
The display device of one embodiment of the present invention can display letters, drawings, and pictures, for example. Letters are formed by data with a high contrast, for example. Data for displaying drawings and pictures has halftone in many cases, for example.
The display device of one embodiment of the present invention is capable of displaying information of a book, for example. Examples of the book include a textbook.
The information of a book contains many letters. The switching speed of data containing letters is low, for example; therefore, the data is preferably displayed in a still image or at a low frequency in some cases. In these cases, display is preferably performed using the display portion 102. Displaying the data as a still image or at a low frequency on the display portion 102 can reduce the power consumption of the display device 200.
Letters are formed by data with a high contrast, for example. Thus, in the case where image signals for Image X and Image Y are text information, writing an image signal for Image Y to the display portion 102 only once is enough. That is, the power consumption of the display device of one embodiment of the present invention can be extremely reduced in a period in which letters are repeatedly displayed on the display device. Accordingly, in the case where the display device of one embodiment of the present invention is driven with a storage battery for example, the display device can be driven with the storage battery for a long time. Moreover, the number of times of charging the storage battery can be reduced.
<Operation Method of Display Device 200>
The display mode can be switched in the display device 200. Switching the display mode refers to selecting displaying an image on the display portion 102 or the display portion 104 or displaying an image on both of the display portion 102 and the display portion 104. The display mode can be switched depending on the intensity of external light, user's preference, the kind of image, or the like.
For example, an image is displayed on only the display portion 102 in intense external light conditions, and an image is displayed on the display portion 104 in weak external light conditions in the display device 200.
For example, an image is displayed on the display portion 102 and the display portion 104 at the same time in the display device 200. When an image is displayed on the display portion 102 and the display portion 104 at the same time, an image with a unique texture can be obtained. In some cases, an eye-friendly image can be obtained.
When the display portion 104 displays an image, wide viewing angle display may be achieved, for example. By achievement of wide viewing angle display, the display device 200 can be used regardless of the viewing angle. In some cases, the same display screen may be easily viewed by a plurality of people.
The display portion 102 may display a color image or a grayscale image, for example. The display portion 104 preferably displays a color image.
The case where the display portion 102 and the display portion 104 of the display device 200 display a grayscale image and a color image, respectively, will be considered here. In that case, for example, the display portion 102 displays an image in the case where a grayscale image is to be displayed by the display device 200, and the display portion 104 displays an image in the case where a color image is to be displayed. For example, the display portion 102 may display text information constituted by a grayscale image or a black-and-white image, and the display portion 104 may display a color image including a drawing, a picture, or the like.
Switching of the display mode of the display device 200 is described using a flowchart in
In Step S901, an instruction is given to specify a display mode. In Step S902, whether to display an image on the display portion 102 is determined depending on the display mode. In the case where an image is not displayed on the display portion 102, writing to the display portion 104 is performed in Step S903. In the case where an image is displayed on the display portion 102, the process proceeds to Step S904. In Step S904, whether to display an image on the display portion 104 is determined. In the case where an image is not displayed on the display portion 104, writing to the display portion 102 is performed in Step S905. In the case where an image is displayed on the display portion 102, writing to the display portion 102 is performed in Step S906, and writing to the display portion 104 is performed in Step S907. Steps S01 to S08 shown in
This embodiment can be combined with any of the other embodiments as appropriate.
Described in this embodiment is a liquid crystal material that is preferably used in a liquid crystal element included in the display device of one embodiment of the present invention when the liquid crystal element is operated using IDS driving.
<Dipole Moment>
First described is the influence of a molecule whose dipole moment is greater than or equal to 0 debye and less than or equal to 3 debye, which is included in the liquid crystal layer. Table 1 shows the relation between the dipole moment of the molecule and the resistivity as an example of the liquid crystal layer including the molecule whose dipole moment is greater than or equal to 0 debye and less than or equal to 3 debye.
For measurement of the values in Table 1, a mother liquid crystal and an additive material added to the mother liquid crystal are mixed to form the liquid crystal layer. The dipole moment ρ is a dipole moment of a molecule of the additive material. The resistivities μ shown in Table 1 are resistivities of the liquid crystal layer, i.e., a mixture of the mother liquid crystal and the additive material. As for a mixing ratio of the mother liquid crystal and the additive material, the ratio of the additive material to the entire mixed material is 20 weight %. Hereinafter, the mixture of the mother liquid crystal and the additive material is referred to as a mixed liquid crystal. Data shown in Table 1 shows the relationship between the dipole moment of a molecule contained in an additive material and the resistivity of a mixed liquid crystal to which the additive material is added, which is obtained by changing kinds of additive material added to the mother liquid crystal.
As shown in Table 1, the resistivity of the mixed liquid crystal is increased with the decrease in the dipole moment of the molecule of the additive material. In other words, the resistivity is decreased as the dipole moment of the additive material is increased. According to Table 1, the resistivity of a mixed liquid crystal whose molecule of the additive material has a dipole moment of less than or equal to 3 debye is higher than or equal to 1.0×1014 Ω·cm. The resistivity is increased as the dipole moment of the molecule of the additive material is decreased. However, the minimum dipole moment of zero is a state with no deviation of electric charges of a molecule. For example, when the molecule structure is symmetric with respect to the center of the molecule, there is no distribution deviation of electric charges and thus the dipole moment is zero. For this reason, in the liquid crystal material included in the liquid crystal element of one embodiment of the present invention, the eternal dipole moment of the molecule of the additive material is preferably greater than or equal to 0 debye and less than or equal to 3 debye. The resistivity is preferably higher than or equal to 1.0×1014 Ω·cm.
<Description of Relationship Between Dipole Moment and Operation of Liquid Crystal Layer>
Here, the dipole moment is described. In a molecule consisting of different kinds of atoms, the electronegativity of each atom generally differs from each other. When the atoms are combined to be a molecule, a distribution deviation of electric charges occurs in the molecule due to the difference in electronegativity. The dipole moment quantitatively represents the degree of the deviation. Note that the deviation of electric charges in the molecule can be represented as the presence of the eternal dipole moment.
When the deviation of electric charges is schematically represented as a state in which dot electric charges +q and −q having different polarities are separated by a distance l. In that case, the dipole moment is the product ql. The unit is C·m (coulomb meter) denoting the product of electric charges and the length.
The dipole moment is expressed as “debye” conventionally. In some cases, “debye” is represented as “debye unit” or “debye” or is represented as an alphabet “D” or “DU”. Formula 1 shows the relationship between debye and SI unit. As is found from Formula 1, debye represented by SI unit is extremely small. In general, a dipole moment of a molecule is approximately 1 debye. Therefore, the debye unit is generally used to represent the size of the dipole moment. The size of the dipole moment is represented by debye in this specification as well, and can be converted into SI unit using the relational expression of Formula 1.
[Formula 1]
1 debye=3.33564×10−30 [C·m] (1)
As for the liquid crystal layer, a molecule included in the liquid crystal layer (hereinafter referred to as a liquid crystal molecule) is a compound obtained by a combination of a plurality of different atoms. Thus, the liquid crystal layer has a distribution deviation of electric charges in the liquid crystal molecule, and has a dipole moment.
The liquid crystal molecule of the liquid crystal layer which is suitable for a display device generally has a stick-like shape. The liquid crystal layer is a dielectric having a dielectric anisotropy in which the dielectric constant is changed depending on the orientation direction of the stick-form liquid crystal molecules.
An electron-withdrawing group and an electron-donating group, such as cyano and halogen, in the molecule are related to the expression of dielectric anisotropy. The dielectric anisotropy is a property that has a direct relation to the response operation of a liquid crystal molecule with respect to an external field such as an electric field. A molecule structure showing a strong dielectric anisotropy is selected appropriately. However, when the number of electron-withdrawing groups is increased, for example, to increase the dielectric anisotropy, the deviation of electric charges, that is, the dipole moment becomes too large. As a result, the liquid crystal layer easily absorbs ionic impurities.
When the concentration of ionic impurities in the liquid crystal layer is increased, ion conduction easily occurs in the liquid crystal layer, so that the voltage holding ratio of the liquid crystal layer is reduced. Moreover, electric charges arisen from the ionic impurities are built up on the surface of the liquid crystal layer. This becomes a cause of an increase in the residual DC which appears when voltage is generated in the liquid crystal layer. The amount of the residual DC serves as a measure of possibility of the image burn-in of the display device and thus is preferably small.
The ionic impurities can enter at various steps, such as the material synthesizing step and the panel fabricating step. It is needless to say to avoid impurity contamination in each step. Moreover, the reduction of impurity ions in the material itself is effective in increasing the voltage holding ratio of the liquid crystal layer and in reducing the residual DC. Therefore, the material is preferably selected so that each liquid crystal molecule can have a small dipole moment.
As described above, when the dipole moment of the molecule exceeds 3, the influence of impurities contained in the liquid crystal layer becomes significant. The impurity that remains in the liquid crystal layer decreases the resistivity of the liquid crystal layer and increases the conductivity of the liquid crystal layer. This makes it difficult to keep voltage which has been applied to a pixel when the refresh rate of the display device is lowered.
When the dipole moment of the molecule contained in the liquid crystal layer is small, the amount of impurities in the liquid crystal layer can be reduced, so that the liquid crystal layer can have a low conductivity. For this reason, the liquid crystal layer whose molecule has a small dipole moment has an advantage in that voltage applied to a pixel can be kept longer when the refresh rate is low.
However, a simple reduction in dipole moment of the molecule of the liquid crystal layer may lead to a tendency to lower the interaction with an electric field. In that case, the behavior of the liquid crystal layer is slow; thus, the driving voltage needs to be set higher to facilitate high-speed operation. For this reason, this structure is not suitable for a liquid crystal layer with lower refresh rate for the purpose of low power consumption.
In particular, high driving voltage is not preferable because the total power consumption of the liquid crystal display device significantly increases when driving at a low refresh rate is changed to driving at a higher refresh rate for displaying moving images.
Therefore, it is preferable in one mode of this embodiment that the dipole moment of the molecule contained in the liquid crystal layer be greater than or equal to 0 debye and less than or equal to 3 debye. The liquid crystal layer whose molecule has a dipole moment of greater than or equal to 0 debye and less than or equal to 3 debye can reduce the proportion of the impurity contained in the liquid crystal layer and does not increase power consumption when moving image display is performed. Thus, driving voltage of the liquid crystal layer can be set in a preferable range.
Note that when the dipole moment of the molecule contained in the liquid crystal layer is greater than or equal to 0 debye and less than or equal to 3 debye, the driving voltage of the liquid crystal layer is preferably set high within a range without an increase in power consumption. A high driving voltage of the liquid crystal layer broadens an acceptable range of a deviation in grayscale. In other words, flickers can be reduced owing to the high driving voltage and a small deviation in grayscale in accordance with a change in voltage.
Note that the dipole moment of the molecule contained in the liquid crystal layer is greater than or equal to 0 debye and less than or equal to 3 debye in the description above, and is preferably greater than or equal to 0 debye and less than or equal to 2.5 debye, further preferably greater than or equal to 0 debye and less than or equal to 1.8 debye.
Note that the liquid crystal layer described in this embodiment is a liquid crystal layer in a TN (twisted nematic) mode as an example, but other modes can be employed.
As an operation mode of the liquid crystal layer other than the TN mode, an ECB (electrically controlled birefringence) mode, an IPS (in-plane-switching) mode, an FFS (fringe field switching) mode, an MVA (multi-domain vertical alignment) mode, a PVA (patterned vertical alignment) mode, an ASM (axially symmetric aligned micro-cell) mode, an OCB (optical compensated birefringence) mode, an FLC (ferroelectric liquid crystal) mode, an AFLC (antiferroelectric liquid crystal) mode, or the like can be used. Note that the structure of a pixel electrode in each pixel in the display device can be changed as appropriate in accordance with the display mode.
<Description of Voltage Holding Ratio>
Described here is the relation between the dipole moment of a molecule contained in the liquid crystal layer which is greater than or equal to 0 debye and less than or equal to 3 debye and the voltage holding ratio of the liquid crystal layer. For the voltage holding ratio, calculated was an area ratio with a voltage held after a voltage of 3 V is applied to electrodes with the liquid crystal layer interposed therebetween for 16.6 ms and the electrodes are open-circuited.
The voltage holding ratio of a material in which the dipole moment is not devised was 98.0% after a lapse of 30 seconds, whereas the voltage holding ratio of a material in which the dipole moment is greater than or equal to 0 debye and less than or equal to 3 debye was improved to 98.8% after a lapse of 30 seconds.
This embodiment can be combined with any of the other embodiments as appropriate.
In this embodiment, a structure example of a display device including a reflective display element and a light-emitting display element is described. Note that a structure example of a display device including a liquid crystal element as the reflective display element and including a light-emitting element with an EL material as the light-emitting display element is described in this embodiment.
In the display device 200, the display element 101 includes a pixel electrode 207, a common electrode 208, and a liquid crystal layer 209. The pixel electrode 207 is electrically connected to the transistor 206. The alignment of the liquid crystal layer 209 is controlled with a voltage applied between the pixel electrode 207 and the common electrode 208. Note that
The display element 103 is electrically connected to the transistor 205. The display element 103 emits light to the substrate 202 side. Note that since
In the display device 200 illustrated in
Owing to the above structure, the transistor 205 and the transistor 206 can be manufactured through a common manufacturing process.
Specifically, the display device 200 in
Owing to the above structure, the transistor 205 and a variety of wirings electrically connected to the transistor 205 can partly overlap with the transistor 206 and a variety of wirings electrically connected to the transistor 206. Thus, the size of the pixel can be decreased, and the resolution of the display device 200 can be increased.
Specifically, the display device 200 in
Owing to the above structure, the transistor 205 and a variety of wirings electrically connected to the transistor 205 can overlap with the transistor 206 and a variety of wirings electrically connected to the transistor 206, to a larger extent than in the case of
Specifically, the display device 200 in
Owing to the above structure, the transistor 205 and the transistor 206 can be manufactured through a common manufacturing process. A wiring which electrically connects the display element 101 and the transistor 206 and a wiring which electrically connects the display element 103 and the transistor 205 can be provided on the same side of the layer 210. Specifically, the wiring which electrically connects the display element 101 and the transistor 206 can be formed over the semiconductor layer of the transistor 206, and the wiring which electrically connects the display element 103 and the transistor 205 can be formed over the semiconductor layer of the transistor 205. Thus, the manufacturing process can be simpler than that of the display device 200 illustrated in
Note that
Although
This embodiment can be implemented in appropriate combinations with any of the other embodiments.
In this embodiment, a structure example of a pixel of a display device including a reflective display element and a light-emitting display element is described. Note that a structure example of a pixel 300 of one embodiment of the present invention in the case of including a liquid crystal element as the reflective display element and including a light-emitting element with an EL material as the light-emitting display element is described in this embodiment.
The pixel 300 illustrated in
Specifically, the pixel 350 includes the liquid crystal element 301, a transistor 303 having a function of controlling a voltage to be applied to the liquid crystal element 301, and a capacitor 304. A gate of the transistor 303 is electrically connected to a wiring GL, one of a source and a drain thereof is electrically connected to a wiring SL, and the other of the source and the drain thereof is electrically connected to a pixel electrode of the liquid crystal element 301. A common electrode of the liquid crystal element 301 is electrically connected to a wiring or an electrode to which a predetermined potential is supplied. One electrode of the capacitor 304 is electrically connected to the pixel electrode of the liquid crystal element 301, and the other electrode thereof is electrically connected to a wiring or an electrode to which a predetermined potential is supplied.
Specifically, the pixel 351 includes the light-emitting element 302, a transistor 305 having a function of controlling a current to be supplied to the light-emitting element 302, a transistor 306 having a function of controlling a potential supply to a gate of the transistor 305, and a capacitor 307. A gate of the transistor 306 is electrically connected to a wiring GE, one of a source and a drain thereof is electrically connected to a wiring DL, and the other of the source and the drain thereof is electrically connected to the gate of the transistor 305. One of a source and a drain of the transistor 305 is electrically connected to a wiring AL, and the other of the source and the drain thereof is electrically connected to the light-emitting element 302. One electrode of the capacitor 307 is electrically connected to the wiring AL, and the other electrode thereof is electrically connected to the gate of the transistor 305.
In the pixel 300 illustrated in
Although
Specifically, the pixel 300 illustrated in
For the structure of the pixel 350 in
Like the pixel 351 in
In the pixels 351a to 351d in
In the pixels 351a to 351d in
In the pixels 351a to 351d in
As described above, among the pixels 351a to 351d in
Specifically, in the pixel 300 illustrated in
Note that in the display device of one embodiment of the present invention, the pixel 300 may include a plurality of pixels 350 illustrated in
In the pixel 300 in
Note that in the display device of one embodiment of the present invention, the pixel 300 may include a plurality of pixels 350 illustrated in
Specifically, the pixel 351 in
A gate (a front gate) of the transistor 306 is electrically connected to a wiring ML, the back gate thereof is electrically connected to the wiring GE, one of a source and a drain thereof is electrically connected to the wiring DL, and the other of the source and the drain thereof is electrically connected to the gate and the back gate of the transistor 305. One of a source and a drain of the transistor 305 is electrically connected to the wiring AL, and the other of the source and the drain thereof is electrically connected to the light-emitting element 302. A gate (a front gate) of the transistor 308 is electrically connected to the wiring ML, the back gate thereof is electrically connected to the wiring GE, one of a source and a drain thereof is electrically connected to the wiring ML, and the other of the source and the drain thereof is electrically connected to the light-emitting element 302. One electrode of the capacitor 307 is electrically connected to the wiring AL, and the other electrode thereof is electrically connected to the gate of the transistor 305.
Although
Specifically, the pixel 300 illustrated in
For the structure of the pixel 350 in
Like the pixel 351 in
In the pixels 351a to 351d in
In the pixels 351a to 351d in
In the pixels 351a to 351d in
In the pixels 351a to 351d in
In the pixels 351a to 351d in
In the pixels 351a to 351d in
As described above, among the pixels 351a to 351d in
Note that in the case where a transistor with low off-state current is used in the pixel 350 and thus there is no need to rewrite the display screen (i.e., in the case of displaying a still image), a driver circuit can be temporarily stopped (this driving is hereinafter referred to “idling stop” or “IDS driving”). By IDS driving, the power consumption of the display device 200 can be reduced.
This embodiment can be implemented in appropriate combinations with any of the other embodiments.
In this embodiment, using the display device 200 illustrated in
The display device 200 illustrated in
The transistor 305 includes a conductive layer 311 serving as a back gate; an insulating layer 312 over the conductive layer 311; a semiconductor layer 313 over the insulating layer 312, which overlaps with the conductive layer 311; an insulating layer 316 over the semiconductor layer 313; a conductive layer 317 which is positioned over the insulating layer 316 and serves as a gate; and a conductive layer 314 and a conductive layer 315 which are positioned over an insulating layer 318 positioned over the conductive layer 317 and electrically connected to the semiconductor layer 313.
The conductive layer 315 is electrically connected to a conductive layer 319, and the conductive layer 319 is electrically connected to a conductive layer 320. The conductive layer 319 is formed in the same layer as the conductive layer 317. The conductive layer 320 is formed in the same layer as the conductive layer 311.
A conductive layer 321 serving as a back gate of the transistor 306 (not illustrated) is positioned in the same layer as the conductive layers 311 and 320. The insulating layer 312 is positioned over the conductive layer 321, and a semiconductor layer 322 having a region overlapping with the conductive layer 321 is positioned over the insulating layer 312. The semiconductor layer 322 includes a channel formation region of the transistor 306 (not illustrated). The insulating layer 318 is positioned over the semiconductor layer 322, and a conductive layer 323 is positioned over the insulating layer 318. The conductive layer 323 is electrically connected to the semiconductor layer 322 and serves as a source electrode or a drain electrode of the transistor 306 (not illustrated).
The transistor 309 has the same structure as the transistor 305, and therefore, detailed description thereof is omitted.
An insulating layer 324 is positioned over the transistor 305, the conductive layer 323, and the transistor 309, and an insulating layer 325 is positioned over the insulating layer 324. A conductive layer 326 and a conductive layer 327 are positioned over the insulating layer 325. The conductive layer 326 is electrically connected to the conductive layer 314, and the conductive layer 327 is electrically connected to the conductive layer 323. An insulating layer 328 is positioned over the conductive layers 326 and 327, and a conductive layer 329 is positioned over the insulating layer 328. The conductive layer 329 is electrically connected to the conductive layer 326 and serves as a pixel electrode of the light-emitting element 302.
A region where the conductive layer 327, the insulating layer 328, and the conductive layer 329 overlap with each other serves as the capacitor 307.
An insulating layer 330 is positioned over the conductive layer 329, an EL layer 331 is positioned over the insulating layer 330, and a conductive layer 332 serving as a counter electrode is positioned over the EL layer 331. The conductive layer 329, the EL layer 331, and the conductive layer 332 are electrically connected to each other in an opening of the insulating layer 330. A region where the conductive layer 329, the EL layer 331, and the conductive layer 332 are electrically connected to each other serves as the light-emitting element 302. The light-emitting element 302 has a top emission structure in which light is emitted in a direction indicated by a dotted arrow from the conductive layer 332 side.
One of the conductive layers 329 and 332 serves as an anode, and the other serves as a cathode. When a voltage higher than the threshold voltage of the light-emitting element 302 is applied between the conductive layer 329 and the conductive layer 332, holes are injected to the EL layer 331 from the anode side and electrons are injected to the EL layer 331 from the cathode side. The injected electrons and holes are recombined in the EL layer 331 and a light-emitting substance contained in the EL layer 331 emits light.
Note that in the case where an oxide semiconductor is used for the semiconductor layers 313 and 322, it is preferable to use an insulating material containing oxygen for the insulating layer 318 and it is preferable to use a material through which impurities such as water and hydrogen do not easily diffuse for the insulating layer 324.
In the case where an organic material is used for the insulating layer 325 or 330, when the insulating layer 325 or 330 is exposed at an end portion of the display device, impurities such as water may enter the light-emitting element 302 and the like from the outside of the display device through the insulating layer 325 or 330. Deterioration of the light-emitting element 302 due to the entry of impurities can lead to deterioration of the display device. For this reason, the insulating layers 325 and 330 are preferably not positioned at the end portion of the display device, as illustrated in
The light-emitting element 302 overlaps with a coloring layer 334 with an adhesive layer 333 provided therebetween. The spacer 335 overlaps with the light-blocking layer 336 with the adhesive layer 333 provided therebetween. Although
The coloring layer 334 is a colored layer that transmits light in a specific wavelength range. For example, a color filter that transmits light in a specific wavelength range, such as red, green, blue, or yellow light, can be used.
Note that one embodiment of the present invention is not limited to a color filter method, and a separate coloring method, a color conversion method, a quantum dot method, and the like may be employed.
The transistor 303 in the display portion 104 includes a conductive layer 340 serving as a back gate; an insulating layer 341 over the conductive layer 340; a semiconductor layer 342 over the insulating layer 341, which overlaps with the conductive layer 340; an insulating layer 343 over the semiconductor layer 342; a conductive layer 344 which is positioned over the insulating layer 343 and serves as a gate; and a conductive layer 346 and a conductive layer 347 which are positioned over an insulating layer 345 positioned over the conductive layer 344 and electrically connected to the semiconductor layer 342.
A conductive layer 348 is positioned in the same layer as the conductive layer 340. The insulating layer 341 is positioned over the conductive layer 348, and the conductive layer 347 is positioned over the insulating layer 341 and in a region overlapping with the conductive layer 348. A region in which the conductive layer 347, the insulating layer 341, and the conductive layer 348 overlap with each other serves as the capacitor 304.
A transistor 310 has the same structure as the transistor 303, and thus, the detailed description is omitted.
An insulating layer 360 is positioned over the transistor 303, the capacitor 304, and the transistor 310, and a conductive layer 349 is positioned over the insulating layer 360. The conductive layer 349 is electrically connected to the conductive layer 347 and serves as a pixel electrode of the liquid crystal element 301. An alignment film 364 is positioned over the conductive layer 349.
A conductive layer 361 serving as a common electrode is positioned over the substrate 251. Specifically, in
In
For example, a material containing one of indium (In), zinc (Zn), and tin (Sn) is preferably used for the conductive material that transmits visible light. Specifically, indium oxide, indium tin oxide (ITO), indium zinc oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium tin oxide containing silicon oxide (ITSO), zinc oxide, and zinc oxide containing gallium are given, for example. Note that a film including graphene can be used as well. The film including graphene can be formed, for example, by reducing a film containing graphene oxide.
Examples of a conductive material that reflects visible light include aluminum, silver, and an alloy including any of these metal elements. Furthermore, a metal material such as gold, platinum, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, or palladium or an alloy containing any of these metal materials can be used. Furthermore, lanthanum, neodymium, germanium, or the like may be added to the metal material or the alloy. Furthermore, an alloy containing aluminum (an aluminum alloy) such as an alloy of aluminum and titanium, an alloy of aluminum and nickel, an alloy of aluminum and neodymium, or an alloy of aluminum, nickel, and lanthanum (Al—Ni—La); or an alloy containing silver such as an alloy of silver and copper, an alloy of silver, palladium, and copper (also referred to as Ag—Pd—Cu or APC), or an alloy of silver and magnesium may be used.
Note that although
There is no particular limitation on the crystallinity of a semiconductor material used for the transistor, and an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partly including crystal regions) may be used. A semiconductor having crystallinity is preferably used, in which case deterioration of the transistor characteristics can be suppressed.
As a semiconductor material used for the transistor, an oxide semiconductor can be used. Typically, an oxide semiconductor containing indium or the like can be used.
In particular, a semiconductor material having a wider band gap and a lower carrier density than silicon is preferably used because off-state current of the transistor can be reduced.
The semiconductor layer preferably includes, for example, a film represented by an In-M-Zn-based oxide that contains at least indium, zinc, and M (a metal such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, or hafnium). In order to reduce variations in electrical characteristics of the transistor including the oxide semiconductor, the oxide semiconductor preferably contains a stabilizer in addition to In and Zn.
Examples of the stabilizer, including metals that can be used as M, are gallium, tin, hafnium, aluminum, and zirconium. As another stabilizer, lanthanoid such as lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, or lutetium can be given.
As an oxide semiconductor included in the semiconductor layer, any of the following can be used, for example: an In—Ga—Zn-based oxide, an In—Al—Zn-based oxide, an In—Sn—Zn-based oxide, an In—Hf—Zn-based oxide, an In—La—Zn-based oxide, an In—Ce—Zn-based oxide, an In—Pr—Zn-based oxide, an In—Nd—Zn-based oxide, an In—Sm—Zn-based oxide, an In—Eu—Zn-based oxide, an In—Gd—Zn-based oxide, an In—Tb—Zn-based oxide, an In—Dy—Zn-based oxide, an In—Ho—Zn-based oxide, an In—Er—Zn-based oxide, an In—Tm—Zn-based oxide, an In—Yb—Zn-based oxide, an In—Lu—Zn-based oxide, an In—Sn—Ga—Zn-based oxide, an In—Hf—Ga—Zn-based oxide, an In—Al—Ga—Zn-based oxide, an In—Sn—Al—Zn-based oxide, an In—Sn—Hf—Zn-based oxide, and an In—Hf—Al—Zn-based oxide.
Note that here, for example, an “In—Ga—Zn-based oxide” means an oxide containing In, Ga, and Zn as its main components and there is no limitation on the ratio of In:Ga:Zn. Further, a metal element in addition to In, Ga, and Zn may be contained.
Note that although the structure of the display device in which a liquid crystal element is used as a reflective display element is exemplified in this embodiment, a display element using a microcapsule method, an electrophoretic method, an electrowetting method, an Electronic Liquid Powder (registered trademark) method, or the like can also be used, other than micro electro mechanical systems (MEMS) shutter element or an optical interference type MEMS element.
As a light-emitting display element, a self-luminous light-emitting element such as an organic light-emitting diode (OLED), a light-emitting diode (LED), and a quantum-dot light-emitting diode (QLED) can be used.
The liquid crystal element can employ, for example, a vertical alignment (VA) mode. Examples of the vertical alignment mode include a multi-domain vertical alignment (MVA) mode, a patterned vertical alignment (PVA) mode, and an advanced super view (ASV) mode.
The liquid crystal element can employ a variety of modes; for example, other than the VA mode, a twisted nematic (TN) mode, an in-plane switching (IPS) mode, a fringe field switching (FFS) mode, an axially symmetric aligned micro-cell (ASM) mode, an optically compensated birefringence (OCB) mode, a ferroelectric liquid crystal (FLC) mode, or an antiferroelectric liquid crystal (AFLC) mode can be used.
As the liquid crystal used for the liquid crystal element, thermotropic liquid crystal, low-molecular liquid crystal, high-molecular liquid crystal, polymer dispersed liquid crystal (PDLC), ferroelectric liquid crystal, anti-ferroelectric liquid crystal, or the like can be used. These liquid crystal materials exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, or the like depending on conditions.
As the liquid crystal material, either a positive liquid crystal or a negative liquid crystal may be used, and an appropriate liquid crystal material can be used depending on the mode or design to be used.
An alignment film can be provided to adjust the alignment of a liquid crystal. In the case where a horizontal electric field mode is employed, a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used. The blue phase is a liquid crystal phase, which is generated just before a cholesteric phase changes into an isotropic phase when the temperature of a cholesteric liquid crystal is increased. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition in which a chiral material is mixed to account for several weight percent or more is used for the liquid crystal layer in order to improve the temperature range. The liquid crystal composition containing a liquid crystal exhibiting a blue phase and a chiral material has a short response time and optical isotropy, which eliminates the need for an alignment process and reduces the viewing angle dependence. Since the alignment film does not need to be provided, rubbing treatment is not necessary; accordingly, electrostatic discharge damage caused by the rubbing treatment can be prevented, reducing defects and damage of a liquid crystal display device in the manufacturing process.
This embodiment can be combined with any of the other embodiments as appropriate.
An FPC 508 is electrically connected to the IC 504, and an FPC 509 is electrically connected to the IC 505. An FPC 510 is electrically connected to the scan line driver circuit 502 through a wiring 511. The FPC 510 is also electrically connected to the scan line driver circuit 503 through a wiring 512.
Specifically, the pixel 513 in
Note that in order to display black with high color reproducibility by using the light-emitting elements corresponding to green, blue, red, and yellow, the amount of current flowing to the light-emitting element corresponding to yellow per unit area needs to be the smallest among those flowing to the light-emitting elements. In
This embodiment can be combined with any of the other embodiments as appropriate.
In this embodiment, examples of electronic devices that use the display device of one embodiment of the present invention will be described.
The information terminal 6200 includes an optical sensor 6225X and an optical sensor 6225Y for measuring the incident angle of external light. The optical sensor 6225X and the optical sensor 6225Y are located in a bezel of the housing 6221. Specifically, the optical sensor 6225X is located along one of two short sides of the bezel of the housing 6221, and the optical sensor 6225Y is located along one of two long sides of the bezel of the housing 6221. In one embodiment of the present invention, the incident angle and illuminance of external light are measured with the optical sensor 6225X and the optical sensor 6225Y. On the basis of the obtained data, the color and grayscale of an image to be displayed by the display device 6222 can be adjusted.
The locations of the optical sensor 6225X and the optical sensor 6225Y are not limited to those in the information terminal 6200 illustrated in
Although not illustrated, the information terminal 6200 illustrated in
A combination of information about the inclination with information about the incident angle and illuminance of external light which is obtained from the optical sensors 6225X and 6225Y described above enables more accurate adjustments of the color and grayscale of image data to be displayed by the display device 6222. In that case, with an imaging sensor provided in the housing 6221, information about the position of user's eyes (or viewing direction) with respect to the information terminal 6200 is obtained and combined with information about the inclination and the incident angle and illuminance of external light. This enables even more accurate adjustments of the color and grayscale of an image to be displayed by the display device 6222.
Although not illustrated, the information terminal 6200 illustrated in
Although not illustrated, the information terminal 6200 illustrated in
Although not illustrated, the information terminal 6200 illustrated in
This embodiment can be combined with any of the other embodiments as appropriate.
This embodiment can be combined with any of the other embodiments as appropriate.
This application is based on Japanese Patent Application Serial No. 2016-159795 filed with Japan Patent Office on Aug. 17, 2016, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2016-159795 | Aug 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6714268 | Wang et al. | Mar 2004 | B2 |
7038641 | Hirota et al. | May 2006 | B2 |
7084936 | Kato | Aug 2006 | B2 |
7102704 | Mitsui et al. | Sep 2006 | B2 |
7176991 | Mitsui et al. | Feb 2007 | B2 |
7239361 | Kato | Jul 2007 | B2 |
7248235 | Fujii et al. | Jul 2007 | B2 |
7385654 | Mitsui et al. | Jun 2008 | B2 |
8823893 | Yamazaki | Sep 2014 | B2 |
8854286 | Yamazaki et al. | Oct 2014 | B2 |
9244323 | Yamazaki | Jan 2016 | B2 |
9368082 | Yamazaki et al. | Jun 2016 | B2 |
9620525 | Yamazaki | Apr 2017 | B2 |
20030201960 | Fujieda | Oct 2003 | A1 |
20060072047 | Sekiguchi | Apr 2006 | A1 |
20080180618 | Fujieda | Jul 2008 | A1 |
20100002021 | Hashimoto | Jan 2010 | A1 |
20100171905 | Huang et al. | Jul 2010 | A1 |
20110285759 | Sakai | Nov 2011 | A1 |
20160232868 | Yamazaki et al. | Aug 2016 | A1 |
20170004788 | Yamazaki et al. | Jan 2017 | A1 |
20170039977 | Yamazaki | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
2001-066593 | Mar 2001 | JP |
2002-196702 | Jul 2002 | JP |
2002-328630 | Nov 2002 | JP |
2003-076302 | Mar 2003 | JP |
2003-157026 | May 2003 | JP |
2003-157029 | May 2003 | JP |
2003-228304 | Aug 2003 | JP |
2003-316295 | Nov 2003 | JP |
2003-322850 | Nov 2003 | JP |
2004-296162 | Oct 2004 | JP |
2007-232882 | Sep 2007 | JP |
4161574 | Oct 2008 | JP |
2011-141522 | Jul 2011 | JP |
2011-237760 | Nov 2011 | JP |
2013-221965 | Oct 2013 | JP |
WO-2004-053819 | Jun 2004 | WO |
Entry |
---|
Shieh.H, “Transflective display by Hybrid OLED and LCD”, LEOS 2005 (IEEE Lasers and Electro-Optics Society Annual Meeting) , Oct. 22, 2005, pp. 650-651, IEEE. |
Lee.J et al., “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device”, Optics Express, Nov. 14, 2005, vol. 13, No. 23, pp. 9431-9438. |
S. Amano et al., “43.4: Low Power LC Display Using In—Ga—Zn-Oxide TFTs Based on Variable Frame Frequency”, SID Digest '10 : SID International Symposium Digest of Technical Papers, 2010, pp. 626-629. |
Number | Date | Country | |
---|---|---|---|
20180053459 A1 | Feb 2018 | US |