This application is a National Stage of International Application No. PCT/JP2011/006458 filed Nov. 21, 2011, claiming priority based on Japanese Patent Application No. 2011-249821 filed Nov. 15, 2011, the contents of all of which are incorporated herein by reference in their entirety.
The present invention relates to an operation method of an electric press working machine that includes a plurality of slides each of which is raised or lowered by drive means of each slide.
Conventionally, what is known is a so-called double-slide press working machine that includes, for example, an inner slide and an outer slide; on the slides, for example, an inner-side upper die and an outer-side upper die are respectively mounted; and the double-slide press working machine carries out press working of a to-be-molded article.
The applicant disclosed a high-performance press working machine in which: a plurality of sets of drive means are designed to work together for each slide to apply a force; and the plurality of sets of drive means work together to apply a force to a kind of a center point passing through the center of gravity of each slide; each slide is guaranteed to properly remain horizontal even when each shot in press working is being carried out; and a control system controls in such a way as to prevent an undesirable collision with a plurality of slides or a structure (See Patent Document 1).
The object of the present invention is to propose an operation method of an electric press working machine that is able to ensure flatness of a to-be-molded article and carry out high-precision molding.
According to the present invention, an operation method of an electric press working machine at least including
a frame body that is formed by using a bed, a crown, and a plurality of support posts,
a first slide that slides on the support posts,
a second slide that slides on the support posts,
a first-side drive source that is so provided as to drive the first slide,
a second-side drive source that is so provided as to drive the second slide, and
either a first upper die that is so attached as to correspond to the first slide, or a second upper die that is so attached as to correspond to the second slide, or both, wherein
the first-side drive source repeatedly raises or lowers the first slide, and the second-side drive source repeatedly raises or lowers the second slide, and
a press working operation of processing a to-be-molded article by using a lower die, which is so attached as to correspond to the bed, and both or one of the upper dies is continuously repeated, the operation method characterized by comprising:
a step of moving the first and second slides to a first position;
a step of moving the second slide to a second position while keeping the first slide at the first position; and
a step of moving the second slide to a third position while keeping the first slide at the first position.
The operation method is also characterized in that the first position and the third position are the same position.
The operation method is also characterized by comprising: a step of moving the second slide to the third position while keeping the first slide at the first position;
a step of then moving the second slide to a fourth position while keeping the first slide at the first position; and
a step of moving the second slide to a fifth position while keeping the first slide at the first position.
The operation method is also characterized in that:
the first position, the third position, and the fifth position are the same position; and
the second position and the fourth position are the same position.
The operation method is also characterized by comprising:
a step of moving the first slide to the second position while keeping the second slide at the first position; and
a step of moving the first slide to the first position while keeping the second slide at the first position.
The operation method is also characterized by comprising:
a step of moving the first slide to the second position, and the second slide to the first position;
a step of moving the second slide to the second position while keeping the first slide at the second position; and
a step of moving the first slide and the second slide to the first position.
According to the operation method of the electric press working machine of the present invention, it is possible to ensure flatness of a to-be-molded article and carry out high-precision molding.
In the diagrams, the reference numeral 1 represents a bed. The reference numeral 2 represents a support post. The reference numeral 3 represents a crown. The reference numeral 4 represents a scale post. The reference numeral 11 represents an inner slide, which is a first slide. The reference numeral 12 represents an inner motor, which is a first-side drive source. The reference numeral 13 represents an inner ball screw, which is a first-side feed member. The reference numeral 14 represents an inner linear scale, which is a first-side position detection member. The reference numeral 21 represents an outer slide, which is a second slide. The reference numeral 22 represents an outer motor, which is a second-side drive source. The reference numeral 23 represents an outer ball screw, which is a second-side feed member. The reference numeral 24 represents an outer linear scale, which is a second-side position detection member.
The bed 1 is a member that serves as a base to allow the electric press working machine P to be placed on the ground. The support posts 2 are posts extending upward from the bed 1. According to the present embodiment, there are four support posts 2 that are each put on four corners of the bed 1. The crown 3 is put on the support posts 2, and holds the inner motor 12 and the outer motor 22. The bed 1, the support posts 2, and the crown 3 make up a frame body of the electric press working machine. Incidentally, the number of support posts 2 may not be four; there are at least two support posts 2 to support the crown 3. The support posts 2 may not be formed into a columnar shape and instead may be formed into a plate-like shape.
The inner slide 11 includes a table-like section 11a, which is mounted on the support posts 2 so as to be able to move, and a convex section 11b, which extends downward from the table-like section 11a. According to the present embodiment, four corners of the table-like section 11a are put on the support posts 2 so as to be able to slide; the convex section 11b is so placed as to extend downward from the center of the table-like section 11a.
The inner motor 12 is placed on the crown 3, and drives the inner ball screw 13. As shown in
According to the present embodiment, four inner motors 12 and four inner ball screws 13 are provided for the four corners of the crown 3 and inner slide 11. The four inner motors 12 and the four inner ball screws 13 work separately. Incidentally, the number of inner motors 12 and the number of inner ball screws 13 are not limited to four; all that required is to provide at least two inner motors 12 and two inner ball screws 13.
The inner linear scale 14 reads the scale post 4, thereby measuring the height of the inner slide 11 relative to the bed 1. According to the present embodiment, four inner linear scales 14 are provided for the four corners of the inner slide 11. Incidentally, all that is required is to provide at least two inner linear scales 14.
The outer slide 21 includes a table-like section 21a, which is mounted on the support posts 2 so as to be able to move below the inner slide 11; and a hole section 21b, which passes through the table-like section 21a in an up-down direction in such a way as to allow the convex section 11b of the inner slide 11 to move therethrough. According to the present embodiment, four corners of the table-like section 21a are put on the support posts 2 so as to be able to slide; the hole section 21b is so provided as to pass through the center of the table-like section 21a in such a way as to allow the convex section 11b of the inner slide 11 to slide therethrough.
The outer motor 22 is placed on the crown 3, and drives the outer ball screw 23. The outer ball screw 23 includes a screw shaft 23a and a nut section 23b. The screw shaft 23a passes through the crown 3 and the inner slide 11 and is joined to an output shaft of the outer motor 22. The nut section 23b is attached to the outer slide 21, and contains a circulating steel ball, which is not shown in the diagram.
According to the present embodiment, four outer motors 22 and four outer ball screws 23 are provided for the four corners of the crown 3 and outer slide 21. The four outer motors 22 and the four outer ball screws 23 work separately. Incidentally, the number of outer motors 22 and the number of outer ball screws 23 are not limited to four; all that required is to provide at least two outer motors 22 and two outer ball screws 23.
The outer linear scale 24 reads the scale post 4, thereby measuring the height of the outer slide 21 relative to the bed 1. According to the present embodiment, four outer linear scales 24 are provided for the four corners of the outer slide 21. Incidentally, all that is required is to provide at least two outer linear scales 24.
One side of each of the scale posts 4 is attached to the bed 1, and the other side to the crown 3 in the vertical direction. According to the present embodiment, the scale posts 4 are mounted on the four outer-side corners of the inner slide 11 and outer slide 21. The inner linear scales 14 and the outer linear scales 24 use the same scale posts 4. Therefore, the number of scale posts 4 provided, the number of inner linear scales 14 provided, and the number of outer linear scales 24 provided are equal.
According to the present embodiment, a press-working operation of to-be-molded articles is repeated automatically. In an actual press-working period, at each stage during one press-working operation, a horizontal state of the inner slide 11 and outer slide 21 can be maintained with high precision.
That is, in a teaching working period that comes before the actual press-working period, at each stage in the midst of progress of one shot of press working: (i) In order to be able to keep the inner slide 11 horizontal, measurement results of the inner linear scales 14 are taken in, and the drive energy that is supplied to each of the four inner motors 12 for driving the inner slide 11 is adjusted and determined, and information about the drive energy supplied to each of the inner motors 12 is stored in a storage device at each stage; and (ii) in order to be able to keep the outer slide 21 horizontal, measurement results of the outer linear scales 24 are taken in, and the drive energy that is supplied to each of the four outer motors 22 for driving the outer slide 21 is adjusted and determined, and information about the drive energy supplied to each of the outer motors 22 is stored in a storage device at each stage.
Then, at each stage in the midst of progress of one shot during press working in the actual working period: (i) To each of the inner motors 12 that drive the inner slide 11, based on the stored information described above, the drive energy is supplied; and (ii) to each of the outer motors 22 that drive the outer slide 21, based on the stored information described above, the drive energy is supplied.
According to the present embodiment, since such control is performed, at each stage of one press working operation, the horizontal state of the inner slide 11 and outer slide 21 can be maintained with high precision. As a result, the clearance between the sliding holes at four corners of the inner slide 11 and the support posts 2 can be set to 0.10 mm to 0.25 mm.
On the bed 1 of the electric press working machine P shown in
Then, the configuration of a die section will be described.
In the diagram, the reference numeral 40 represents an inner upper die section, which serves as a first upper die. The reference numeral 41 represents an inner upper die. The reference numeral 42 represents a pressure pin. The reference numeral 50 represents an outer upper die section, which serves as a second upper die. The reference numeral 51 represents a first outer upper die. The reference numeral 52 represents a second outer upper die. The reference numeral 53 represents a third outer upper die. The reference numeral 54 represents an upper backing plate. The reference numeral 55 represents an upper punch plate. The reference numeral 56 represents a punch holder. The reference numeral 60 represents a first lower die section, which serves as a lower die. The reference numeral 61 represents a first lower die. The reference numeral 62 represents a cushion connection section. The reference numeral 70 represents a second lower die section, which serves as a lower die. The reference numeral 71 represents a second lower die. The reference numeral 72 represents a die plate. The reference numeral 73 represents a die spacer. The reference numeral 74 represents a lower punch plate. The reference numeral 75 represents a lower backing plate. The reference numeral 100 represents a to-be-molded article.
According to the present embodiment, the inner upper die section 40 includes the annular inner upper die 41 and the annular pressure pin 42, which connects the inner upper die 41 to the inner slide 11 shown in
The inner upper die 41 includes a first through-hole 41a which the second outer upper die 52, which is substantially cylindrical, goes through. The inner upper die 41 is connected to the pressure pin 42 with bolts and the like, and the pressure pint 42 is connected to the inner slide 11 with bolts and the like. Therefore, a pressing force of the inner slide 11 is transmitted to the inner upper die 41 via the pressure pin 42.
According to the present embodiment, the outer upper die section 50 includes the first outer upper die 51, which is cylindrical; the second outer upper die 52; the annular third outer upper die 53; the upper backing plate 54, which connects the first outer upper die 51 and the second outer upper die 52 to the outer slide 21; the upper punch plate 55, which connects the third outer upper die 53 to the upper backing plate 54; and the punch holder 56, which protrudes downward from the upper punch plate 55 and which functions as a stopper together with the die plate 72.
The upper backing plate 54 and the upper punch plate 55 are stacked with bolts and the like, and are mounted on the upper die set 37 shown in
Accordingly, a pressing force of the outer slide 21 is transmitted to the first outer upper die 51 and the second outer upper die 52 via the upper sub-plate 38, the upper die set 37, and the upper backing plate 54, and to the third outer upper die 53 via the upper backing plate 54 and the upper punch plate 55.
According to the present embodiment, the first lower die section 60 includes the annular first lower die 61 and the cushion connection section 62, which connects the first lower die 61 to the hydraulic cushion 5.
The first lower die 61 is so disposed as to face the inner upper die 41. Because of the pressing force of the inner slide 11, the first lower die 61 supports the to-be-molded article 100 from the lower side while the to-be-molded article 100 is pressed by the inner upper die 41 from the upper side. Moreover, the first lower die 61 can move downward together with the cushion connection section 62 because of the pressing force of the inner slide 11, as the cushion force of the hydraulic cushion 5 is adjusted. The first lower die 61 includes a third through-hole 61a which the second outer upper die 52 can enter.
According to the present embodiment, the second lower die section 70 includes the annular second lower die 71, the die plate 72, the die spacer 73, the lower punch plate 74, and the lower backing plate 75.
The lower backing plate 75 is placed on the lower die set 35 shown in
A fourth through-hole 77 is made at the centers of the die plate 72, die spacer 73, lower punch plate 74, and lower backing plate 75 to allow the first outer upper die 51 to move therethrough. The second lower die 71 is placed inside the fourth through-hole 77 on the lower backing plate 75 in an annular manner.
The die plate 72, the die spacer 73, the lower punch plate 74, and the lower backing plate 75 have, on the outer periphery of the second lower die 71, a fifth through-hole 78 through which the first lower die 61 and the cushion connection section 62 can move.
Then, an operation process of the electric press working machine will be described.
In
In the state (a) of
From the state (a) of
Initially, the inner slide 11 and the outer slide 21 go down at the same time as shown in
Then, until the state (c) of
Furthermore, until the state (d) of
Furthermore, the outer slide 21 is lowered until the outer slide 21 reaches a predetermined position shown in
Moreover, the to-be-molded article 100 is pressed by the third outer upper die 53 from the upper side while being supported by the second lower die 71 and the die plate 72 from the lower side. In this manner, an edge portion thereof is thickened. As a result, the molding of the to-be-molded article 100 is almost complete as shown in
After that, as in the state (f) of
Then, only the inner slide 11 is moved downward again to a third position. Then, a state (g) of
After that, as in the state (h) of
The electric press working machine P of the first example includes a step of once moving the inner slide 11 and the outer slide 21 to the first position as in the state (e) of
The third position is slightly lower than the first position. Therefore, compared with the case where the inner slide 11 and the outer slide 21 are moved to the third position at once, the burden that is put on the to-be-molded article during one molding process becomes smaller. Accordingly, at the step of moving the inner slide 11 and the outer slide 21 to the first position, the to-be-molded article is tentatively molded to a certain degree. At the step of moving the inner slide 11 to the third position that is slightly lower than the first position, the flatness of the to-be-molded article is ensured, and high-precision molding can be performed. As a result, it is unnecessary to carryout a finishing step, which is required in the conventional case, after the pressing.
Incidentally, the first position and the third position may be the same position. In this case, it becomes easier to control, as well as to add other steps.
Other examples will be described.
In
The electric press working machine P of the second example includes a step of once moving the inner slide 11 and the outer slide 21 to a predetermined first position as in the state (a) of
The electric press working machine P includes the above steps. Therefore, the flatness of the to-be-molded article is ensured, and high-precision molding can be performed. As a result, it is unnecessary to carry out a finishing step, which is required in the conventional case, after the pressing.
In
The electric press working machine P of the third example includes a step of once moving the inner slide 11 and the outer slide 21 to a predetermined first position as in the state (a) of
In that manner, with regard to the inner slide 11 or the outer slide 21, a step of moving a second slide to the higher second position while keeping a first slide at the predetermined first position, and a step of moving the second slide again to the predetermined first position while keeping the first slide at the predetermined first position are performed a plurality of times. Therefore, the flatness of the to-be-molded article is ensured, and high-precision molding can be performed. As a result, it is unnecessary to carry out a finishing step, which is required in the conventional case, after the pressing.
In
The electric press working machine P of the fourth example includes a step of once moving the inner slide 11 and the outer slide 21 to a predetermined position as in the state (a) of
In that manner, with regard to the inner slide 11 or the outer slide 21, a step of moving a second slide to a higher second position while keeping a first slide at a predetermined first position, a step of moving the second slide again to the predetermined first position while keeping the first slide at the predetermined first position, a step of moving the first slide to the higher second position while keeping the second slide at the predetermined first position, and a step of moving the first slide again to the predetermined first position while keeping the second slide at the predetermined first position are performed. Therefore, the flatness of a surface of the to-be-molded article, which is pressed in such a way as to correspond to both the inner slide 11 and the outer slide 21, is ensured, and high-precision molding can be performed. As a result, it is unnecessary to carry out a finishing step, which is required in the conventional case, after the pressing.
In
The electric press working machine P of the fifth example includes a step of moving the inner slide 11 to a second position corresponding to an upper surface of the to-be-molded article, and moving the outer slide 21 to a predetermined first position that is lower than the second position corresponding to the upper surface of the to-be-molded article as in the state (a) of
In that manner, with regard to the inner slide 11 or the outer slide 21, a step of moving a second slide to the first position while keeping a first slide at the second position, a step of moving the second slide to the second position while keeping the first slide at the second position, a step of moving the first and second slides to the first position, a step of moving the first slide to the second position while keeping the second slide at the first position, and a step of moving the first slide to the first position while keeping the second slide at the first position are performed. Therefore, the flatness of a surface of the to-be-molded article, which is pressed in such a way as to correspond to both the inner slide 11 and the outer slide 21, is ensured, and high-precision molding can be performed. As a result, it is unnecessary to carry out a finishing step, which is required in the conventional case, after the pressing.
Number | Date | Country | Kind |
---|---|---|---|
2011-249821 | Nov 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/006458 | 11/21/2011 | WO | 00 | 5/14/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/072979 | 5/23/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4716755 | Bulso et al. | Jan 1988 | A |
5046637 | Kysh | Sep 1991 | A |
5309749 | Stodd | May 1994 | A |
6830419 | Turner et al. | Dec 2004 | B1 |
20070212438 | Saeki et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
8-155695 | Jun 1996 | JP |
2007-111764 | May 2007 | JP |
Entry |
---|
International Search Report for PCT/JP2011/006458 dated Feb. 7, 2012. |
Number | Date | Country | |
---|---|---|---|
20140283695 A1 | Sep 2014 | US |