Fully differential operational amplifiers (op amps) require stable differential and common-mode operation. As such, modern op amps are designed with separate differential and common-mode feedback compensation networks to stabilize both differential and common-mode operation of the op amp. The compensation in each compensation network is provided by capacitors, where the capacitors either perform differential or common-mode compensation.
Common-mode feedback loop 150 is used to set the operating point of op amp 100 during common-mode operation. Resistors 151 and 152 provide a voltage divider for generating an average voltage (e.g., an average of the differential outputs) at common-mode output Vocm, where the average voltage is fed back to the common-mode feedback circuit 155 for comparison with a reference voltage Vref also fed to circuit 155. In response to the comparison, circuit 155 will generate a common-mode control signal fed to common-mode input Vicm. The voltage at Vicm is used to adjust the bias of pmos transistors 110 and 120, thereby shifting the voltage at the differential outputs to set the operating point of op amp 100.
As shown in
Accordingly, a need exists for an operational amplifier with compensation components occupying a reduced die area. Additionally, a need exists for an operational amplifier with compensation networks requiring reduced design and design verification time. Further, a need exists for an operational amplifier with compensation components producing lower noise. Embodiments of the present invention provide novel solutions to these needs and others as described below.
Embodiments of the present invention are directed to an operational amplifier and a method for amplifying a signal. More specifically, embodiments provide a convenient and effective mechanism for reducing die area, design time and design verification time by sharing compensation components between the common-mode and differential feedback networks of the operational amplifier. As such, fewer compensation components are required, thereby reducing component die area. Additionally, given that the compensation components are shared between the common-mode and differential feedback networks, the feedback networks can be stabilized together with fewer compensation components to specify and verify, thereby reducing design and design verification time. Further, embodiments provide a compensation component coupling which does not couple directly to virtual ground, thereby reducing the noise of the operational amplifier.
In one embodiment, an operational amplifier circuit includes amplifier circuitry for amplifying a differential signal, wherein the amplifier circuitry is operable to generate a differential output signal. A differential feedback network is coupled to the amplifier circuitry and operable to provide differential feedback compensation therein, the differential feedback network including compensation elements. The operational amplifier circuitry also includes a common-mode feedback network coupled to the amplifier circuitry and operable to provide common-mode feedback compensation therein, the common-mode feedback network sharing the compensation elements of the differential feedback network.
In another embodiment, an operational amplifier includes amplifier circuitry, a common-mode feedback loop coupled to the amplifier circuitry and for controlling common-mode operation of the operational amplifier, the common-mode operation comprising an adjustment of an operating point of the operational amplifier. A differential feedback loop is coupled to the amplifier circuitry and for controlling differential operation of the operational amplifier, the differential operation comprising an amplification of a differential signal input to the operational amplifier. The common-mode and differential feedback loops are coupled to at least one common compensation component operable to improve stability of both the common-mode and differential operation of the operational amplifier.
And in yet another embodiment, a method for amplifying a differential signal includes controlling differential operation of an operational amplifier using a differential feedback loop, the differential operation including an amplification of the differential signal input to the operational amplifier. Common-mode operation of the operational amplifier is controlled using a common-mode feedback loop, the common-mode operation including an adjustment of an operating point of the operational amplifier. The differential and common-mode operation of the operational amplifier is stabilized using shared compensation components coupled to the differential and common-mode feedback loops.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements.
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the present invention will be discussed in conjunction with the following embodiments, it will be understood that they are not intended to limit the present invention to these embodiments alone. On the contrary, the present invention is intended to cover alternatives, modifications, and equivalents which may be included with the spirit and scope of the present invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, embodiments of the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.
Compensation is provided by compensation components 220 and 222, which are coupled in series across the differential outputs Vop and Von. In one embodiment, compensation components 220 and 222 may comprise capacitors (e.g., non-polarized, polarized, etc.), a combination of capacitors and resistors, or other components (e.g., passive, active, etc.) or combinations of components.
Common-mode feedback loop 250 is used to set the operating point of op amp 200 during common-mode operation. An operating point (e.g., an average of the differential outputs) of op amp 200 may be fed to the common-mode output Vocm such that common-mode feedback circuit 255 (e.g., comprising a comparator, etc.) may compare the operating point with a reference voltage Vref also fed to circuit 255. Vref may be in internally generated by op amp 200, externally generated and fed to op amp 200, etc. In response to the comparison, circuit 255 will generate a common-mode control signal fed to amplifier circuitry 210 via common-mode input Vicm. The voltage at Vicm may then adjust an operating point of op amp 200 (e.g., by adjusting the bias of transistors within amplifier circuitry 210, etc.), which may comprise a common-mode operating mode of op amp 200 requiring stabilization. Common-mode feedback loop 250 provides common-mode feedback compensation to stabilize op amp 200 during common-mode operation, where compensation is provided by compensation components 220 and 222 coupled to common-mode input Vicm.
As shown in
Where compensation components 220 and 222 are capacitors coupled in series, their values may be calculated using equations, modeling or a combination of the two. For example, the compensation capacitor values (CC) may be estimated by the equation
where gm is the transconductance of a coupled input device (e.g., transistor, etc.) and Gbw is the gain bandwidth product of the op amp (e.g., 200). In other embodiments, other equations may be used (e.g., to account for changes in amplifier circuitry 210, circuit 245, circuit 255, etc.). The compensation components may then be modeled using the estimated values as a starting point to more accurately determine their values (e.g., taking into account second, third, etc. order effects on Gbw).
Amplifier circuitry 210 may comprise at least one input stage, gain stage, bias stage and output stage for amplifying signals input to circuitry 210. Additionally, it should be appreciated that circuitry 210 may comprise additional active and/or passive circuitry for interfacing the staged circuitry, where such additional circuitry may comprise current mirrors, current sources/sinks, voltage dividers, etc.
Although
Differential feedback loop 340 provides differential feedback compensation to stabilize op amp 200 during differential operation. Similar to differential feedback loop 240 of
Common-mode feedback loop 350 provides common-mode feedback compensation to stabilize op amp 300 during common-mode operation, where compensation is provided by compensation components 220 and 222 coupled to common-mode input Vicm (e.g., as discussed above with respect to op amp 200 of
The operating point may be sensed using resistive components 151 and 152 coupled in series to form a voltage divider, where a divided voltage is generated at the common node shared by both resistive components 151 and 152. Resistive components may comprise any resistive component (e.g., a resistor, transistor, etc.), voltage dividing component, voltage generating component (e.g., a diode with substantially constant voltage drop, etc.), or the like.
As shown in
Although
Step 420 involves controlling common-mode operation of an operational amplifier (e.g., 200, 300, etc.) using a common-mode feedback loop (e.g., 250, 350, etc.). The common-mode operation may comprises adjusting and/or setting an operating point (e.g., an average of differential outputs) of the op amp. Additionally, the common-mode feedback loop may comprise one or more common-mode feedback circuits for controlling the operation point adjustment and/or setting (e.g., to generate a common-mode control signal in response to a comparison of a current operating point with a reference voltage) and providing feedback compensation for the control system.
Step 430 involves stabilizing the differential and common-mode operation of the operational amplifier (e.g., 200, 300, etc.) using shared compensation components (e.g., 220 and 222 of
In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Thus, the sole and exclusive indicator of what is, and is intended by the applicant to be, the invention is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Hence, no limitation, element, property, feature, advantage, or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
4051352 | Eichelberger et al. | Sep 1977 | A |
4940909 | Mulder et al. | Jul 1990 | A |
5204663 | Lee | Apr 1993 | A |
5237699 | Little et al. | Aug 1993 | A |
5241224 | Pedersen et al. | Aug 1993 | A |
5268598 | Pedersen et al. | Dec 1993 | A |
5287017 | Narasimhan et al. | Feb 1994 | A |
5364108 | Esnouf | Nov 1994 | A |
5384499 | Pedersen et al. | Jan 1995 | A |
5386155 | Steele et al. | Jan 1995 | A |
5426744 | Sawase et al. | Jun 1995 | A |
5511211 | Akao et al. | Apr 1996 | A |
5548228 | Madurawe | Aug 1996 | A |
5548552 | Madurawe | Aug 1996 | A |
5550842 | Tran | Aug 1996 | A |
5557217 | Pedersen | Sep 1996 | A |
5572148 | Lytle et al. | Nov 1996 | A |
5594367 | Trimberger et al. | Jan 1997 | A |
5598108 | Pedersen et al. | Jan 1997 | A |
5603043 | Taylor et al. | Feb 1997 | A |
5608337 | Hendricks et al. | Mar 1997 | A |
5625563 | Rostoker et al. | Apr 1997 | A |
5752063 | DeRoo et al. | May 1998 | A |
5757207 | Lytle et al. | May 1998 | A |
5760607 | Leeds et al. | Jun 1998 | A |
5798656 | Kean | Aug 1998 | A |
5864486 | Deming et al. | Jan 1999 | A |
5990717 | Partovi et al. | Nov 1999 | A |
6005806 | Madurawe et al. | Dec 1999 | A |
6023570 | Tang et al. | Feb 2000 | A |
6025737 | Patel et al. | Feb 2000 | A |
6389321 | Tang et al. | May 2002 | B2 |
6401224 | Schoniger et al. | Jun 2002 | B1 |
6446242 | Lien et al. | Sep 2002 | B1 |
6448820 | Wang et al. | Sep 2002 | B1 |
6542034 | Tomasini et al. | Apr 2003 | B2 |
6912601 | Moore | Jun 2005 | B1 |
Number | Date | Country |
---|---|---|
0420388 | Apr 1991 | EP |
0455414 | Nov 1991 | EP |
0510815 | Oct 1992 | EP |