The present principles relate to a technique for distributing Content across a network. More particularly, they relate to providing a distributive and collaborative environment formedia production and distribution systems.
In the media industry, solutions for addressing specific Asset management needs are 20 now converging in an effort to provide a global solution for media Asset management with different levels of workflow management support. Examples of these solutions include:
1) Playout Automation
Present day playout automation techniques provide real time control of devices that playout video and audio Content according a schedule. Some playout techniques address the need to organize movement of Content at the receiving or ingest server and at the storage phases. The providers of playout devices have demonstrated an expertise in device interfaces, but are still evolving to support workflow engines. Currently, playout automation solutions propose static workflows that need significant rework at the configuration stage.
2) Document Asset Management:
Providers of document Asset management have served the print media and have demonstrated strength in managing documents. Many such providers have evolved into the multimedia environment to tackle the media industry. Typically, these providers lack expertise in real time device resource management and their automation solutions afford only limited ways to manage workflow.
3) Video Editing Systems
There exist several providers of video editing systems, at least one of which has introduced a non linear workflow solution for the media industry which only serves to manage workflow in a static way (i.e., not dynamic).
4) IT Middleware Suppliers:
Providers of IT Middleware typically offer specialized business layer applications and associated infrastructure to manage a transactional layer to handle workflows. In practice, such suppliers focus on business layers so their solutions do not provide a user interface and cannot control resources with load balancing or quality of services constraints.
Briefly, in accordance with a preferred implementation of the present principles, there is provided a technique of managing tasks and user operations on media using a model of resource management capable of dealing with complex situations which often arise in a production and/or distribution environment. The technique is based on a workplace infrastructure, and includes a task-oriented user interface and a Work Package management system. The method optimizes operations in a media production/distribution environment through a workflow-based user interface handling: Work Packages, Workplaces, Tasks, Assets, and Content.
In accordance with one implementation, the method includes selecting a workplace category, selecting a workplace within the selected workplace category, providing at least one task corresponding to the selected workplace, updating a target Asset in response to a user selected task, and launching a command related to the selected task.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Even if described in one particular manner, it should be clear that implementations may be configured or embodied in various manners. For example, an implementation may be performed as a method, or embodied as an apparatus configured to perform a set of operations or an apparatus storing instructions for performing a set of operations. Other aspects and features will become apparent from the following detailed description considered in conjunction with the accompanying drawings and the claims.
In the drawings wherein like reference numerals denote similar elements throughout the views:
According to one aspect, a goal of the Content management technique of the present principles is to provide a distributive and collaborative environment for media production and/or distribution. Television broadcasting began some 60 years ago. The technologies associated with broadcasting and producing television shows have changed dramatically over the years, but certain fundamental processes have not evolved dramatically.
Despite the evolution of transferring Content, first via film, then by videotape, and finally now by transferring files of digitized video over a network, the overall workflows of these processes have did not significantly changed. The challenge in today's broadcasting environment is to provide an enterprise-level Media Asset Management solution with workflow management capability. This approach, which is based on a task-oriented user interface with a workplace/work package concept, will dramatically improve broadcast operations and media production and post production.
The goal of the Asset management technique of the present principles is to manage and/or control distributed, parallel and collaborative production and/or distribution systems to ensure the availability of media for delivery. Such management techniques serve to solve a complex combination of constraints among: users; Content; processes; time; and networks that cannot not be resolved by an algorithmic system or an n-p complex task scheduling generator.
The Content management technique of the present principles serves to manage Content and Assets around a solution focused on operation workflow with:
Definition of Assets (Media)—As a very basic definition, an Asset comprises “something of worth”. In the broadcast industry a definition has been established by the Society of Motion Picture and Television Engineers (SMPTE) standards body which defines an Asset as the aggregation of Content and Rights. Within this framework, the Content is defined as the aggregation of Essence and Metadata.
An Asset normally will be created in a business management system, e.g. a Traffic System, while creating a unique identification (ID), e.g., an Asset ID, which identifies the Asset. Because of the difficult abstraction of this definition, the term “Asset” is commonly used to name the dataset used to manage the Asset in a computer system. This dataset is uniquely identified using the Asset ID. Different systems exist in a broadcast facility at different levels. Of course, each of these systems could require its own structure and dataset to administer the Asset. Although many of Asset Administration datasets could exist in parallel, all would describe the same identical Asset.
Deleting an Asset administration dataset in a downstream system does not delete the Asset itself The act of deletion only deletes the Asset representation in this system. Moving an Essence that belongs to an Asset from one location to another location does not move the Asset either.
A media component can constitute an “Asset”, and serves to regroup Essences named “Contents”. The Media Management system can manage several levels of abstraction for individual pieces media which could be represented in the process with the model shown in
Workplaces and Workplaces Categories
The term “Workplaces” defines specific positions in a logical workflow that are associated with one or more users' roles that contribute to the workflow by performing specific tasks. The workplace can refer to either a human operator or an automated actor. Workplaces are organized by categories. A workplace can be reached by many Work Packages (see definition below).
As shown in
A Workplace can also refer to a non human actor (e.g., a machine) that can automatically execute one or more pre defined task(s). The Workplace categories do not require either a specific order or sequences to link them together. Workplaces in Workplace categories do not require any relationship together. The model of
The Content management technique of the present principles provides means to describe, for a workplace, a set of views that provide information on the media and the tool(s) that operate on such media. According to their respective role in the system, the users have access to a set of workplaces and each workplace can expose the users a different a set of views. Those operational views will combine different user tools and commands that can vary according to the rank of operator (user or super-user) which will affect the media.
User & Task Oriented Mechanism
1—The tasks assigned to the a specific operator/user, labelled as My Task (step 108);
2—All the tasks located at the workplace, labelled as All Task (step 110); and
3—The tasks which are late, thus requiring assignment as urgent, being labelled in
From such information provided by the system, each connected user knows what is occurring in real-time at the workplace and also what task remain, as well as what tasks other users are performing.
The user then has its task 114 and corresponding views 116. The user then operates and locks its task (step 118). To perform a task, the user should lock it in order to avoid two operators from inadvertently attempting to perform the same task. The locking action also serves to track the progress of the task. In addition, the locking of a task enables recording of the time the operator took to perform their task by monitoring the time between the lock and the submission relating to task completion. Once locked, the target Asset is updated (step 120), and the steps of trimming, editing and cataloging are performed. At this stage, the command relating to this task can be launched (step 124), or the command can be saved (step 122) for later execution. When the command has been launched, the element 128 forwards a command to unlock the task (step 126) which makes the task now available to for future action.
Context of an Application
Operational Sub Workflow 1 Ingest
Referring to
The system receives from the traffic a notification 504 to create a work package (i.e., task 506) named “Matrix to ingest” with an expected duration. The work package moves forward to the next workplace 507.
The operation department (workplace 507) adds description and creates the source Asset (e.g., “Matrix original”) and the target Asset (Matrix master) 508.
The system sends a notification (step 509) to the ingest application 511 to record the “Matrix original” Content. The work package moves forward to the next workplace 510. The ingest application 511 causes the recording of the Content in high resolution (step 522).
The ingest operator (workplace 510) ingests the Content “Matrix original.” When ingest occurs, the system links the source Asset with the source Content “Matrix 25 original” (step 512). The work package moves forward to the next workplace 513.
The Quality Control (QC) operator (workplace 513) validates the Content. (If the Content cannot be validated, the Content returns to the workplace associated with Content ingest). The system creates a low-resolution copy 524 (Matrix Source) of the source Content using a trans coder 522 (step 514) and links it to the source Asset. The work package moves forward to the next workplace 515.
The trim operator (workplace) 515, using the low-resolution source Content 524, adjusts the Content to fit the target duration and creates a new Content 516 associated with the target Asset via a conform command provided by a conformance engine 526. The Content matches the Asset name (Matrix master). The system creates a low resolution version of “Matrix Master”, which is a low resolution version of the new version of the Content after modification (i.e., trimming). The work package moves forward to the next workplace 517.
At workplace 517, the Asset undergoes review for approval as low resolution Content. If the Asset is rejected, the Asset returns to the trim operator 515.
The system then performs the following activities: (a) deleting the source Asset with Low and high-resolution Content, archives the target Content at workplace 528, (b) deleting the low resolution target, (c) moving the Asset to the archive workplace, and (d) deleting the work package after sending a notification (step 519) to the traffic that the “Matrix Master” is ready for playout (step 520).
Operational Workflow 2 Playout
In the example depicted in
The system detects the Content in the staging server and creates a new work package 606 (i.e., task) “Matrix play” that will support parallel task with also the creation of a teaser. The system then performs the following activities: (a) moving the created Work Package 606 to “playout staging” workplace 607, and (b) creating a secondary work package or task (step 608) “Matrix promo” with an expected completion in 2 days (usually look ahead for scheduling) and moves it to the next workplace 607 (playout staging).
The promo editor 610 creates a teaser and creates an Edit Decision List (EDL) named “Matrix promo.” The system creates a new Asset “matrix teaser” (step 612) and moves the work package to the next workplace 614 (promo approve).
When the teaser is approved, the system conforms the new Content according to the EDL (step 616), and sends a notification 617 to the MCR supervisor to inform that teaser 30 (e.g., the Matrix) is available. When the operator MCR supervisor acknowledges the message (step 619), the Asset is moved to the staging area, the secondary sub workflow 608 is completed by deleting the task 622, and the main task Playout workflow continues. After the automation assigns or allocates the movie and the teaser to a channel (step 626), the PLM module 602 moves the Content to the dedicated playout server (step 62S). The work packages are moved to playout. An alarm will be sent if the work packages are not available. That is, an alarm will be sent if the file has been deleted or something went wrong during the process 5 (e.g., the work package was rejected due to quality issues). The automation station plays the Content (step 630), and the PLM module catches the “As Run Log” report from the automation (step 632) and deletes the Contents (step 634). The system tracks the deletion of Contents (step 624) and deletes the Assets, the archive and the task after sending a notification to traffic to playout the movie.
The implementations described herein may be implemented in, for example, a method or process, an apparatus, or a software program. Even if only discussed in the context of a single form of implementation (for example, discussed only as a method), the implementation of features discussed may also be implemented in other forms (for example, an apparatus or program). An apparatus may be implemented in, for example, appropriate hardware, software, and firmware. The methods may be implemented in, for example, an apparatus such as, for example, a processor, which refers to processing devices in general, including, for example, a computer, a microprocessor, an integrated circuit, or a programmable logic device.
Additionally, the methods may be implemented by instructions being performed by a processor, and such instructions may be stored on a processor-readable medium such as, for example, an integrated circuit, a software carrier or other storage device such as, for example, a hard disk, a compact diskette, a random access memory (“RAM”), or a read-only memory (“ROM”). The instructions may form an application program tangibly embodied on a processor-readable medium. As should be clear, a processor may include a processor-readable medium having, for example, instructions for carrying out a process.
As should be evident to one of skill in the art, implementations may also produce a signal formatted to carry information that may be, for example, stored or transmitted. The information may include, for example, instructions for performing a method, or data produced by one of the described implementations. Such a signal may be formatted, for example, as an electromagnetic wave (for example, using a radio frequency portion of spectrum) or as a baseband signal. The formatting may include, for example, encoding a data stream, packetizing the encoded stream, and modulating a carrier with the packetized stream. The information that the signal carries may be, for example, analog or digital information. The signal may be transmitted over a variety of different wired or wireless links, as is known.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. For example, elements of different implementations may be combined, supplemented, modified, or removed to produce other implementations. Additionally, one of ordinary skill will understand that other structures and processes may be substituted for those disclosed and the resulting implementations will perform at least substantially the same function(s), in at least substantially the same way(s), to achieve at least substantially the same result(s) as the implementations disclosed. Accordingly, these and other implementations are within the scope of the following claims.
This application is a divisional application of U.S. application Ser. No. 12/450,565, filed on Sep. 30, 2009, which is a National Stage Entry of PCT/US2008/004230, filed on Apr. 1, 2008, which claims priority and the benefit of U.S. Provisional Application No. 60/923,027, filed on Apr. 12, 2007, wherein the foregoing patent applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5136708 | Lapourtre et al. | Aug 1992 | A |
5943051 | Onda et al. | Aug 1999 | A |
6418361 | Sinex | Jul 2002 | B2 |
6571158 | Sinex | May 2003 | B2 |
6574655 | Libert et al. | Jun 2003 | B1 |
6598940 | Sinex | Jul 2003 | B2 |
6606546 | Sinex | Aug 2003 | B2 |
6684136 | Sinex | Jan 2004 | B2 |
6760916 | Holtz et al. | Jul 2004 | B2 |
6792469 | Callahan et al. | Sep 2004 | B1 |
7062449 | Clark | Jun 2006 | B1 |
7069229 | Richardson et al. | Jun 2006 | B1 |
7080142 | Galloway et al. | Jul 2006 | B2 |
7103677 | Miller et al. | Sep 2006 | B2 |
7167786 | Sinex | Jan 2007 | B2 |
8121874 | Guheen et al. | Feb 2012 | B1 |
8126938 | Cohen et al. | Feb 2012 | B2 |
8214516 | Gupta et al. | Jul 2012 | B2 |
8296801 | Takagi et al. | Oct 2012 | B2 |
20030046135 | Cartwright et al. | Mar 2003 | A1 |
20030204431 | Ingman | Oct 2003 | A1 |
20040059808 | Galloway et al. | Mar 2004 | A1 |
20040093351 | Lee et al. | May 2004 | A1 |
20050137927 | Jura | Jun 2005 | A1 |
20050193341 | Hayward et al. | Sep 2005 | A1 |
20050209902 | Iwasaki et al. | Sep 2005 | A1 |
20060047551 | Cotten et al. | Mar 2006 | A1 |
20060092266 | Morgan | May 2006 | A1 |
20060155630 | Sonnleithner et al. | Jul 2006 | A1 |
20060212805 | Allen et al. | Sep 2006 | A1 |
20060259472 | MacClellan | Nov 2006 | A1 |
20060277089 | Hubbard et al. | Dec 2006 | A1 |
20070016530 | Stasi et al. | Jan 2007 | A1 |
20070073575 | Yomogida | Mar 2007 | A1 |
20070113184 | Haot et al. | May 2007 | A1 |
20070124250 | Yamashima | May 2007 | A1 |
20070157080 | Wadsworth et al. | Jul 2007 | A1 |
20070239787 | Cunningham | Oct 2007 | A1 |
20080101768 | Smith et al. | May 2008 | A1 |
20080235603 | Holm et al. | Sep 2008 | A1 |
20090201812 | Dettori et al. | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
0294891 | Dec 1988 | EP |
2001298699 | Oct 2001 | JP |
2002259275 | Sep 2002 | JP |
2004501436 | Jan 2004 | JP |
200403138 | Oct 2004 | JP |
2005051491 | Feb 2005 | JP |
2005301841 | Oct 2005 | JP |
2005316871 | Nov 2005 | JP |
2006042317 | Feb 2006 | JP |
2008543124 | Nov 2008 | JP |
0041104 | Jul 2000 | WO |
0141024 | Jun 2001 | WO |
2004102343 | Nov 2004 | WO |
2006096713 | Sep 2006 | WO |
Entry |
---|
First Office Action dated May 16, 2012 regarding China Patent Application No. CN200880020198.2. |
Office Action issued for Japanese Patent Application No. 2010503010, mailed by SIPO on Feb. 26, 2013. |
Office Action issued for Japanese Patent Application No. 2010503010, mailed by SIPO on Sep. 25, 2012. |
International Preliminary Report on Patentability, PCT Application No. PCT/US2008/004230, mailed by WIPO, Switzerland, Apr. 1, 2008. |
First Office Action regarding China Patent Application No. CN200880020198.2. |
Decision for Rejection dated Jul. 2, 2013 regarding Japan Patent Application No. JP2010-503010. |
Decision for Dismissal of Amendment dated Jul. 2, 2013 regarding Japan Patent Application No. JP2010-503010. |
Canadian Office Action dated Jun. 30, 2015, regarding Canadian Application No. CA2682941. |
Japanese Appeal Decision dated Jan. 20, 2015, regarding Japanese Application No. JP2010-503010. |
Supplemental EP Search Report and Search Opinion dated Jan. 5, 2011, regarding EP Application No. EP08742449.5. |
Concerning Business Methods, Notice from the European Patent Office, Official Journal of the European Patent Office, Nov. 1, 2007, pp. 592-593, XP007905525 ISSN: 01'70-9201. |
International Search Report dated Dec. 23, 2008 regarding PCT/US2008/004230. |
Office Action in corresponding Canadian Patent Application No. 2,682,941 dated Jun. 2, 2016. |
Office Action mailed Oct. 21, 2016 issued in EP application 08742449.5. |
Number | Date | Country | |
---|---|---|---|
20130311606 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
60923027 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12450565 | US | |
Child | 13950161 | US |