Ophthalmic and contact lens solutions using carnitine

Information

  • Patent Grant
  • 9149555
  • Patent Number
    9,149,555
  • Date Filed
    Thursday, April 25, 2013
    11 years ago
  • Date Issued
    Tuesday, October 6, 2015
    9 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Fay; Zohreh
    Agents
    • Blank, Esq.; Christopher E.
    • Mikesell; Peter J.
    • Schmeiser, Olsen & Watts, LLP
Abstract
The present invention relates to a lens care solution having 0.001 to about 5 weight percent of a low molecular weight amine of the general formula:
Description
SUMMARY OF THE INVENTION

The present invention relates to contact lens care solutions that have improved ability to resist protein deposition and to provide lenses treated with such solutions to stabilize proteins more effectively, and to decrease the degree of other cationic depositions on said lenses, such as cationic preservative deposition of the lenses. The solutions of the present invention employ short chain quaternary amines as an additive to state of the solutions in order to decrease the denaturation of proteins during cleaning cycles and to coat treated lenses to decrease the number of active binding sites on the lenses. The sort chain quaternary amines are of the general chemical formula:




embedded image



where R1-5 generally is a short chain of 1 to 4 carbon atoms with hydroxyl or carboxylic acid functionality or a salt thereof. In particular R1-5 may be chosen to be carnitine, betaine, or choline or salts thereof. These cationic amines also provide increased preservative efficacy, reduce the potential for irritation by decreasing the possibility of cationic preservative binding on lenses, and furthermore act as buffering agents to provide increased pH stability for prepared solutions. Specifically R1, R2, R3 and R4 are —H or from the group of radicals below, or salts thereof, and R5 is chosen from the group of radicals below, or salts thereof:




embedded image


embedded image


embedded image


Specifically compounds that meet the requirements of the present invention as an amine include, but are not limited to Betaine; Bicine (N,N-Bis(2-hydroxyethyl)-glycline); Bis-Tris (Bis-(2-hydroxyethyl)imino-tns (hydroxymethyl) methane; Choline; Carnitine; Creatine; Creatinine; Diisopropylamine; Diethanolamine; dimethyl Aspartic Acid; Dimethyl glutamate; Methyl Aspartate; Methylethanolamine; Hydroxymethyl Glycinate; Triethylamine; Triethanolamine; Tricine(N-tris(hydroxymethyl)methyl glycine); and Triisopropanolamine, and the like.


Protein binds to contact lens and form tenacious deposits that must be removed by mechanical rubbing or enzymatic hydrolysis. Physiologic problems associated with antigenic response to the denatured protein. Adversely affects optical clarity. Since denatured proteins are hydrophobic, heavily deposited lenses will feel dry and uncomfortable. Therefore, systems that are able to reduce protein adsorption will result in improved quality of wear for the individual.


It is thought that contact lens have a net negative charge. Cationic protein will preferentially bind to these lenses. The low molecular weight amines will compete for the bind sites and reduce the amount of protein that is deposited. The strength of competition is based on the binding strength of the competing amine. Quaternary amines are recognized as strong binding groups whose charge is independent of pH. Progressive substitution of the quaternary group is acceptable providing the pH is controlled to ensure an cationic charge. Removing more than three of the substituents will result in a primary amine which has the potential for binding to reducing sugars such as glucose and form a colored Schiff Base reaction product. Therefore, the preferred compounds are secondary, tertiary, and quaternary low molecular weight amines with at least one hydrophilic substituent.


Methods of Use


The solution of the present invention are may be used in several modes: preferably, the solutions are used to pre-treat the lens with the low molecular weight (LMW) amines prior to insertion. These LMW amines are added to the isotonic aqueous lens vial solution. The solution may be buffered or the amines may act as their own buffer to control the pH. The solution should be isotonic (150-450 mOsm) in order to ensure the full lens matrix is properly hydrated and the sites are available for binding. The pH should be approximately neutral (4.5 to 8.5). This will ensure the lenses that rely on carboxylic acids for lens hydration are fully ionized at a pH above 4.5. The amines are cationic at a pH below 8.5 and therefore function well to prevent protein deposition at physiological pH ranges.


The solutions may also be used to repetitively treat contact lenses with the LMW amines to replenish any material that may have dissociated from the lens during wear. In this case, since the solution is generally preserved with a cationic preservative, these amines will compete with the cationic preservative for binding to the lens, and provide further advantages in reducing contact lens discomfort.


Lastly the solutions may be applied directly to lenses while on the eye to replenish any material that has dissociated from the lens during wear.


Formulations


The present invention comprises 0.0001 to 5 weight percent of short chain quaternary amines (the LMW amines described above) and a second contact lens solution agent. These agents may include but are not limited to an effective amount of a preservative component, for example, an effective preserving amount of a non-oxidative antimicrobial component. Any suitable preservative component may be employed provided that it functions as a preservative and has no significant detrimental effect on the contact lens being treated or the wearer of the treated contact lens. Examples of useful preservative components include, but are not limited to, poly[dimethylimino-2-butene-1,4-diyl]chloride, alpha [4-tris (2-hydroethyl) ammonium-dichloride (available from Onyx Corporation under the trademark Polyquarternium I Registered™), benzalkonium halides such as benzalkonium chloride, alexidine salts, chlorhexidine salts, hexamethylene biguanides and their polymers, and the like and mixtures thereof.


The amount of preservative component included varies over a relatively wide range depending, for example, on the specific preservative component being employed. Preferably, the amount of preservative component is in the range of about 0.000001% to about 0.001% or more.


The liquid media, e.g., aqueous liquid media, employed preferably include a buffer component which is present in an amount effective to maintain the pH of the liquid medium in the desired range. This buffer component may be present in the liquid medium, e.g., either separately or in combination with one or more of the other presently useful components, e.g., with the hydrogen peroxide. Among the suitable buffer components or buffering agents which may be employed are those which are conventionally used in contact lens care products. Examples of useful buffer components include those with carbonate functionalities, bicarbonate functionalities, phosphate functionalities, borate functionalities, and amine functionalities the like and mixtures thereof. The buffers may be alkali metal and alkaline earth metal salts, in particular sodium and potassium.


Further, in order to avoid possible eye irritation, it is preferred that the presently useful combined liquid medium has an osmolality (a measure of tonicity) of at least about 200 mOsmollkg, preferably in the range of about 200 to about 350 or abou 400 mOsmollkg. In an especially useful embodiment, the osmolality or tonicity o the combined liquid medium substantially corresponds to the tonicity of the fluids of the eye, in particularly the human eye.


Any suitable ophthalmically acceptable tonicity component or components may be employed, provided that such component or components are compatible with the other ingredients of the combined liquid medium and do not have deleterious or toxic properties which could harm the eye. Examples of useful tonicity components include sodium chloride, potassium chloride, mannitol, dextrose, glycerin, propylene glycol and mixtures thereof. In one embodiment, the tonicity component is selected from inorganic salts and mixtures thereof


The amount of ophthalmically acceptable tonicity component utilized can vary widely. In one embodiment, the tonicity component is preferably present in the combined liquid medium in an amount in the range of about 0.5 to about 0.9% of the combined liquid medium.


One or more additional components can be included in one or more of the present useful liquid media. Such additional component or components are chosen to impart or provide at least one beneficial or desired property to the liquid media. Such additional components may be selected from components which are conventionally used in one or more contact lens care compositions and which do not detrimentally interact with the other components present. Examples of such additional components include cleaning agents, wetting agents, nutrient agents, sequestering agents, viscosity builders, contact lens conditioning agents, colorants, and the like. These additional components may each be included in the combined liquid medium in an amount effective to impart or provide the beneficial or desired property to the combined liquid medium. Such additional components may be included in the presently useful liquid media in amounts similar to the amounts of such components used in other, e.g., conventional, contact lens care products.


Examples of useful sequestering agents include disodium ethylenediamine tetraacetate, alkali metal hexametaphosphate, citric acid, sodium citrate and mixtures thereof.


Examples of useful viscosity builders include hydroxyethyl cellulose, hydroxymethyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol and mixtures thereof.


In a particularly useful embodiment further includes at least one enzyme effective to remove debris or deposit material from a contact lens. Among the types of debris that form on contact lens during normal use are protein-based debris, mucin-based debris, lipid-based debris and carbohydrate-based debris. One or more types of debris may be present on a single contact lens.


The enzyme employed may be selected from peroxide-active enzymes which are conventionally employed in the enzymatic cleaning of contact lenses. For example, many of the enzymes disclosed in Huth et al U.S. Reissue Pat. No. 32,672 and Karageozian et al U.S. Pat. No. 3,910,296 are useful in the present invention. These patents are incorporated in their entirety by reference herein. Among the useful enzymes are those selected from proteolytic enzymes, lipases and mixtures thereof. Preferred proteolytic enzymes are those which are substantially free of sulfhydryl groups or disulfide bonds, whose presence may react with the active oxygen in the HPLM to the detriment of the activity of the enzyme. Metallo-proteases, those enzymes which contain a divalent metal ion such as calcium, magnesium or zinc bound to the protein, may also be used.


A more preferred group of proteolytic enzymes are the serine proteases, particularly those derived from Bacillus and Streptomyces bacteria and Aspergillus molds. Within this grouping, the still more preferred enzymes are the derived alkaline proteases generically called subtilisin enzymes. Reference is made to Keay, L., Moser, P. W. and Wildi, B. S., “Proteases of the Genus Bacillus”. II. Alkaline Proteases, “Biotechnology & Bioengineering”, Vol. XII, pp. 2 13-249 (1970, March) and Keay, L. and Moser, P. W., “Differentiation of Alkaline Proteases form Bacillus Species” Biochemical and Biophysical Research Comm., Vol. 34, No. 5, pp. 600-604, (1969).


The subtilisin enzymes are broken down into two sub-classes, subtilisin A and subtilisin B. In the subtilisin A grouping are enzymes derived from such species are B. subtilis, B. Iicenifomiis and B. pumilis. Organisms in this sub-class produce little or not neutral protease or amylase. The subtilisin B. sub-class is made up of enzymes from such organisms a B. subtilis, B. subtilis var. amylosacchariticus, B. aniyloliquefaciens and B. subtilis NRRL B341 1. These organisms product neutral proteases and amylases on a level about comparable to their alkaline protease production. One or more enzymes from the subtilisin A sub-class are particularly useful.


In addition other preferred enzymes are, for example, pancreatin, trypsin, collagenase, keratinase, carboxylase, aminopeptidase, elastase, and aspergillopeptidase A and B, pronase E (from S. griseus) and dispase (from Bacillus polymyxa).


An effective amount of enzyme is to be used in the practice of this invention. Such amount will be that amount which effects removal in a reasonable time (for example overnight) of substantially all of at least one type of debris from a lens due to normal wear. This standard is stated with reference to contact lens wearers with a history of normal pattern of lens debris accretion, not the very small group who may at one time or another have a significantly increased rate of debris accretion such that cleaning is recommended every day, or every two or three days.


The amount of enzyme required to make an effective cleaner will depend on several factors, including the inherent activity of the enzyme, and the extent of its interaction with the hydrogen peroxide present.


As a basic yardstick, the working solution should contain sufficient enzyme to provide about 0.00 1 to about 3 Anson units of activity, preferably about 0.01 to about 1 Anson units, per single lens treatment. Higher or lower amounts may be used. Enzyme activity is pH dependent so for any given enzyme, there is a particular pH range that is most effective and the solution may be formulated to adjust the pH for optimal enzyme activity.







EXAMPLE I

Reduced Protein Deposition


Contact lenses were soaked and heated in test solutions to which a radio-labeled lysozyme was present in a known amount for a period of 12 hours at 37 degrees Celsius. The lenses were rinsed with distilled water in order to remove residual solution. The lenses were then assayed for protein deposition using a Beckman BioGamma I counter. Results were reported in ug/lens.

















LensA
Lens B
Average



ug/lens
ug/lens
ug/lens





















Phosphate buffer control
1,043
865
954



Choline Chloride (1%) in
14
9
12



phosphate buffer










Choline chloride was a 1 percent w/v solution. The matrix control was phosphate buffer and sodium chloride. The low molecular weight amine solution had lower protein binding than the control.


EXAMPLE 2

Reduced Preservative Binding


Contact lenses were soaked and heated in test solutions to which a radio-labeled C14-PHMB solution in a known concentration for a period of 12 hours at 37 degrees Celsius. The lenses were rinsed with distilled water in order to remove residual solution. The lenses were then assayed for the radio-labeled protein deposition using a Beckman BioGamma 1 counter. Results were reported in ug/lens.



















Lens A
Lens B
Average



Solution
ug/lens
ug/lens
ug/lens





















1% choline chloride
18
11
14.5



in phosphate buffer



1% carnitine in
9
13
11



phosphate buffer



1% betaine HCI in
6
8
7



phosphate buffer



Phosphate buffer
73
64
68.5



control










Each of the additives were at a 1 percent w/v solution in the phosphate buffer. The control was phosphate buffer and sodium chloride. The low molecular weight amines solution had a lower cationic preservative adsorption the control.


EXAMPLE 3

Example of Protein Deposition Inhibition


Contact lenses were soaked test solutions overnight. Afterwards, lysozyme was added to the tubes and warmed to 37 degrees Celsius for 12 hours. The lenses were rinsed with distilled water in order to remove residual solution. The lenses were assayed for protein deposition by the BCA method and detected on an HP PDA Spectrophotometer. Results were reported in ug/lens.
















Solution
ug lysozyme per lens



















Marketed Product Control
>18.3



(phosphate buffer, Poloxamer)



Phosphate buffer control
>26.16



Choline chloride (1%)
4.1



Betaine HCI (1%)
2.44










Choline chloride and Betaine HCl were a 1 percent w/v solution in the phosphate buffer. The control was phosphate buffer and sodium chloride. The low molecular weight amine solution had lower protein binding than the control.


EXAMPLE 3A

Improved Antimicrobical Activity


Formulations containing low molecular weight amines were prepared in a 0.1% phosphate buffer. The solutions were made isotonic with sodium chloride and preserved with polyhexamethylene biquanide at 0.0001% and hydrogen peroxide at 0.0060%. Dequest 2060S was added as a stabilizer. The pH was adjusted to 7.0 with either 1 N sodium hydroxide. The in vitro microbicidal activity of the solutions was determined by exposing C. albicans to 10 ml of each solution at room temperature for 4 hours. Subsequently, an aliquot of each solution was serial diluted onto agar plates and incubated for 48 hours at elevated temperatures. At the conclusion of the incubation period the plates are examined for the development of colonies. The log reduction was determined based on a comparison to the inoculum control. The following table provides the results of the in vitro studies.

















C albicans log





reduction
Improvement




















bicine (1%)
0.75
0.34



creatinine (1%)
1.42
1.01



buffer control
0.41










Each of the low molecular weight amines showed an improvement in the activity against C. albicans as compared to the buffer control.


EXAMPLE 4

Improved Antimicrobical Activity


Formulations containing exemplary low molecular weight amines were prepared in a 0.2% phosphate buffer. The solutions were made isotonic with sodium chloride and preserved with polyhexamethylene biquanide at 0.0001%. The pH was adjusted to 7.2 with either 1N sodium hydroxide or 1 N hydrochloric acid. The in vitro microbicidal activity of the solutions was determined by exposing C. albicans to 10 ml of each solution at room temperature for 4 hours. Subsequently, an aliquot of each solution was serial diluted onto agar plates and incubated for 48 hours at elevated temperatures. At the conclusion of the incubation period the plates are examined for the development of colonies. The log reduction was determined based on a comparison to the inoculum control. The following table provides the results of the in vitro studies.

















C albicans log





reduction
Improvement




















betaine HCI (0.5%)
1.37
0.38



bis-tris (0.5%)
1.21
0.22



carnitine (0.5%)
1.28
0.29



choline (0.5%)
2.24
1.25



creatine (0.5%)
1.72
0.73



tricine (0.5%)
1.33
0.34



triethylamine (0.5%)
1.64
0.65



triethanolamine (0.5%)
1.82
0.83



buffer control
0.99










Each of the low molecular weight amines showed an improvement in the activity against C. albicans as compared to the buffer control.


EXAMPLE 5

An example of a preferred disinfecting formulation of the subject invention is provided below in Table I. This solution is prepared by weighing out the necessary amount of the tricine, creatine, choline chloride, sodium chloride and edetate disodium into a vessel containing approximately 90% of the water volume. After each of the ingredients has dissolved, the pH is adjusted to 7.3 with either 1 N sodium hydroxide or 1 N hydrochloric acid. Following this, the polyhexamethylene biguanide is added and the solution is brought to final volume with purified water. The final product has the composition shown in the Table below.











TABLE 4





Constituent

Weight/Volume







Polyhexamethylenebiguanide
20% w/w solution
0.0001%  


HCI
available under



the mark



Cosmocil CQ



from Avecia


Tricine

1.0%


Creatine

0.25% 


Choline Chloride

0.5%


Edetate Disodium

0.055% 


Polyoxyl 40 Hydrogenated
Cremophor RH
0.1%


Castor Oil
40 from BASF



Co.


Sodium Chloride

As required for




tonicity adjustment




300 mOsm


Hydrochloride Acid, 1N

as required for pH




adjustment to 7.3


Sodium Hydroxide, 1N

as required for pH




adjustment to 7.3


Purified Water

Balance to 100%









This solution may be used to rinse, clean, and store contact lenses on a daily basis.


EXAMPLE 6

An example of a preferred formulation for a contact lens vial storage of the subject invention is provided below in Table I. This solution is prepared by weighing out the necessary amount of the tricine, creatine, choline chloride, and sodium chloride into a vessel containing approximately 90% of the water volume. After each of the ingredients has dissolved, the pH is adjusted to 7.3 with either 1 N sodium hydroxide or I N hydrochloric acid. Following this, the polyhexamethylene biguanide is added and the solution is brought to final volume with purified water. The final product had the composition shown in Table I below.











TABLE 4





Constituent

Weight / Volume







Tricine

 1.0%


Creatine

0.25%


Choline Chloride

 0.5%


Polyoxyl 40 Hydrogenated
Cremophor RH 40
 0.1%


Castor Oil
from BASF Co.



Sodium Chloride

As required for tonicity




adjustment 300 mOsm


Hydrochloride Acid, 1N

as required for pH




adjustment to 7.3


Sodium Hydroxide, 1N

as required for pH




adjustment to 7.3


Purified Water

Balance to 100%









An example from another patent: specific representative embodiments of biguanides for use in the contact lens disinfectant methods include free bases and water soluble salts wherein:


EXAMPLE 8

Cleaning and Disinfecting Formulation


An example of a preferred cleaning and disinfecting formulation of the subject invention is provided. This solution is prepared by weighing out the necessary amount of the tricine, creatine, choline chloride, sodium chloride and edetate disodium into a vessel containing approximately 90% of the water volume. After each of the ingredients has dissolved, the pH is adjusted to 7.3 with either 1 N sodium hydroxide or 1 N hydrochloric acid. Following this, the polyhexamethylene biguanide is added and the solution is brought to final volume with purified water. The final product has the composition shown in the following table.














Constituent
% Weight/Volume
Amount







Purified water

40 mL


Tricine
1.0%
0.500 g


Creatine
0.25% 
0.125 g


Choline Chloride
0.5%
0.250 g


Edetate Disodium
0.055% 
0.0275 g


Polyoxyl 40 Hydrogenated
0.1%
0.5 mL of 10%


Castor Oil (Cremophor RH 40


from BASF Co.)


Polyhexamethylenebiguanide
0.0001%  
50 uL of 0.1%


HCI (20% w/w solution


available under the mark


Cosmocil CQ from Avecia)


Sodium Chloride
As required for
As required for



tonicity adjustment
tonicity adjustment



300 mOsm
300 mOsm


Hydrochloride Acid, 1N
as required for pH
as required for pH



adjustment to 7.3
adjustment to 7.3


Sodium Hydroxide, 1N
as required for pH
as required for pH



adjustment to 7.3
adjustment to 7.3


Purified Water
Balance to 100%
Dilute to 50 mL









This solution may be used to rinse, clean, and store contact lenses on a daily basis.


EXAMPLE 8

Lens Vial Storage


An example of a preferred formulation for a contact lens vial storage of the subject invention is provided. This solution is prepared by weighing out the necessary amount of the tricine, creatine, choline chloride, and sodium chloride into a vessel containing approximately 90% of the water volume. After each of the ingredients has dissolved, the pH is adjusted to 7.3 with either 1 N sodium hydroxide or 1 N hydrochloric acid. Following this, the polyhexamethylene biguanide is added and the solution is brought to final volume with purified water. The final product had the composition shown in Table I below.














Constituent
% Weight/Volume
Amount







Purified water

40 mL


Tricine
1.0%
0.500 g


Bis-Tris
0.25% 
0.125 g


Polyoxyl 40 Hydrogenated
0.1%
0.5 mL of 10%


Castor Oil (Cremophor RH 40


from BASF Co.)


Sodium Chloride
As required for
As required for



tonicity adjustment
tonicity adjustment



300 mOsm
300 mOsm


Hydrochloride Acid, 1N
as required for pH
as required for pH



adjustment to 7.3
adjustment to 7.3


Sodium Hydroxide, 1N
as required for pH
as required for pH



adjustment to 7.3
adjustment to 7.3


Purified Water
Balance to 100%
Dilute to 50 mL









EXAMPLE 9

Disinfecting Solution


Formulation was prepared by dissolving Tricine, Carnitine, Betaine HCl, Choline Chloride, Inositol, Disodium edetate, and Cremophor RH40 in 80% of the water volume. The pH of the solution was adjust to 7.3 with 1 N sodium hydroxide. The tonicity of the solution was adjusted with sodium chloride and polyhexamethylene biguanide. The solution was diluted to volume with water.

















% Weight/



Constituent
Supplier
Volume
Amount







Purified water

to 80%
40 mL


Tricine
Spectrum
1.0%
0.500 g


Carnitine
Spectrum
0.25% 
0.125 g


Betaine HCl
Spectrum
0.1%
0.050 g


Choline Chloride
Amresco
0.5%
0.250 g


Inosito
Spectrum
0.1%
0.050 g


Edetate Disodium
Spectrum
0.055% 
0.0275 g


Polyoxyl 40
Cremophor RH
0.1%
0.5 mL of


Hydrogenated
40 from BASF

10%


Castor Oil
Co.


Sodium

as required for
as required for


Hydroxide, 1N

pH adjustment
pH adjustment




to 7.3
to 7.3


Purified Water

to 98%
Dilute to 49





mL


Sodium Chloride
Fisher
As required for
As required for




tonicity
tonicity




adjustment 300
adjustment 300




mOsm
mOsm


Polyhexamethylene-
20% w/w solution
0.0001%  
50 uL of 0.1%


biguanide HCI
available under



the mark



Cosmocil CQ



from Avecia


Purified Water

Balance to
Dilute to 50




100%
mL









EXAMPLE 10

Lens Storage Solution (BCL1O6-037-3)


Formulation was prepared by dissolving Tricine, Carnitine, and Inositol in 80% of the water volume. The pH of the solution was adjust to 7.3 with 1 N sodium hydroxide and Cremophor RH40 was added. The tonicity of the solution was adjusted with sodium chloride. The solution was diluted to volume with water.

















% Weight/



Constituent
Supplier
Volume
Amount







Purified water

to 80%
40 mL


Tricine
Spectrum
1.0%
0.500 g


Carnitine
Spectrum
0.25% 
0.125 g


Inositol
Spectrum
0.1%
0.050 g


Hydrochloride Acid,

as required for
as required for pH


1N

pH adjustment
adjustment to 7.3




to 7.3


Sodium Hydroxide,

as required for
as required for pH


1N

pH adjustment
adjustment to 7.3




to 7.3


Polyoxyl 40
Cremophor
0.1%
0.5 mL of 10%


Hydrogenated
RH 40 from.


Castor Oil
BASF Co


Purified Water

to 98%
Dilute to 49 mL


Sodium Chloride
Fisher
As required for
As required for




tonicity
tonicity




adjustment 300
adjustment 300




mOsm
mOsm


Purified Water

to 100%
Dilute to 50 mL








Claims
  • 1. An ophthalmic product comprising: at least one contact lens;a contact lens container; anda sufficient volume of a contact lens solution to wet the contact lens where the contact lens solution comprises 0.001 to about 5 weight percent of carnitine; an effective amount of biologically compatible buffer to maintain the pH of the solution between 5.5 and 8.5 pH; and the balance water.
  • 2. The ophthalmic product of claim 1, wherein the contact lens solution consists essentially of the carnitine, the biologically compatible buffer, an effective amount of a tonicity agent, and the balance water.
  • 3. The ophthalmic product of claim 1, wherein the contact lens solution consists essentially of the carnitine, the biologically compatible buffer, an effective amount of a tonicity agent, and a preservative and the balance water.
  • 4. The ophthalmic product of claim 3, wherein the preservative is poly[dimethylimino-2-butene-1,4-diyl]chloride, alpha[4-tris(2-hydroethyl)ammonium-dichloride.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of Ser. No. 13/195,389 (filed Aug. 1, 2011) which is a continuation of U.S. Ser. No. 10/294,509 (filed Nov. 14, 2002) which is a continuation application of U.S. Ser. No. 09/706,317 (filed Nov. 4, 2000), now abandoned. The content of each of the aforementioned patent applications is hereby incorporated by reference.

STATEMENT REGARDING FEDERALLY FUNDED RESEARCH OR DEVELOPMENT

This invention was made with support from a government grant under grant number EY11572 from the National Institute of Health. The government has retained certain rights in this invention.

US Referenced Citations (44)
Number Name Date Kind
3428576 Dickinson Feb 1969 A
4022834 Gundersen May 1977 A
4029817 Blanco Jun 1977 A
4046706 Krezanoski Sep 1977 A
4599360 Fukami Jul 1986 A
4783488 Ogunbiyi Nov 1988 A
4836986 Ogunbiyi Jun 1989 A
4863900 Pollock Sep 1989 A
4891423 Stockel Jan 1990 A
4997626 Dziabo Mar 1991 A
5030721 Kasai Jul 1991 A
5439572 Pankow Aug 1995 A
5547990 Hall Aug 1996 A
5607681 Galley Mar 1997 A
5612375 Sueoka Mar 1997 A
5660862 Park Aug 1997 A
5674450 Lin Oct 1997 A
5691379 Ulrich Nov 1997 A
5719110 Cook Feb 1998 A
5770582 von Borstel Jun 1998 A
5807585 Martin Sep 1998 A
5811446 Thomas Sep 1998 A
5840671 Fujimura Nov 1998 A
5869468 Freeman Feb 1999 A
5968904 Julian Oct 1999 A
6001805 Jaynes Dec 1999 A
6117869 Picard Sep 2000 A
6121327 Tsuzuki Sep 2000 A
6139646 Asgharian Oct 2000 A
6153568 McCanna Nov 2000 A
6191110 Jaynes Feb 2001 B1
6242491 Kaddurah-Daouk Jun 2001 B1
6482799 Tusé Nov 2002 B1
6617291 Smith Sep 2003 B1
7939501 Smith May 2011 B2
8093352 DeSousa Jan 2012 B2
8247461 Smith Aug 2012 B2
20030190258 Smith Oct 2003 A1
20070098818 Smith May 2007 A1
20070110782 Smith May 2007 A1
20070149428 Ammon Jun 2007 A1
20070196329 Xia Aug 2007 A1
20080110770 Burke May 2008 A1
20120017806 Smith Jan 2012 A1
Foreign Referenced Citations (2)
Number Date Country
2006198001 Aug 2006 JP
WO2012172274 Dec 2012 WO
Non-Patent Literature Citations (2)
Entry
Derwent Abstract 2001053625; “Solutions for Preventing drying of contact lens” (2 pages).
Sharma; Biomater Artif Cells Immobilization Biotechnol 1992; 19(3):599-612; “Surface modification of Corneal Contact Lens with phosphoryl choline by glow discharge”.
Related Publications (1)
Number Date Country
20130233734 A1 Sep 2013 US
Divisions (1)
Number Date Country
Parent 13195389 Aug 2011 US
Child 13870094 US
Continuations (2)
Number Date Country
Parent 10294509 Nov 2002 US
Child 13195389 US
Parent 09706317 Nov 2000 US
Child 10294509 US