The present disclosure is directed to the area of magnetic field measurement systems including systems for magnetoencephalography (MEG). The present disclosure is also directed to optically pumped magnetometer modules and headgear arrangements and methods of making and using.
In the nervous system, neurons propagate signals via action potentials. These are brief electric currents which flow down the length of a neuron causing chemical transmitters to be released at a synapse. The time-varying electrical current within an ensemble of neurons generates a magnetic field. Magnetoencephalography (MEG), the measurement of magnetic fields generated by the brain, is one method for observing these neural signals.
Existing technology for measuring MEG typically utilizes superconducting quantum interference devices (SQUIDs) or collections of discrete optically pumped magnetometers (OPMs). SQUIDs require cryogenic cooling, which is bulky, expensive, requires a lot of maintenance. These requirements preclude their application to mobile or wearable devices.
An alternative to an array of SQUIDs is an array of OPMs. For MEG and other applications, the array of OPMS may have a large number of OPM sensors that are tightly packed. Such dense arrays can produce a high resolution spatial mapping of the magnetic field, and at a very high sensitivity level. Such OPMs sensors can be used for a wide range of applications, including sensing magnetic field generated by neural activities, similar to MEG systems.
One embodiment is a headgear for magnetoencephalography that includes a body defining a plurality of ports, where the body includes a first portion and a second portion; an adjustment mechanism coupled to the first portion and the second portion of the body and configured to adjust a separation between the first and second portion to facilitate fitting the headgear to a head of a user; and a plurality of optically pumped magnetometer (OPM) modules, where each of the OPM modules includes at least one vapor cell and is configured to be removably inserted into a one of the ports of the body, where each of the OPM modules is configured for coupling to a light source for receiving light.
In at least some embodiments, the plurality of OPM modules is at least two OPM modules with at least one of the OPM modules disposed in the first section and at least another one of the OPM modules disposed in the second section. In at least some embodiments, the plurality of OPM modules is at least ten OPM modules. In at least some embodiments, the headgear further comprises a connection element coupled to the body for coupling the headgear to an arm.
Yet another embodiment is a headgear for magnetoencephalography that includes a body defining a plurality of ports; and a plurality of optically pumped magnetometer (OPM) modules, where each of the OPM modules includes at least one vapor cell and is configured to be removably inserted into a one of the ports of the body, where each of the OPM modules is configured for coupling to a light source for receiving light and the OPM modules include, in total, at least 200 vapor cells.
In at least some embodiments, the OPM modules include, in total, at least 256 vapor cells. In at least some embodiments, each of the OPM modules includes at least six vapor cells.
A further embodiment is a headgear for magnetoencephalography that includes a body defining a plurality of ports; a plurality of optically pumped magnetometer (OPM) modules, where each of the OPM modules includes at least one vapor cell and is configured to be removably inserted into a one of the ports of the body, where each of the OPM modules is configured for coupling to a light source for receiving light; and a plurality of sleeves, where each of the sleeves is configured to fit around a one of the OPM modules and configured to fit, with the OPM module, in a one of the ports and to fix the OPM module within the one of the ports.
In at least some embodiments, each of the sleeves includes at least one snap fit fixture configured to snap fit over a feature on the OMP module. In at least some embodiments, each of the sleeves includes an inner sleeve and an outer sleeve that is movable relative to the inner sleeve. In at least some embodiments, the inner sleeve and the outer sleeve have complementary sets of detents that facilitate positioning the inner sleeve at different depths relative to the outer sleeve by matching the sets of detents.
Another embodiment is a magnetic field measurement system includes any of the headgear disclosed above and at least one laser module coupleable to the OPM modules to provide the laser light.
In at least some embodiments, the magnetic field measurement system further includes at least one sensor module coupleable to the OPM modules to receive output from the detector arrangement. In at least some embodiments, the magnetic field measurement system further includes at least one peripheral configured for input by a user of the magnetic field measurement system while the user wears the headgear.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
The present disclosure is directed to the area of magnetic field measurement systems including systems for magnetoencephalography (MEG). The present disclosure is also directed to optically pumped magnetometer modules and headgear arrangements and methods of making and using.
Herein the terms “ambient background magnetic field” and “background magnetic field” are interchangeable and used to identify the magnetic field or fields associated with sources other than the magnetic field measurement system and the magnetic field sources of interest, such as biological source(s) (for example, neural signals from a user's brain) or non-biological source(s) of interest. The terms can include, for example, the Earth's magnetic field, as well as magnetic fields from magnets, electromagnets, electrical devices, and other signal or field generators in the environment, except for the magnetic field generator(s) that are part of the magnetic field measurement system.
The terms “gas cell”, “vapor cell”, and “vapor gas cell” are used interchangeably herein. Below, a gas cell containing alkali metal vapor is described, but it will be recognized that other gas cells can contain different gases or vapors for operation.
The methods and systems are described herein using optically pumped magnetometers (OPMs). While there are many types of OPMs, in general magnetometers operate in two modalities: vector mode and scalar mode. In vector mode, the OPM can measure one, two, or all three vector components of the magnetic field; while in scalar mode the OPM can measure the total magnitude of the magnetic field.
Vector mode magnetometers measure a specific component of the magnetic field, such as the radial and tangential components of magnetic fields with respect the scalp of the human head. Vector mode OPMs often operate at zero-field and may utilize a spin exchange relaxation free (SERF) mode to reach femto-Tesla sensitivities. A SERF mode OPM is one example of a vector mode OPM, but other vector mode OPMs can be used at higher magnetic fields. These SERF mode magnetometers can have high sensitivity but may not function in the presence of magnetic fields higher than the linewidth of the magnetic resonance of the atoms of about 10 nT, which is much smaller than the magnetic field strength generated by the Earth.
Magnetometers operating in the scalar mode can measure the total magnitude of the magnetic field. (Magnetometers in the vector mode can also be used for magnitude measurements.) Scalar mode OPMs often have lower sensitivity than SERF mode OPMs and are capable of operating in higher magnetic field environments.
The magnetic field measurement systems, such as a MEG system, described herein can be used to measure or observe electromagnetic signals generated by one or more magnetic field sources (for example, biological sources) of interest. The system can measure biologically generated magnetic fields and, at least in some embodiments, can measure biologically generated magnetic fields in a partially shielded environment. Aspects of a magnetic field measurement system will be exemplified below using magnetic signals from the brain of a user; however, biological signals from other areas of the body, as well as non-biological signals, can be measured using the system. In at least some embodiments, the system can be a wearable MEG system that can be portable and used outside a magnetically shielded room. A wearable MEG system will be used to exemplify the magnetic field measurement systems and calibration arrangements described herein; however, it will be recognized the calibration arrangements and methods described herein can be applied to other magnetic field measurement systems.
A magnetic field measurement system, such as a MEG system, can utilize one or more magnetic field sensors. Magnetometers will be used herein as an example of magnetic field sensors, but other magnetic field sensors may also be used in addition to, or as an alternative to, the magnetometers.
The computing device 150 can be a computer, tablet, mobile device, field programmable gate array (FPGA), microcontroller, or any other suitable device for processing information or instructions. The computing device 150 can be local to the user or can include components that are non-local to the user including one or both of the processor 152 or memory 154 (or portions thereof). For example, in at least some embodiments, the user may operate a terminal that is connected to a non-local computing device. In other embodiments, the memory 154 can be non-local to the user.
The computing device 150 can utilize any suitable processor 152 including one or more hardware processors that may be local to the user or non-local to the user or other components of the computing device. The processor 152 is configured to execute instructions stored in the memory 154.
Any suitable memory 154 can be used for the computing device 150. The memory 154 illustrates a type of computer-readable media, namely computer-readable storage media. Computer-readable storage media may include, but is not limited to, volatile, nonvolatile, non-transitory, removable, and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. Examples of computer-readable storage media include RAM, ROM, EEPROM, flash memory, or other memory technology, CD-ROM, digital versatile disks (“DVD”) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.
Communication methods provide another type of computer readable media; namely communication media. Communication media typically embodies computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, data signal, or other transport mechanism and include any information delivery media. The terms “modulated data signal,” and “carrier-wave signal” includes a signal that has one or more of its characteristics set or changed in such a manner as to encode information, instructions, data, and the like, in the signal. By way of example, communication media includes wired media such as twisted pair, coaxial cable, fiber optics, wave guides, and other wired media and wireless media such as acoustic, RF, infrared, and other wireless media.
The display 156 can be any suitable display device, such as a monitor, screen, or the like, and can include a printer. In some embodiments, the display is optional. In some embodiments, the display 156 may be integrated into a single unit with the computing device 150, such as a tablet, smart phone, or smart watch. In at least some embodiments, the display is not local to the user. The input device 158 can be, for example, a keyboard, mouse, touch screen, track ball, joystick, voice recognition system, or any combination thereof, or the like. In at least some embodiments, the input device is not local to the user.
The magnetic field generator(s) 162 can be, for example, Helmholtz coils, solenoid coils, planar coils, saddle coils, electromagnets, permanent magnets, or any other suitable arrangement for generating a magnetic field. As an example, the magnetic field generator 162 can include three orthogonal sets of coils to generate magnetic fields along three orthogonal axes. Other coil arrangement can also be used. The optional sensor(s) 164 can include, but are not limited to, one or more position sensors, orientation sensors, accelerometers, image recorders, or the like or any combination thereof.
The one or more magnetometers 160 can be any suitable magnetometer including, but not limited to, any suitable optically pumped magnetometer. Arrays of magnetometers are described in more detail herein. In at least some embodiments, at least one of the one or more magnetometers (or all of the magnetometers) of the system is arranged for operation in the SERF mode.
The light source 172 can include, for example, a laser to, respectively, optically pump the alkali metal atoms and probe the vapor cell. The light source 172 may also include optics (such as lenses, waveplates, collimators, polarizers, and objects with reflective surfaces) for beam shaping and polarization control and for directing the light from the light source to the vapor cell 170 and detector 174. Examples of suitable light sources include, but are not limited to, a diode laser (such as a vertical-cavity surface-emitting laser (VCSEL), distributed Bragg reflector laser (DBR), or distributed feedback laser (DFB)), light-emitting diode (LED), lamp, or any other suitable light source. In some embodiments, the light source 172 may include two light sources: a pump light source and a probe light source.
The detector 174 can include, for example, an optical detector to measure the optical properties of the transmitted probe light field amplitude, phase, or polarization, as quantified through optical absorption and dispersion curves, spectrum, or polarization or the like or any combination thereof. Examples of suitable detectors include, but are not limited to, a photodiode, charge coupled device (CCD) array, CMOS array, camera, photodiode array, single photon avalanche diode (SPAD) array, avalanche photodiode (APD) array, or any other suitable optical sensor array that can measure the change in transmitted light at the optical wavelengths of interest.
Range 210 indicates the approximate measurement range of a magnetometer (e.g., an OPM) operating in the SERF mode (e.g., a SERF magnetometer) and range 211 indicates the approximate measurement range of a magnetometer operating in a scalar mode (e.g., a scalar magnetometer.) Typically, a SERF magnetometer is more sensitive than a scalar magnetometer, but many conventional SERF magnetometers typically only operate up to about 0 to 200 nT while the scalar magnetometer starts in the 10 to 100 fT range but extends above 10 to 100 μT.
An OPM module can include, for example, one or more vapor cells 170 in an optional vapor cell block, one or more detectors 174 in a detector arrangement, a heater 176 in a heating arrangement, and one or more magnetic field generators 162 to provide active shielding in a shielding arrangement. In at least some embodiments, the light source 172 is external to the OPM module and can be provided to a light input of the OPM module.
In at least some embodiments, an OPM module can have a compact arrangement of OPM module components. In at least some embodiments, an OPM module can have a linear arrangement of OPM module components. In at least some embodiments, an OPM module can include various alignment mechanisms for the components.
At least some of the elements of the OPM module 300, systems which can employ the OPM module 300, and methods of making and using the system or OPM modules have been disclosed in U.S. Patent Application Publications Nos. 2020/0072916; 2020/0056263; 2020/0025844; 2020/0057116; 2019/0391213; 2020/0088811; 2020/0057115; 2020/0109481; 2020/0123416; 2020/0191883; 2020/0241094; 2020/0256929; 2020/0309873; 2020/0334559; 2020/0341081; 2020/0381128; 2020/0400763; US 2021/0011094; 2021/0015385; 2021/0041512; 2021/0041513; and 2021/0063510; U.S. patent applications Ser. No. 17/087,988, and U.S. Provisional Patent Applications Ser. Nos. 62/689,696; 62/699,596; 62/719,471; 62/719,475; 62/719,928; 62/723,933; 62/732,327; 62/732,791; 62/741,777; 62/743,343; 62/747,924; 62/745,144; 62/752,067; 62/776,895; 62/781,418; 62/796,958; 62/798,209; 62/798,330; 62/804,539; 62/826,045; 62/827,390; 62/836,421; 62/837,574; 62/837,587; 62/842,818; 62/855,820; 62/858,636; 62/860,001; 62/865,049; 62/873,694; 62/874,887; 62/883,399; 62/883,406; 62/888,858; 62/895,197; 62/896,929; 62/898,461; 62/910,248; 62/913,000; 62/926,032; 62/926,043; 62/933,085; 62/960,548; 62/971,132; 62/983,406; 63/031,469; 63/052,327; 63/076,015; 63/076,880; 63/080,248; 63/089,456; 63/135,364; 63/136,093; 63/136,415; and 63/140,150, all of which are incorporated herein by reference in their entireties.
In the illustrated embodiment, the laser output 329 forms a protrusion 327 along the exterior of the module case 339. In at least some embodiments, this protrusion 327 provides an asymmetry for orientation of the OPM module when placed in an assembly, as described below. The case 339 includes a ring 341 extending away from the remainder of the case which can be used to fasten the OPM module in the assembly, as described below. Examples of ornamental features are identified by reference numeral 343 in
In operation, the vapor cells 170 (
Knowledge of the location of the OPM module 300 relative to the head of the user is important for neural signal measurement and identification. The sleeves 680 of
A variety of different headgears or other assemblies can be constructed using the OPM modules 300 (optionally disposed in sleeves 680). In at least some embodiments, the system can have a headgear with two module supports and an adjustment mechanism used for adjusting the headgear to conform with the width of the user's head. In at least some embodiments, the system can have a helmet with at least 256 vapor cells.
In at least some embodiments, the headgear 986 includes an adjustment mechanism 989 (shown in
In addition, the headgear 986 includes a connection element 990 that can be coupled to an arm 1691, 1791 (shown in
In other embodiments, the helmet 1486 may include one or more adjustment mechanisms to adjust the helmet to fit the user's head. The helmet 1486 can also include a connection element similar to connection element 990.
In at least some embodiments, the system can have an adjustable arm that supports the complete headgear weight, to control head motion within specific degrees of freedom and ranges of motion, and with features for cable/fiber protection and routing. In at least some embodiments, the system can have laser and sensor chassis which allow close placement to the OPM modules, to reduce cable and fiber lengths.
The arm 1691 of
In at least some embodiments, the arm 1691, 1791; tracks 1692, 1693, 1792, 1793; ball and socket mounts; and hydraulic arm segments 1794 can be made partially or entirely from non-magnetic materials such as, for example, aluminum or polymers.
In at least some embodiments, the system can have laser/sensor modules in a non-magnetic chassis with passive air flow and a heat sink for cooling to avoid the use of fans. In at least some embodiments, the system can have a peripheral made of non-magnetic materials for user input.
The above specification provides a description of the invention and its manufacture and use. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 63/170,892, filed Apr. 5, 2021, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63170892 | Apr 2021 | US |