Garbage collection is often performed in data storage devices that implement uni-directional write policies. For example, some non-volatile solid-state memory devices and shingled disk drives both program or write data to the media in one direction, whether the incoming data from the host has random or sequential logical addresses. Because data for logical addresses can be located at any physical location, garbage collection is needed to reclaim locations on the media that no longer contain valid data for future writes. For example, in a shingled disk drive, if a track stores both valid and invalid data, the valid data may be copied by the controller as part of garbage collection to a new location so that the entire track can be made available for future write operations.
Systems and methods which embody the various features of the invention will now be described with reference to the following drawings, in which:
The present invention is directed to systems and methods for opportunistically defragmenting a data storage device, such as a shingled magnetic disk drive, during garbage collection. During garbage collection, the identified valid data (e.g., data that is to be kept) is cached. The valid data is coalesced, and when the cached data has been coalesced or fills the cache, it is written back to the data storage medium to reduce the number of required disk operations. In one embodiment, the valid data found during the garbage collection process is written back such that it can be read by a single disk operation
Certain embodiments of the inventions will now be described. These embodiments are presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. To illustrate some of the embodiments, reference will now be made to the figures.
In the embodiment in
In one embodiment, the data storage device 50 further comprises a garbage collection module 40 for managing garbage collection operations. In another embodiment, the control circuitry 32 manages garbage collection operations. The management and execution of garbage collection operations will be further described below.
In one embodiment, the data storage device 50 further comprises a buffer in a memory, such as a semiconductor memory (SM) 38, communicatively coupled to the control circuitry 32. The SM 38 may serve as a cache for temporarily storing write data received from the host 56 via a write command and read data requested by the host 56 via a read command. The SM 38 can be implemented, for example, using dynamic random access memory (DRAM), flash memory, or static random access memory (SRAM).
In addition, the SM 38 may provide storage for a translation table used by the control circuitry 32. The translation table provides a data structure for mapping the logical block addresses (LBAs) requested by the host 56 into physical locations on the data storage device 50, such as on disk surfaces 4. On data storage devices that implement shingled magnetic recording, such as those shown in
Data storage devices, including solid-state drives (SSDs) and shingled disk drives typically require garbage collection. This is due to the fact that LBAs for blocks of data are usually not rewritten to the same physical location they were before the rewrite operation. Since LBAs are rewritten in a new location, the old location becomes obsolete or invalid, and thus, may be considered “garbage”. The media and storage space consumed by the garbage should be reclaimed so that it can be reused.
As shown, for example, the data storage device 50 is divided into multiple zones, including a zone 1 (108), a zone 2 (110), and a zone 3 (112). A plurality of heads 21-24 are actuated over respective disk surfaces 41-44 by a VCM 8 which rotates actuator arms 61-63 about a pivot. In one embodiment, each of disk surfaces 41-44 comprises a host addressable area 10 comprising a plurality of data tracks 18. A zone may span multiple layers of the disk as shown. For example, zone 1 (108) may span a portion of the disk surfaces 41, 42, 43, and 44 as indicated by the bracket. Similarly, zone 2 (110) may span a portion of the disk surfaces 41, 42, 43, and 44 as indicated by the bracket.
According to one embodiment, the data storage device 50 is a shingled-based disk drive in which the control circuitry 32 accesses at least part of the storage using log structure writes wherein a band of the data tracks are accessed as a circular buffer. New data is written to the head (current data track), and during a garbage collection operation, valid data is relocated from the tail of the buffer (old data tracks) to the head of the buffer so as to free space for new write data. In the shingled-based disk drive embodiment, data tracks are written in a shingled (overlapping) manner.
In addition, control circuitry 32 and/or garbage collection module 40 may be configured to balance the respective results of garbage collection versus defragmentation. In particular, in some instances, garbage collection may increase defragmentation and vice versa. For example, during defragmentation, data is moved, which thus results in garbage being created. Accordingly, in some embodiments, control circuitry 32 and/or garbage collection module 40 may be configured to optimize one process over the other. Thus, the control circuitry 32 and/or garbage collection module 40 may be configured to modify how data is written back to the disk surface 4 to overwrite areas that are marked as garbage based on a number of factors, such as vicinity, track location, head position of head 21, etc.
For example, during garbage collection, the control circuitry 32 and/or garbage collection module 40 may opportunistically create garbage to help defragmentation. As another example, during garbage collection, the defragmentation process may take advantage of “gaps”, e.g., relatively isolated blocks of invalid data and fill in these gaps with coalesced data from the cache. This fill-in process can be based on proximity to valid data. In some embodiments, proximity can be based on seek operation, rotational tolerance of the head 21, track location, and the like.
Referring now to
In phase 84, the block retrieved from the read operation is analyzed to determine it is valid, invalid, and/or will be garbage collected soon. The determination of a block's status is further described below with reference to
In phase 86, if the read block is determined to be valid (i.e., data that should be retained), the data contents of the read block are cached. For example, the contents of the read block may be stored in a cache assigned in the semiconductor memory (SM) 38. In one embodiment, data from the read block may be placed in a read cache as part of processing the read command, or may already exist in the read cache because of a prior read command. In one embodiment, the valid data cached in SM 38 may be coalesced such that valid data that was previously fragmented is now defragmented. For example, the valid data may be cached so that it is contiguously stored on the disk. Of course, the valid data may be coalesced and reordered by the control circuitry 32 when rewritten.
In addition, in phase 86, read blocks for invalid (i.e., data that can be flushed), may also be may be stored in the semiconductor memory (SM) 38. In one embodiment, the data from the read block is tagged with a “dirty” flag/bit that is used by the read cache to mark data that should be retained for later flushing to the disk. In one embodiment, the data from the read block is tagged with a special flag/bit in place of or in addition to the “dirty” flag/bit to enable the read cache to differentiate data from the read block (which will be used for garbage collection) from other data that should be retained for flushing to the disk in the normal course of operation. In either case, in the embodiment with the read cache, the garbage collection module 40 and/or the control circuitry 32 may prevent data from the read block from being flushed from the read cache during the normal read cache flushing cycles. The read cache may thus implement different flushing policies for the different types of data.
In phase 88, garbage collection is then performed on the blocks of invalid data cached in phase 86. For example, the blocks may be flushed to disk.
In phase 90, once garbage collection is performed, the contents of the read block are made available for release. In the alternative, if the read block is determined to not be garbage collected soon in phase 84, the process 80 skips to phase 90, where the contents of the read block are made available for release.
In phase 91, the control circuitry 32 then writes the cached valid data in the SM 38 back to the disk surfaces 4 such that fewer disk operations are needed to retrieve the blocks when requested by a next read command. In one embodiment, the control circuitry 32 writes the cached data back to the disk surfaces in coalesced form such that the blocks are contiguously or substantially contiguously located on the disk surfaces 4. That is, the blocks for data requested by the read command are rewritten in a contiguous manner on the disk surfaces 4. That is, the blocks of data are written to physically adjacent locations on the disk surfaces 4.
For example, in one embodiment, the control circuitry 32 issues a write command that comprises a number of logical block addresses (LBAs) and write data. In some embodiments, the control circuitry 32 may also write other information, such as, such as a timestamp. Of note, in a hybrid drive embodiment, metadata may be stored in flash memory while user data is stored on the disk.
The rewriting of the valid data in coalesced form may be triggered based on a number of factors. For example, the cache for valid data in SM 38 may be configured with a fixed size, such as 32 megabytes. Accordingly, once this cache for valid data reaches a threshold, such as 90%, 80%, etc., the control circuitry 32 may be configured to commence rewriting the valid data in coalesced form.
Furthermore, the control circuitry 32 may then optimize the translation table stored in the SM 38 based on the coalesced data that has been rewritten to the disk surfaces 4. For example, the control circuitry 32 may compress one or more entries using a starting LBA of the coalesced data and a run length. The control circuitry 32 may also compress the translation table by encoding its entries to reduce its required size.
As shown, data is written to the disk-based storage device 50 in a circular buffer 92 with a head 96 and a tail 98. Data is written in an area between the head and the tail, with new data being written in the direction from the tail toward the head. A runway 94 is shown in the circular buffer 92 after the head 96 and before the tail 98 where new data may be written to without overwriting valid data. In operation, new data is written at the head 98, and the head 98 is moved forward into the runway area 92 after each write in one embodiment. The circular buffer 92 is circular in the sense that the runway spans the area between the head and the tail, and the head is moving toward the tail.
In one embodiment, garbage collection is performed at the tail to prevent the exhaustion of the runway 94. Therefore, data located near the tail has a higher likelihood of being invalid or garbage collected in the near future.
In one embodiment, the threshold is based at least in part on the likelihood that a garbage collection operation will be needed soon. For example, a long runway may mean that garbage collection operation is not likely to be needed soon. Thus, the threshold may be set to be shorter. If the runway is short, then garbage collection is likely to be needed soon, and as a result the threshold may be set to be longer. The threshold may be measured by a number of memory units such as sectors, blocks, or tracks depending on the embodiments. In one embodiment, the threshold may be a fixed number of blocks from the tail, and if the read block falls in the range of the threshold, the read block will be saved for garbage collection. In another embodiment, the number of blocks from the tail may be adjustable, e.g., based on the size of the runway.
In one embodiment, additional data may be saved along with the read block. For example, in a shingled disk drive embodiment, if a host read command results in a read from a block “A,” data from the entire track in which block “A” is located may also be read and saved for future garbage collection operations.
In one embodiment, when garbage collection is needed, the read block may not be stored in temporary storage but instead written directly to a new location, such as the head 96, as part of a garbage collection operation. For example, a read command from the host system 56 may trigger a garbage collection operation if the read data is near the tail and the runway 94 is running out of available space. In this case, the data is read from the target block of the read command, together with any adjacent blocks, and returned to the host and then written to a new location as part of a garbage collection operation. In another example, the read block is near the tail 98, so all of the valid blocks from the tail 98 to the read block may be read and moved to the head 96 so that a garbage collection operation can increase the runway 94 while servicing a host command.
In one embodiment, each block in the data storage device 50 is time-stamped and the control circuitry 32 and/or the garbage collection module 40 is configured to maintain a list of blocks that are least recently used (LRU) (i.e., least recently written). The LRU list may be used to determine whether the data contents of a block should be migrated to another location as part of a garbage collection operation. In one embodiment, the contents of a block that appears on the LRU list are saved for migration. In one embodiment, the contents of a block with a time stamp that meets a minimum LRU criterion are saved for migration.
The various afore-mentioned methods of determining whether to keep data read as a part of a read command may be combined. For example, the LRU list may be combined with the list of zones sorted by the number of invalid blocks, so that instead of saving read data from any block from the top zones on the list, the determining process only saves data from those blocks that are listed on the LRU lists for the individual zones. Alternatively, the garbage collection module may garbage collect zones independent of the number of invalid blocks, such as by following a round-robin approach. In this embodiment, the read block may be migrated to another zone if it is determined that the zone the read block is currently located in is close to being next in order for garbage collection. Other garbage collection schemes may be used.
The features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Although the present disclosure provides certain embodiments and applications, other embodiments that are apparent to those of ordinary skill in the art, including embodiments, which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of the present disclosure is intended to be defined only by reference to the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5530850 | Ford et al. | Jun 1996 | A |
5551003 | Mattson et al. | Aug 1996 | A |
5604902 | Burkes et al. | Feb 1997 | A |
5636355 | Ramakrishnan et al. | Jun 1997 | A |
5734861 | Cohn et al. | Mar 1998 | A |
5799185 | Watanabe | Aug 1998 | A |
5819290 | Fujita | Oct 1998 | A |
5819310 | Vishlitzky et al. | Oct 1998 | A |
6018789 | Sokolov et al. | Jan 2000 | A |
6065095 | Sokolov et al. | May 2000 | A |
6067199 | Blumenau | May 2000 | A |
6078452 | Kittilson et al. | Jun 2000 | A |
6081447 | Lofgren et al. | Jun 2000 | A |
6092149 | Hicken et al. | Jul 2000 | A |
6092150 | Sokolov et al. | Jul 2000 | A |
6094707 | Sokolov et al. | Jul 2000 | A |
6105104 | Guttmann et al. | Aug 2000 | A |
6111717 | Cloke et al. | Aug 2000 | A |
6125434 | Willard et al. | Sep 2000 | A |
6145052 | Howe et al. | Nov 2000 | A |
6175893 | D'Souza et al. | Jan 2001 | B1 |
6178056 | Cloke et al. | Jan 2001 | B1 |
6191909 | Cloke et al. | Feb 2001 | B1 |
6195218 | Guttmann et al. | Feb 2001 | B1 |
6205494 | Williams | Mar 2001 | B1 |
6208477 | Cloke et al. | Mar 2001 | B1 |
6223303 | Billings et al. | Apr 2001 | B1 |
6230233 | Lofgren et al. | May 2001 | B1 |
6246346 | Cloke et al. | Jun 2001 | B1 |
6249393 | Billings et al. | Jun 2001 | B1 |
6256695 | Williams | Jul 2001 | B1 |
6262857 | Hull et al. | Jul 2001 | B1 |
6263459 | Schibilla | Jul 2001 | B1 |
6272694 | Weaver et al. | Aug 2001 | B1 |
6278568 | Cloke et al. | Aug 2001 | B1 |
6279089 | Schibilla et al. | Aug 2001 | B1 |
6289484 | Rothberg et al. | Sep 2001 | B1 |
6292912 | Cloke et al. | Sep 2001 | B1 |
6310740 | Dunbar et al. | Oct 2001 | B1 |
6317850 | Rothberg | Nov 2001 | B1 |
6324631 | Kuiper | Nov 2001 | B1 |
6327106 | Rothberg | Dec 2001 | B1 |
6337778 | Gagne | Jan 2002 | B1 |
6369969 | Christiansen et al. | Apr 2002 | B1 |
6384999 | Schibilla | May 2002 | B1 |
6388833 | Golowka et al. | May 2002 | B1 |
6405342 | Lee | Jun 2002 | B1 |
6408357 | Hanmann et al. | Jun 2002 | B1 |
6408406 | Parris | Jun 2002 | B1 |
6411452 | Cloke | Jun 2002 | B1 |
6411458 | Billings et al. | Jun 2002 | B1 |
6412083 | Rothberg et al. | Jun 2002 | B1 |
6415349 | Hull et al. | Jul 2002 | B1 |
6425128 | Krapf et al. | Jul 2002 | B1 |
6430663 | Ding | Aug 2002 | B1 |
6441981 | Cloke et al. | Aug 2002 | B1 |
6442328 | Elliott et al. | Aug 2002 | B1 |
6445524 | Nazarian et al. | Sep 2002 | B1 |
6449767 | Krapf et al. | Sep 2002 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6470420 | Hospodor | Oct 2002 | B1 |
6480020 | Jung et al. | Nov 2002 | B1 |
6480349 | Kim et al. | Nov 2002 | B1 |
6480932 | Vallis et al. | Nov 2002 | B1 |
6483986 | Krapf | Nov 2002 | B1 |
6487032 | Cloke et al. | Nov 2002 | B1 |
6490635 | Holmes | Dec 2002 | B1 |
6493160 | Schreck | Dec 2002 | B1 |
6493173 | Kim et al. | Dec 2002 | B1 |
6499083 | Hamlin | Dec 2002 | B1 |
6519104 | Cloke et al. | Feb 2003 | B1 |
6525892 | Dunbar et al. | Feb 2003 | B1 |
6545830 | Briggs et al. | Apr 2003 | B1 |
6546489 | Frank, Jr. et al. | Apr 2003 | B1 |
6550021 | Dalphy et al. | Apr 2003 | B1 |
6552880 | Dunbar et al. | Apr 2003 | B1 |
6553457 | Wilkins et al. | Apr 2003 | B1 |
6578106 | Price | Jun 2003 | B1 |
6580573 | Hull et al. | Jun 2003 | B1 |
6594183 | Lofgren et al. | Jul 2003 | B1 |
6600620 | Krounbi et al. | Jul 2003 | B1 |
6601137 | Castro et al. | Jul 2003 | B1 |
6603622 | Christiansen et al. | Aug 2003 | B1 |
6603625 | Hospodor et al. | Aug 2003 | B1 |
6604220 | Lee | Aug 2003 | B1 |
6606682 | Dang et al. | Aug 2003 | B1 |
6606714 | Thelin | Aug 2003 | B1 |
6606717 | Yu et al. | Aug 2003 | B1 |
6611393 | Nguyen et al. | Aug 2003 | B1 |
6615312 | Hamlin et al. | Sep 2003 | B1 |
6639748 | Christiansen et al. | Oct 2003 | B1 |
6647481 | Luu et al. | Nov 2003 | B1 |
6654193 | Thelin | Nov 2003 | B1 |
6657810 | Kupferman | Dec 2003 | B1 |
6661591 | Rothberg | Dec 2003 | B1 |
6665772 | Hamlin | Dec 2003 | B1 |
6687073 | Kupferman | Feb 2004 | B1 |
6687078 | Kim | Feb 2004 | B1 |
6687850 | Rothberg | Feb 2004 | B1 |
6690523 | Nguyen et al. | Feb 2004 | B1 |
6690882 | Hanmann et al. | Feb 2004 | B1 |
6691198 | Hamlin | Feb 2004 | B1 |
6691213 | Luu et al. | Feb 2004 | B1 |
6691255 | Rothberg et al. | Feb 2004 | B1 |
6693760 | Krounbi et al. | Feb 2004 | B1 |
6694477 | Lee | Feb 2004 | B1 |
6697914 | Hospodor et al. | Feb 2004 | B1 |
6704153 | Rothberg et al. | Mar 2004 | B1 |
6708251 | Boyle et al. | Mar 2004 | B1 |
6710951 | Cloke | Mar 2004 | B1 |
6711628 | Thelin | Mar 2004 | B1 |
6711635 | Wang | Mar 2004 | B1 |
6711660 | Milne et al. | Mar 2004 | B1 |
6715044 | Lofgren et al. | Mar 2004 | B2 |
6724982 | Hamlin | Apr 2004 | B1 |
6725329 | Ng et al. | Apr 2004 | B1 |
6735650 | Rothberg | May 2004 | B1 |
6735693 | Hamlin | May 2004 | B1 |
6744772 | Eneboe et al. | Jun 2004 | B1 |
6745283 | Dang | Jun 2004 | B1 |
6751402 | Elliott et al. | Jun 2004 | B1 |
6757481 | Nazarian et al. | Jun 2004 | B1 |
6772281 | Hamlin | Aug 2004 | B2 |
6781826 | Goldstone et al. | Aug 2004 | B1 |
6782449 | Codilian et al. | Aug 2004 | B1 |
6791779 | Singh et al. | Sep 2004 | B1 |
6792486 | Hanan et al. | Sep 2004 | B1 |
6799274 | Hamlin | Sep 2004 | B1 |
6811427 | Garrett et al. | Nov 2004 | B2 |
6826003 | Subrahmanyam | Nov 2004 | B1 |
6826614 | Hanmann et al. | Nov 2004 | B1 |
6832041 | Boyle | Dec 2004 | B1 |
6832929 | Garrett et al. | Dec 2004 | B2 |
6845405 | Thelin | Jan 2005 | B1 |
6845427 | Atai-Azimi | Jan 2005 | B1 |
6850443 | Lofgren et al. | Feb 2005 | B2 |
6851055 | Boyle et al. | Feb 2005 | B1 |
6851063 | Boyle et al. | Feb 2005 | B1 |
6853731 | Boyle et al. | Feb 2005 | B1 |
6854022 | Thelin | Feb 2005 | B1 |
6862660 | Wilkins et al. | Mar 2005 | B1 |
6880043 | Castro et al. | Apr 2005 | B1 |
6882486 | Kupferman | Apr 2005 | B1 |
6884085 | Goldstone | Apr 2005 | B1 |
6888831 | Hospodor et al. | May 2005 | B1 |
6892217 | Hanmann et al. | May 2005 | B1 |
6892249 | Codilian et al. | May 2005 | B1 |
6892313 | Codilian et al. | May 2005 | B1 |
6895455 | Rothberg | May 2005 | B1 |
6895500 | Rothberg | May 2005 | B1 |
6898730 | Hanan | May 2005 | B1 |
6910099 | Wang et al. | Jun 2005 | B1 |
6928470 | Hamlin | Aug 2005 | B1 |
6931439 | Hanmann et al. | Aug 2005 | B1 |
6934104 | Kupferman | Aug 2005 | B1 |
6934713 | Schwartz et al. | Aug 2005 | B2 |
6940873 | Boyle et al. | Sep 2005 | B2 |
6943978 | Lee | Sep 2005 | B1 |
6948165 | Luu et al. | Sep 2005 | B1 |
6950267 | Liu et al. | Sep 2005 | B1 |
6954733 | Ellis et al. | Oct 2005 | B1 |
6961814 | Thelin et al. | Nov 2005 | B1 |
6965489 | Lee et al. | Nov 2005 | B1 |
6965563 | Hospodor et al. | Nov 2005 | B1 |
6965966 | Rothberg et al. | Nov 2005 | B1 |
6967799 | Lee | Nov 2005 | B1 |
6968422 | Codilian et al. | Nov 2005 | B1 |
6968450 | Rothberg et al. | Nov 2005 | B1 |
6973495 | Milne et al. | Dec 2005 | B1 |
6973570 | Hamlin | Dec 2005 | B1 |
6976190 | Goldstone | Dec 2005 | B1 |
6978283 | Edwards et al. | Dec 2005 | B1 |
6983316 | Milne et al. | Jan 2006 | B1 |
6986007 | Procyk et al. | Jan 2006 | B1 |
6986154 | Price et al. | Jan 2006 | B1 |
6995933 | Codilian et al. | Feb 2006 | B1 |
6996501 | Rothberg | Feb 2006 | B1 |
6996669 | Dang et al. | Feb 2006 | B1 |
7002926 | Eneboe et al. | Feb 2006 | B1 |
7003674 | Hamlin | Feb 2006 | B1 |
7006316 | Sargenti, Jr. et al. | Feb 2006 | B1 |
7009820 | Hogg | Mar 2006 | B1 |
7023639 | Kupferman | Apr 2006 | B1 |
7024491 | Hanmann et al. | Apr 2006 | B1 |
7024549 | Luu et al. | Apr 2006 | B1 |
7024614 | Thelin et al. | Apr 2006 | B1 |
7027716 | Boyle et al. | Apr 2006 | B1 |
7028174 | Atai-Azimi et al. | Apr 2006 | B1 |
7031902 | Catiller | Apr 2006 | B1 |
7046465 | Kupferman | May 2006 | B1 |
7046488 | Hogg | May 2006 | B1 |
7050252 | Vallis | May 2006 | B1 |
7054937 | Milne et al. | May 2006 | B1 |
7055000 | Severtson | May 2006 | B1 |
7055167 | Masters | May 2006 | B1 |
7057836 | Kupferman | Jun 2006 | B1 |
7062398 | Rothberg | Jun 2006 | B1 |
7075746 | Kupferman | Jul 2006 | B1 |
7076604 | Thelin | Jul 2006 | B1 |
7082494 | Thelin et al. | Jul 2006 | B1 |
7088538 | Codilian et al. | Aug 2006 | B1 |
7088545 | Singh et al. | Aug 2006 | B1 |
7092186 | Hogg | Aug 2006 | B1 |
7095577 | Codilian et al. | Aug 2006 | B1 |
7099095 | Subrahmanyam et al. | Aug 2006 | B1 |
7106537 | Bennett | Sep 2006 | B1 |
7106947 | Boyle et al. | Sep 2006 | B2 |
7110202 | Vasquez | Sep 2006 | B1 |
7111116 | Boyle et al. | Sep 2006 | B1 |
7114029 | Thelin | Sep 2006 | B1 |
7120737 | Thelin | Oct 2006 | B1 |
7120806 | Codilian et al. | Oct 2006 | B1 |
7124272 | Kennedy et al. | Oct 2006 | B1 |
7126776 | Warren, Jr. et al. | Oct 2006 | B1 |
7129763 | Bennett et al. | Oct 2006 | B1 |
7133600 | Boyle | Nov 2006 | B1 |
7136244 | Rothberg | Nov 2006 | B1 |
7146094 | Boyle | Dec 2006 | B1 |
7146525 | Han et al. | Dec 2006 | B2 |
7149046 | Coker et al. | Dec 2006 | B1 |
7149822 | Edanami | Dec 2006 | B2 |
7150036 | Milne et al. | Dec 2006 | B1 |
7155616 | Hamlin | Dec 2006 | B1 |
7171108 | Masters et al. | Jan 2007 | B1 |
7171110 | Wilshire | Jan 2007 | B1 |
7194576 | Boyle | Mar 2007 | B1 |
7200698 | Rothberg | Apr 2007 | B1 |
7205805 | Bennett | Apr 2007 | B1 |
7206497 | Boyle et al. | Apr 2007 | B1 |
7215496 | Kupferman et al. | May 2007 | B1 |
7215771 | Hamlin | May 2007 | B1 |
7237054 | Cain et al. | Jun 2007 | B1 |
7240161 | Boyle | Jul 2007 | B1 |
7249365 | Price et al. | Jul 2007 | B1 |
7263709 | Krapf | Aug 2007 | B1 |
7274639 | Codilian et al. | Sep 2007 | B1 |
7274659 | Hospodor | Sep 2007 | B2 |
7275116 | Hanmann et al. | Sep 2007 | B1 |
7280302 | Masiewicz | Oct 2007 | B1 |
7292774 | Masters et al. | Nov 2007 | B1 |
7292775 | Boyle et al. | Nov 2007 | B1 |
7296284 | Price et al. | Nov 2007 | B1 |
7302501 | Cain et al. | Nov 2007 | B1 |
7302579 | Cain et al. | Nov 2007 | B1 |
7315917 | Bennett et al. | Jan 2008 | B2 |
7318088 | Mann | Jan 2008 | B1 |
7319806 | Willner et al. | Jan 2008 | B1 |
7325244 | Boyle et al. | Jan 2008 | B2 |
7330323 | Singh et al. | Feb 2008 | B1 |
7346790 | Klein | Mar 2008 | B1 |
7363421 | Di Sena et al. | Apr 2008 | B2 |
7366641 | Masiewicz et al. | Apr 2008 | B1 |
7369340 | Dang et al. | May 2008 | B1 |
7369343 | Yeo et al. | May 2008 | B1 |
7372650 | Kupferman | May 2008 | B1 |
7373477 | Takase et al. | May 2008 | B2 |
7380147 | Sun | May 2008 | B1 |
7392340 | Dang et al. | Jun 2008 | B1 |
7404013 | Masiewicz | Jul 2008 | B1 |
7406545 | Rothberg et al. | Jul 2008 | B1 |
7409522 | Fair et al. | Aug 2008 | B1 |
7415571 | Hanan | Aug 2008 | B1 |
7424498 | Patterson | Sep 2008 | B1 |
7436610 | Thelin | Oct 2008 | B1 |
7437502 | Coker | Oct 2008 | B1 |
7440214 | Ell et al. | Oct 2008 | B1 |
7443625 | Hamaguchi et al. | Oct 2008 | B2 |
7447836 | Zhang et al. | Nov 2008 | B2 |
7451344 | Rothberg | Nov 2008 | B1 |
7471483 | Ferris et al. | Dec 2008 | B1 |
7471486 | Coker et al. | Dec 2008 | B1 |
7486060 | Bennett | Feb 2009 | B1 |
7496493 | Stevens | Feb 2009 | B1 |
7516355 | Noya et al. | Apr 2009 | B2 |
7518819 | Yu et al. | Apr 2009 | B1 |
7519639 | Bacon et al. | Apr 2009 | B2 |
7526184 | Parkinen et al. | Apr 2009 | B1 |
7539924 | Vasquez et al. | May 2009 | B1 |
7543117 | Hanan | Jun 2009 | B1 |
7551383 | Kupferman | Jun 2009 | B1 |
7552282 | Bermingham et al. | Jun 2009 | B1 |
7562282 | Rothberg | Jul 2009 | B1 |
7567995 | Maynard et al. | Jul 2009 | B2 |
7577973 | Kapner, III et al. | Aug 2009 | B1 |
7593975 | Edwards et al. | Sep 2009 | B2 |
7596797 | Kapner, III et al. | Sep 2009 | B1 |
7599139 | Bombet et al. | Oct 2009 | B1 |
RE41011 | Han et al. | Nov 2009 | E |
7619841 | Kupferman | Nov 2009 | B1 |
7624137 | Bacon et al. | Nov 2009 | B2 |
7647544 | Masiewicz | Jan 2010 | B1 |
7649704 | Bombet et al. | Jan 2010 | B1 |
7653927 | Kapner, III et al. | Jan 2010 | B1 |
7656603 | Feb 2010 | B1 | |
7656763 | Jin et al. | Feb 2010 | B1 |
7657149 | Boyle | Feb 2010 | B2 |
7672072 | Boyle et al. | Mar 2010 | B1 |
7673075 | Masiewicz | Mar 2010 | B1 |
7685360 | Brunnett et al. | Mar 2010 | B1 |
7688540 | Mei et al. | Mar 2010 | B1 |
7707166 | Patterson | Apr 2010 | B1 |
7721059 | Mylly et al. | May 2010 | B2 |
7724461 | McFadyen et al. | May 2010 | B1 |
7725584 | Hanmann et al. | May 2010 | B1 |
7730295 | Lee | Jun 2010 | B1 |
7760458 | Trinh | Jul 2010 | B1 |
7768776 | Szeremeta et al. | Aug 2010 | B1 |
7783682 | Patterson | Aug 2010 | B1 |
7804657 | Hogg et al. | Sep 2010 | B1 |
7813954 | Price et al. | Oct 2010 | B1 |
7827320 | Stevens | Nov 2010 | B1 |
7839588 | Dang et al. | Nov 2010 | B1 |
7843660 | Yeo | Nov 2010 | B1 |
7852596 | Boyle et al. | Dec 2010 | B2 |
7859782 | Lee | Dec 2010 | B1 |
7872822 | Rothberg | Jan 2011 | B1 |
7898756 | Wang | Mar 2011 | B1 |
7898762 | Guo et al. | Mar 2011 | B1 |
7900037 | Fallone et al. | Mar 2011 | B1 |
7907364 | Boyle et al. | Mar 2011 | B2 |
7929234 | Boyle et al. | Apr 2011 | B1 |
7933087 | Tsai et al. | Apr 2011 | B1 |
7933090 | Jung et al. | Apr 2011 | B1 |
7934030 | Sargenti, Jr. et al. | Apr 2011 | B1 |
7940491 | Szeremeta et al. | May 2011 | B2 |
7944639 | Wang | May 2011 | B1 |
7945727 | Rothberg et al. | May 2011 | B2 |
7949564 | Hughes et al. | May 2011 | B1 |
7974029 | Tsai et al. | Jul 2011 | B2 |
7974039 | Xu et al. | Jul 2011 | B1 |
7982993 | Tsai et al. | Jul 2011 | B1 |
7984200 | Bombet et al. | Jul 2011 | B1 |
7990648 | Wang | Aug 2011 | B1 |
7992179 | Kapner, III et al. | Aug 2011 | B1 |
8004785 | Tsai et al. | Aug 2011 | B1 |
8006027 | Stevens et al. | Aug 2011 | B1 |
8014094 | Jin | Sep 2011 | B1 |
8014977 | Masiewicz et al. | Sep 2011 | B1 |
8019914 | Vasquez et al. | Sep 2011 | B1 |
8040625 | Boyle et al. | Oct 2011 | B1 |
8078943 | Lee | Dec 2011 | B1 |
8079045 | Krapf et al. | Dec 2011 | B2 |
8082433 | Fallone et al. | Dec 2011 | B1 |
8085487 | Jung et al. | Dec 2011 | B1 |
8089719 | Dakroub | Jan 2012 | B1 |
8090902 | Bennett et al. | Jan 2012 | B1 |
8090906 | Blaha et al. | Jan 2012 | B1 |
8091112 | Elliott et al. | Jan 2012 | B1 |
8094396 | Zhang et al. | Jan 2012 | B1 |
8094401 | Peng et al. | Jan 2012 | B1 |
8116020 | Lee | Feb 2012 | B1 |
8116025 | Chan et al. | Feb 2012 | B1 |
8134793 | Vasquez et al. | Mar 2012 | B1 |
8134798 | Thelin et al. | Mar 2012 | B1 |
8139301 | Li et al. | Mar 2012 | B1 |
8139310 | Hogg | Mar 2012 | B1 |
8144419 | Liu | Mar 2012 | B1 |
8145452 | Masiewicz et al. | Mar 2012 | B1 |
8149528 | Suratman et al. | Apr 2012 | B1 |
8154812 | Boyle et al. | Apr 2012 | B1 |
8159768 | Miyamura | Apr 2012 | B1 |
8161328 | Wilshire | Apr 2012 | B1 |
8164849 | Szeremeta et al. | Apr 2012 | B1 |
8174780 | Tsai et al. | May 2012 | B1 |
8190575 | Ong et al. | May 2012 | B1 |
8194338 | Zhang | Jun 2012 | B1 |
8194340 | Boyle et al. | Jun 2012 | B1 |
8194341 | Boyle | Jun 2012 | B1 |
8201066 | Wang | Jun 2012 | B1 |
8271692 | Dinh et al. | Sep 2012 | B1 |
8279550 | Hogg | Oct 2012 | B1 |
8281218 | Ybarra et al. | Oct 2012 | B1 |
8285923 | Stevens | Oct 2012 | B2 |
8289656 | Huber | Oct 2012 | B1 |
8305705 | Roohr | Nov 2012 | B1 |
8307156 | Codilian et al. | Nov 2012 | B1 |
8310775 | Boguslawski et al. | Nov 2012 | B1 |
8315006 | Chahwan et al. | Nov 2012 | B1 |
8316263 | Gough et al. | Nov 2012 | B1 |
8320067 | Tsai et al. | Nov 2012 | B1 |
8324974 | Bennett | Dec 2012 | B1 |
8332695 | Dalphy et al. | Dec 2012 | B2 |
8341337 | Ong et al. | Dec 2012 | B1 |
8350628 | Bennett | Jan 2013 | B1 |
8356184 | Meyer et al. | Jan 2013 | B1 |
8359430 | Fair | Jan 2013 | B1 |
8370683 | Ryan et al. | Feb 2013 | B1 |
8375225 | Ybarra | Feb 2013 | B1 |
8375274 | Bonke | Feb 2013 | B1 |
8380922 | Deforest et al. | Feb 2013 | B1 |
8390948 | Hogg | Mar 2013 | B2 |
8390952 | Szeremeta | Mar 2013 | B1 |
8392689 | Lott | Mar 2013 | B1 |
8407393 | Yolar et al. | Mar 2013 | B1 |
8413010 | Vasquez et al. | Apr 2013 | B1 |
8417566 | Price et al. | Apr 2013 | B2 |
8421663 | Bennett | Apr 2013 | B1 |
8422172 | Dakroub et al. | Apr 2013 | B1 |
8427771 | Tsai | Apr 2013 | B1 |
8429343 | Tsai | Apr 2013 | B1 |
8433937 | Wheelock et al. | Apr 2013 | B1 |
8433977 | Vasquez et al. | Apr 2013 | B1 |
8458526 | Dalphy et al. | Jun 2013 | B2 |
8462466 | Huber | Jun 2013 | B2 |
8467151 | Huber | Jun 2013 | B1 |
8489841 | Strecke et al. | Jul 2013 | B1 |
8493679 | Boguslawski et al. | Jul 2013 | B1 |
8498074 | Mobley et al. | Jul 2013 | B1 |
8499198 | Messenger et al. | Jul 2013 | B1 |
8512049 | Huber et al. | Aug 2013 | B1 |
8514506 | Li et al. | Aug 2013 | B1 |
8521972 | Boyle et al. | Aug 2013 | B1 |
8531791 | Reid et al. | Sep 2013 | B1 |
8554741 | Malina | Oct 2013 | B1 |
8560759 | Boyle et al. | Oct 2013 | B1 |
8565053 | Chung | Oct 2013 | B1 |
8576511 | Coker et al. | Nov 2013 | B1 |
8578100 | Huynh et al. | Nov 2013 | B1 |
8578242 | Burton et al. | Nov 2013 | B1 |
8589773 | Wang et al. | Nov 2013 | B1 |
8593753 | Anderson | Nov 2013 | B1 |
8595432 | Vinson et al. | Nov 2013 | B1 |
8599510 | Fallone | Dec 2013 | B1 |
8601248 | Thorsted | Dec 2013 | B2 |
8611032 | Champion et al. | Dec 2013 | B2 |
8612650 | Carrie et al. | Dec 2013 | B1 |
8612706 | Madril et al. | Dec 2013 | B1 |
8612798 | Tsai | Dec 2013 | B1 |
8619383 | Jung et al. | Dec 2013 | B1 |
8621115 | Bombet et al. | Dec 2013 | B1 |
8621133 | Boyle | Dec 2013 | B1 |
8626463 | Stevens et al. | Jan 2014 | B2 |
8630052 | Jung et al. | Jan 2014 | B1 |
8630056 | Ong | Jan 2014 | B1 |
8631188 | Heath et al. | Jan 2014 | B1 |
8634158 | Chahwan et al. | Jan 2014 | B1 |
8635412 | Wilshire | Jan 2014 | B1 |
8640007 | Schulze | Jan 2014 | B1 |
8654619 | Cheng | Feb 2014 | B1 |
8661193 | Cobos et al. | Feb 2014 | B1 |
8667248 | Neppalli | Mar 2014 | B1 |
8670205 | Malina et al. | Mar 2014 | B1 |
8683295 | Syu et al. | Mar 2014 | B1 |
8683457 | Hughes et al. | Mar 2014 | B1 |
8687306 | Coker et al. | Apr 2014 | B1 |
8693133 | Lee et al. | Apr 2014 | B1 |
8694841 | Chung et al. | Apr 2014 | B1 |
8699159 | Malina | Apr 2014 | B1 |
8699171 | Boyle | Apr 2014 | B1 |
8699172 | Gunderson et al. | Apr 2014 | B1 |
8699175 | Olds et al. | Apr 2014 | B1 |
8699185 | Teh et al. | Apr 2014 | B1 |
8700850 | Lalouette | Apr 2014 | B1 |
8743502 | Bonke et al. | Jun 2014 | B1 |
8749910 | Dang et al. | Jun 2014 | B1 |
8751699 | Tsai et al. | Jun 2014 | B1 |
8755141 | Dang | Jun 2014 | B1 |
8755143 | Wilson et al. | Jun 2014 | B2 |
8756361 | Carlson et al. | Jun 2014 | B1 |
8756382 | Carlson et al. | Jun 2014 | B1 |
8769593 | Schwartz et al. | Jul 2014 | B1 |
8773802 | Anderson et al. | Jul 2014 | B1 |
8780478 | Huynh et al. | Jul 2014 | B1 |
8782334 | Boyle et al. | Jul 2014 | B1 |
8793532 | Tsai et al. | Jul 2014 | B1 |
8797669 | Burton | Aug 2014 | B1 |
8799977 | Kapner, III et al. | Aug 2014 | B1 |
20020138694 | Isshiki | Sep 2002 | A1 |
20020188800 | Tomaszewski et al. | Dec 2002 | A1 |
20030051110 | Gaspard et al. | Mar 2003 | A1 |
20030101383 | Carlson | May 2003 | A1 |
20040179386 | Jun | Sep 2004 | A1 |
20040268079 | Riedle et al. | Dec 2004 | A1 |
20050021900 | Okuyama et al. | Jan 2005 | A1 |
20050071537 | New et al. | Mar 2005 | A1 |
20050216657 | Forrer et al. | Sep 2005 | A1 |
20060020849 | Kim | Jan 2006 | A1 |
20060106981 | Khurshudov et al. | May 2006 | A1 |
20060155917 | Di Sena et al. | Jul 2006 | A1 |
20060212674 | Chung et al. | Sep 2006 | A1 |
20070027940 | Lutz et al. | Feb 2007 | A1 |
20070050390 | Maynard et al. | Mar 2007 | A1 |
20070198614 | Zhang et al. | Aug 2007 | A1 |
20070208790 | Reuter et al. | Sep 2007 | A1 |
20080077762 | Scott et al. | Mar 2008 | A1 |
20080091872 | Bennett et al. | Apr 2008 | A1 |
20080263059 | Coca et al. | Oct 2008 | A1 |
20080263305 | Shu et al. | Oct 2008 | A1 |
20090049238 | Zhang et al. | Feb 2009 | A1 |
20090055450 | Biller | Feb 2009 | A1 |
20090094299 | Kim et al. | Apr 2009 | A1 |
20090113702 | Hogg | May 2009 | A1 |
20090164742 | Wach et al. | Jun 2009 | A1 |
20100153347 | Koester et al. | Jun 2010 | A1 |
20100287217 | Borchers et al. | Nov 2010 | A1 |
20100293354 | Perez et al. | Nov 2010 | A1 |
20100306551 | Meyer et al. | Dec 2010 | A1 |
20110226729 | Hogg | Sep 2011 | A1 |
20110231623 | Goss et al. | Sep 2011 | A1 |
20110283049 | Kang et al. | Nov 2011 | A1 |
20120102297 | Haines et al. | Apr 2012 | A1 |
20120159042 | Lott et al. | Jun 2012 | A1 |
20120173832 | Post et al. | Jul 2012 | A1 |
20120275050 | Wilson et al. | Nov 2012 | A1 |
20120281963 | Krapf et al. | Nov 2012 | A1 |
20120324980 | Nguyen et al. | Dec 2012 | A1 |
20140201424 | Chen et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
9910812 | Mar 1999 | WO |
Entry |
---|
Chun Sei Tsai, et al., U.S. Appl. No. 12/788,041, filed May 26, 2010, 19 pages. |