1. Field of the Invention
The invention relates to the field of LED light sources and in particular to sources which have an LED directly rearwardly into a reflector.
2. Description of the Prior Art
In recent years several patents have been issued and many products have entered the market utilizing an LED emitter with its roughly hemispherical radiation pattern facing ‘backwards’ into a concave reflector and the reflected energy returns back past the LED.
One example is shown by Zhang U.S. Pat. No. 5,924,785 that shows an LED suspended over a concave reflector by its leads. Another example is shown by Holder and Rhoads, U.S. Patent Application 20040155565, which is incorporated herein by reference. Holder and Rhoads shows a module with an LED suspended over a reflector on a heat sink.
Both of these examples have the same drawback in that the energy from the prime central rays of the LED is blocked from becoming part of the total beam of energy of the device by the LED and support structure itself. As the device gets smaller in relationship to the LED and structure, the inefficiencies get larger.
What is needed is an efficient means to extract the blocked energy from the central portion of the LED energy and merge it with the energy of the primary beam.
A preferred embodiment of the invention includes: (1) a light emitting diode (LED) light source or other light source; (2) a heat sink or other thermal management system; (3) a primary concave reflector with at least one reflective surface; (4) at least one central inclined reflector surface; and (5) an angled mirror surface(s) set near the upper peripheral edge of the primary reflector to accept and reflect the energy from the inclined reflector surface. While the illustrated embodiments of the invention are disclosed with LEDs as the light source, it is to be expressly understood that any other known or later devised source of light could be equivalently substituted and is expressly contemplated as being within the scope of the invention.
In the preferred embodiment the primary reflector comprises a parabolic reflector as defined by a surface of rotation facing the rearwardly directed LED. The central inclined reflector surface comprises a similar parabolic surface of rotation. It is to be expressly understood that any other type of reflector now known or later devised could be substituted for the primary reflector and central inclined reflector surface according to the design goals.
The energy from the peripheral forward solid angle of the LED, which is directed rearwardly into the primary reflector, is reflected by the primary reflector into a reflected beam which is reflected forwardly in direction of the LED and approximately along the centerline or optical axis of the primary reflector. An approximate cone or central solid angle of energy from the LED that would have been blocked by the LED and its supporting structure when reflected, as is the case for prior art devices, is included in the central forward solid angle of the beam generated by a device made according to the invention.
The energy in the central forward solid angle of light radiated from the LED of the invention which impinges on the central inclined reflector surface is collected by the central inclined reflector surface and reflected to the angled mirror surface(s). The angled mirror surface is oriented to reflect the energy directed to it into a beam that is approximately parallel or combined with the energy reflected from the primary reflector to form a composite forward beam.
In the illustrated embodiment, the central inclined reflector surface is defined as a parabolic surface of rotation about an optical axis or centerline with a cross-section of parabola. The focus of the reflector surface is positioned at or near the center of the light source, an LED emitter. The surface is inclined from the optical axis of the primary reflector about its focus in such a way as to reflect the energy from it surface(s) toward a mirrored surface defined at an azimuthal angular position on the peripheral surface of primary reflector. A light ray from the emitter's central forward solid angle is reflected from surface as a first ray and is reflected again by inclined mirrored surface as a second ray. The bisector of the angle between the two rays defines the normal for inclined planar mirror surface at the point of impingement of ray onto the surface.
Another preferred embodiment of the invention may utilize an ellipse as the primary reflector. The ellipse is characterized by a specified first and second focus. The light source or LED is placed at or near the first focus and the primary reflector is a rotational surface with the ellipse as its longitudinal cross section. In a device of this embodiment of the invention, the surfaces and angles of the inclined central reflector surface and the inclined mirror surface are defined by the optical axis or normal of the angled mirrored surface being the bisector of the angle between a first ray reflected from the central inclined reflected surface and a second ray reflected from the angled mirror surface line that passes through the point of second focus of the primary reflector.
A preferred use for this embodiment is to focus energy onto the end of a fiber in a fiber optic system. The demarcation between the forward solid angle of energy from the light source and the peripheral forward solid angle in this embodiment is best determined at the point on the primary reflector where the reflected energy is occluded from the target by the source or its support means. All the energy from the point so determined to the centerline is best collected by the center inclined reflector surface(s). However, it must be clearly understood that the elliptical embodiment need not be combined with a fiber optic and can be used in many other applications.
It is understood that many surface types could be substituted in a device of the invention. The surfaces could be inclined surfaces of almost any cross-section including conics and aspheric as well as nonuniform surfaces. The surfaces could also not be surfaces of rotation at all but surfaces of three dimensional points defined by any method. The mirrored surface could also be non-planer if desired. The surfaces could also be textured or smooth. The number of central inclined reflector surfaces could vary based on design criteria, but at least one is required. The number of mirrored surfaces would normally be the same as the number of central inclined reflector surfaces.
The invention applies to the general field of optics and a significant improvement to the efficiency of a particular type thereof. The invention primarily focuses on an area of illumination that incorporates the light emitting diode (LED) as its source, but is not limited to use of an LED. The illustrated embodiment of the invention has realized 10-20% improvement of that realized in copending patent application Ser. No. 10/866,357, filed Jun. 10, 2004, directed to “An Improved Led Flashlight”, assigned to the same assignee of the present invention and incorporated herein by reference.
While the apparatus and method has or will be described for the sake of grammatical fluidity with functional explanations, it is to be expressly understood that the claims, unless expressly formulated under 35 USC 112, are not to be construed as necessarily limited in any way by the construction of “means” or “steps” limitations, but are to be accorded the full scope of the meaning and equivalents of the definition provided by the claims under the judicial doctrine of equivalents, and in the case where the claims are expressly formulated under 35 USC 112 are to be accorded full statutory equivalents under 35 USC 112. The invention can be better visualized by turning now to the following drawings wherein like elements are referenced by like numerals.
The invention and its various embodiments can now be better understood by turning to the following detailed description of the preferred embodiments which are presented as illustrated examples of the invention defined in the claims. It is expressly understood that the invention as defined by the claims may be broader than the illustrated embodiments described below.
Thus, the illustrated embodiments of the invention are directed to an apparatus comprising an LED light source, a thermal management element coupled to the LED light source to manage heat generated by the LED light source; a primary reflector with at least one reflective surface oriented to collect light from the LED light source and direct collected light into a first reflected beam; at least one central inclined reflector surface disposed to receive light from the LED light source; and at least one corresponding angled mirror surface disposed to collect light from the central inclined reflector surface and to direct the collected light into a second reflected beam. The first and second reflected beams are combined into a composite beam. In one embodiment the first and second reflected beams are approximately parallel.
In the illustrated embodiments the primary reflector has an upper peripheral edge and where the angled mirror surface is disposed at or near the upper peripheral edge of the primary reflector to collect and redirect the energy from the central inclined reflector surface.
The LED is rearwardly directed and in one embodiment the primary reflector comprises a parabolic reflector as defined by a surface of rotation facing the rearwardly directed LED. The central inclined reflector surface comprises a parabolic surface of rotation.
The LED light source radiates energy in a peripheral forward solid angle, which energy is directed rearwardly into the primary reflector, is reflected by the primary reflector into a reflected beam, which is reflected forwardly in direction of the LED light source approximately along the centerline or optical axis of the primary reflector. The LED light source radiates energy in a central solid angle, which energy would have been blocked by the LED light source when reflected, but for being included in a central forward solid angle of the composite beam. The energy in the central forward solid angle of light radiated from the LED light source, which energy impinges on the central inclined reflector surface, is collected by the central inclined reflector surface and reflected to the angled mirror surface. The angled mirror surface is oriented to reflect the energy directed to it into a beam that is approximately parallel or combined with the energy reflected from the primary reflector to form the composite beam.
In one embodiment the angled mirror surface is oriented such that its optical axis is a bisector of the angle between a second reflected light ray reflected from the angled mirror surface and a first reflected ray reflected from the central inclined reflector surface to the angled mirror surface. The first reflected ray is parallel to a centerline of the surface of rotation that defines the central inclined reflector surface.
In the preferred embodiment there are at least two inclined central reflector surfaces and at least two corresponding angled mirror surfaces. The primary reflector has a first elliptical surface characterized by a first and second focus. Each inclined central reflector surface has a second elliptical surface. The LED light source is disposed at or near the first focus of the first elliptical surface of the primary reflector. The shape and angular orientation of each of the inclined central reflector surfaces is defined by the second elliptical surface. Each of the angled mirror surfaces is defined by a normal to the angled mirrored surface which normal is a bisector of the angle between a first ray reflected from the corresponding central inclined reflector surface to the corresponding angled mirror surface and a second ray reflected from the angled mirror surface to the second focus of the first elliptical surface of the primary reflector. In a further embodiment the second focus is defined at or near an end of an optic fiber.
In another one of the preferred embodiments where there are at least two inclined central reflector surfaces and at least two corresponding angled mirror surfaces, the primary reflector has a first parabolic surface characterized by a first focus. Each inclined central reflector surface has a second parabolic surface. The LED light source is disposed at or near the first focus of the first parabolic surface of the primary reflector. The shape and angular orientation of each of the inclined central reflector surfaces is defined by the second parabolic surface. Each of the angled mirror surfaces is defined by a normal to the angled mirrored surface which normal is a bisector of the angle between a first ray reflected from the corresponding central inclined reflector surface to the corresponding angled mirror surface and a second ray reflected from the angled mirror surface in a predetermined forward direction.
A demarcation point is defined between the forward solid angle of energy from the LED light source and the peripheral forward solid angle of the LED light source at that point on the primary reflector where the reflected energy is blocked by the LED light source. Substantially all the energy from the demarcation point to the optical axis of the LED light source is collected by the center inclined reflector surface.
The illustrated embodiments utilize the claimed apparatus in a flashlight, head torch, automotive headlight, bicycle light, aircraft lighting, marine lighting, theater and stage lighting, general area lighting, fiber optic system, reading light, medical lighting, dental lighting or overhead task light.
The invention further comprises a method for generating light and redirecting it as set forth in any one of the above embodiments.
Turn now and consider the illustrated embodiments as depicted in the figures.
However, it is to be understood that the optical axis of reflector 13 in other embodiments could be tilted at an angle with respect to the planar aperture of device 10 and similarly LED 11 mounted on heat sink 12 to be both tilted into the inclined reflector 13 and offset from the center of heat sink 12 in order to remain lying the on tilted optical axis of reflector 13.
However, it is to be expressly understood that other LED packaging could be employed as part of LED 11, such as providing integrally formed or separately attached lenses disposed on the package of
Ray 39 represents a line defined between a point on the surface of rotation of the central inclined reflector surface 34 and the second focus of a second ellipse 47 used for the cross-section of inclined reflector surface 34. The ellipse 47 of the central inclined reflector surface 34 and the ellipse 45 of the primary reflector 33 are not necessarily equal or identical. In a preferred embodiment of the device 30, the point of second focus for the central inclined reflector surface 34 when reflected by mirror surface 35 is at the same location as the second focus of the ellipse 45 defining the primary reflector 33. However, it is to be expressly understood that where desired separate focal points could be determined for the two sets of rays.
While the figures show the inclined mirror surface 15 as interrupting the primary reflector 13, the inclined mirror surface 15 can be defined as being outside the perimeter of the primary reflector 13 as well. Again it must be expressly understood that the embodiment of the invention shown in
It can now be readily appreciated that the invention may be used in a wide variety of applications including, but not limited to, flashlights, head torches, automotive headlights, bicycle lights, aircraft lighting, marine lighting, theater and stage lighting, general area lighting, fiber optic systems, reading lights of any kind, medical lighting, dental lighting and overhead task lights to mention only a few.
Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the invention. Therefore, it must be understood that the illustrated embodiment has been set forth only for the purposes of example and that it should not be taken as limiting the invention as defined by the following invention and its various embodiments.
Therefore, it must be understood that the illustrated embodiment has been set forth only for the purposes of example and that it should not be taken as limiting the invention as defined by the following claims. For example, notwithstanding the fact that the elements of a claim are set forth below in a certain combination, it must be expressly understood that the invention includes other combinations of fewer, more or different elements, which are disclosed in above even when not initially claimed in such combinations. A teaching that two elements are combined in a claimed combination is further to be understood as also allowing for a claimed combination in which the two elements are not combined with each other, but may be used alone or combined in other combinations. The excision of any disclosed element of the invention is explicitly contemplated as within the scope of the invention.
The words used in this specification to describe the invention and its various embodiments are to be understood not only in the sense of their commonly defined meanings, but to include by special definition in this specification structure, material or acts beyond the scope of the commonly defined meanings. Thus if an element can be understood in the context of this specification as including more than one meaning, then its use in a claim must be understood as being generic to all possible meanings supported by the specification and by the word itself.
The definitions of the words or elements of the following claims are, therefore, defined in this specification to include not only the combination of elements which are literally set forth, but all equivalent structure, material or acts for performing substantially the same function in substantially the same way to obtain substantially the same result. In this sense it is therefore contemplated that an equivalent substitution of two or more elements may be made for any one of the elements in the claims below or that a single element may be substituted for two or more elements in a claim. Although elements may be described above as acting in certain combinations and even initially claimed as such, it is to be expressly understood that one or more elements from a claimed combination can in some cases be excised from the combination and that the claimed combination may be directed to a subcombination or variation of a subcombination.
Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalently within the scope of the claims. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements.
The claims are thus to be understood to include what is specifically illustrated and described above, what is conceptionally equivalent, what can be obviously substituted and also what essentially incorporates the essential idea of the invention.
The present application is related to U.S. Provisional Patent Application Ser. No. 60/709,394, filed on Aug. 17, 2005, pursuant to 35 USC 119 and which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/032054 | 8/16/2006 | WO | 00 | 2/7/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/022314 | 2/22/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4211955 | Ray | Jul 1980 | A |
4286311 | Maglica | Aug 1981 | A |
4398238 | Nelson | Aug 1983 | A |
4570208 | Sassmannshausen | Feb 1986 | A |
4577263 | Maglica | Mar 1986 | A |
4727289 | Uechida | Feb 1988 | A |
4729076 | Masami et al. | Mar 1988 | A |
4733337 | Bieberstein | Mar 1988 | A |
4842396 | Minoura et al. | Jun 1989 | A |
5528474 | Roney et al. | Jun 1996 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5857767 | Hochstein | Jan 1999 | A |
5889567 | Swanson et al. | Mar 1999 | A |
5924785 | Zhang et al. | Jul 1999 | A |
5926411 | Russell | Jul 1999 | A |
6045240 | Hochstein | Apr 2000 | A |
6168288 | St. Claire | Jan 2001 | B1 |
6371636 | Wesson | Apr 2002 | B1 |
6485160 | Sommers et al. | Nov 2002 | B1 |
6502952 | Hartley | Jan 2003 | B1 |
6685336 | Neiser | Feb 2004 | B1 |
6765556 | Kandogan et al. | Jul 2004 | B2 |
6796698 | Sommers et al. | Sep 2004 | B2 |
6871993 | Hecht | Mar 2005 | B2 |
7040782 | Mayer | May 2006 | B2 |
20020021292 | Sakashita | Feb 2002 | A1 |
20020085374 | Anderson | Jul 2002 | A1 |
20020141197 | Petroski | Oct 2002 | A1 |
20020191398 | Keller | Dec 2002 | A1 |
20030011538 | Lys et al. | Jan 2003 | A1 |
20030107885 | Galli | Jun 2003 | A1 |
20030184999 | Neiser | Oct 2003 | A1 |
20040037088 | English et al. | Feb 2004 | A1 |
20040114366 | Smith et al. | Jun 2004 | A1 |
20040155565 | Holder et al. | Aug 2004 | A1 |
20050007768 | Holder et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
20310418 | Sep 2003 | DE |
3072987 | Jul 2000 | JP |
2000357567 | Dec 2000 | JP |
2003178602 | Jun 2003 | JP |
WO02097884 | Dec 2002 | WO |
WO03016778 | Feb 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080192477 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
60709394 | Aug 2005 | US |