In communications infrastructure installations, a variety of communications devices can be used for switching, cross-connecting, and interconnecting communications signal transmission paths in a communications network. Some such communications devices are installed in one or more equipment racks, cabinets, hubs, or other frames or enclosures to permit organized, high-density installations to be achieved in limited space available for equipment.
In accordance with some aspects of the disclosure, a connection module includes a module body defining a first port. The connection module also includes a module circuit board arrangement extending across an open first end of the module body. The module circuit board arrangement includes at least a first contact set that extends into the first port of the module body; and an electronic controller that is electrically connected to the first contact set. The module circuit board arrangement also includes an outwardly facing circuit board connector that mates with the circuit board connector of the system circuit board.
In some implementations, the module circuit board arrangement is contained within a peripheral boundary defined by the module body. In certain implementations, the module circuit board arrangement is at least partially recessed within the open first end of the module body. In an example, the outwardly facing circuit board connector is accessible through the open first end of the module body. In another example, the outwardly facing circuit board connector protrudes outwardly through the open first end of the module body.
In some examples, the module body forms an optical adapter that also defines a second port aligned with the first port along a common insertion axis. In an example, the module body is configured to receive optical LC connectors. In an example, the module body is configured to receive optical SC connectors. In an example, the module body is configured to receive optical MPO connectors. In other examples, the module body forms an electrical jack.
In certain examples, the module circuit board arrangement includes multiple contact sets that extend into ports of the module body. In certain examples, each contact set extends into a respective port.
In certain examples, the module circuit board arrangement also includes at least one light indicator that is electrically connected to the electronic controller. In examples, the module body defines a side opening through which light from the light indicator shines.
In some implementations, the module circuit board arrangement includes a second module circuit board that extends across an open second end of the module body opposite the open first end. The second module circuit board includes a second contact set extending into the second port of the module body. A flexible circuit extends between and electrically connects the module circuit board and the second module circuit board. In an example, the second module circuit board arrangement does not include a circuit board connector. In an example, the second module circuit board arrangement does not include an electronic controller.
In accordance with certain aspects of the disclosure, an optical adapter module includes an adapter body and an adapter circuit board arrangement. The adapter body defines first and second ports aligned along a common insertion axis. The adapter body defines an open first end bounded by a first end section of the adapter body. The open first end provides access to the first port. The adapter body defines a recessed surface within the open first end. The adapter circuit board arrangement seats on the recessed surface within the open first end of the adapter body so that side edges of the circuit board arrangement are disposed within the first end section of the adapter body. The adapter circuit board arrangement includes at least a first contact set that extends into the first port of the adapter body, an electronic controller that is electrically connected to the first contact set, and a circuit board connector facing outwardly from the circuit board arrangement.
In certain examples, the adapter body defines a further recessed surface on which the light indicator seats. In examples, the adapter body defines further recessed surfaces on which a support body of the first contact set seats. In an example, the adapter body defines an open channel in which a distal end of an extended contact member of the first contact set is disposed.
In accordance with certain aspects of the disclosure, a connection module includes a module body defining first and second ports aligned along a common insertion axis and defining an open top and an open bottom. The open top provides access to the first port and the open bottom provides access to the second port. The adapter circuit board arrangement couples to the module body. The adapter circuit board arrangement includes a first circuit board disposed at the open top of the module body, a second circuit board disposed at the open bottom of the module body, and a connection member that electrically connects the first and second circuit boards. Each of the first and second circuit boards includes at least one contact set extending into one of the ports. The first circuit board includes an electronic controller that is electrically coupled to the contact sets of the first and second circuit boards. The first circuit board also includes a circuit board connector electrically connected to the electronic controller. The circuit board connector faces away from the module body.
In an example, the connection member is disposed external of the module body.
A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate to individual features and to combinations of features. It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the embodiments disclosed herein are based.
The accompanying drawings, which are incorporated in and constitute a part of the description, illustrate several aspects of the present disclosure. A brief description of the drawings is as follows:
Reference will now be made in detail to exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In places herein, the terms “top,” “bottom,” “upwardly,” “downwardly,” “front,” and “rear” are used for convenience. These terms are not intended to be limiting. For example, the terms do not indicate a necessary orientation for the object being described, but rather are based on the example illustrated orientation within the drawings.
In general, the disclosure relates to connection module that is configured to be installed at equipment having a system circuit board (e.g., host circuit board) with at least one circuit board connector. The connection module includes a module body defining a first port. The connection module also includes a module circuit board arrangement extending across an open first end of the module body. The module circuit board arrangement includes at least a first contact set that extends into the first port of the module body; and an electronic controller that is electrically connected to the first contact set. The module circuit board arrangement also includes an outwardly facing circuit board connector that mates with the circuit board connector of the system circuit board.
In some implementations, the system circuit board includes multiple circuit board connectors. Multiple connection modules can be installed at the system circuit board. Each connection module can include a circuit board connector that mates with one of the circuit board connectors of the system circuit board. In certain examples, the connection modules can be incrementally installed at the system circuit board. For example, one or more connection modules may be initially installed at the system circuit board while at least one circuit board connector of the system circuit board is left available. Over time, one or more connection modules can be added at the available circuit board connectors of the system circuit board.
In some implementations, the module circuit board arrangement is contained within a peripheral boundary defined by the module body. In certain implementations, the module circuit board arrangement is at least partially recessed within the open first end of the module body. In an example, the outwardly facing circuit board connector is accessible through the open first end of the module body. In another example, the outwardly facing circuit board connector protrudes outwardly through the open first end of the module body.
The example connection module 100 includes a module body 110 and a module circuit board arrangement 150. In the illustrated example, the connection module 100 has a front 101, a rear 102, a top 103, and a bottom 104. The module body 110 defines a first port 112 at one of the front 101 and the rear 102. In some examples, the module body 110 forms an optical adapter that defines a second port 113 aligned with the first port 112 along a common insertion axis AI to align a pair of optical plug connectors. In other examples, the module body 110 forms an electrical jack that terminates conductors to signal contacts positioned to mate with plug contacts of an electrical plug connector received at the electrical jack. In certain examples, the module body 110 defines multiple ports 112, 113 at the front 101 and/or rear 102, respectively, of the module body 110.
The module body 110 also defines an open first end 115 at one of the top 103 and the bottom 104. The open first end 115 provides access to at least the first port 112. In an example, the open first end 115 also provides access to the second port 113. In certain examples, the open first end 115 provides access to multiple front ports 112 and/or to multiple rear ports 113. In the example shown, the module body 110 defines a first port 112 at the front 101, a second port 113 at the rear 102, and an open top end 115. In other examples, however, the module body 110 may define an open bottom end instead of or in addition to the open top end 115.
The module circuit board arrangement 150 includes a circuit board 151 that extends across the open first end 115 of the module body 110. The module circuit board arrangement 150 also includes at least a first media reading interface (MRI) contact set 160 (
In an example, the module controller 159 is configured to obtain information from an electronic memory device of a plug connector received at the first port 112 via the first MRI contact set 160. In another example, the module controller 159 is configured to write information to the electronic memory device of the plug connector received at the first port 112. In certain examples, the circuit board arrangement 150 includes multiple MRI contact sets 160 and the module controller 159 is configured to obtain information from electronic memory devices plug connectors received at the module body 110 via the MRI contact sets 160.
Additional information about MRI contact sets and electronic memory devices of plug connectors can be found in U.S. Publication No. 2011/0262077 and in U.S. Publication No. 2011/0115494, the disclosures of which are hereby incorporated herein by reference.
Mating the circuit board connectors of the module circuit board arrangement 150 and the system circuit board arrangement 200 connects the module controller 159 to any data network connected to the system circuit board arrangement 200. In certain examples, the system circuit board arrangement 200 includes a master controller that manages the module controllers 159 of multiple connection modules 100 installed at the system circuit board arrangement 200. In certain examples, power can be supplied to the module controller 159 via the system circuit board arrangement 200.
Each MRI contact set 160 includes one or more contact members 161 that are held together by a contact set body 162 (
A module controller 159 is disposed at the second major surface 153 of the circuit board 151. The module controller 159 is electrically connected to the MRI contact sets 160. A circuit board connector 155 also is disposed at the second major surface 153. The circuit board connector 155 is configured to mate with the circuit board connector 215 of the system circuit board 210. In certain implementations, one or more light indicators 170 are disposed at the circuit board 151. In an example, the one or more light indicators 170 are disposed at the first major surface 152. In another example, the one or more light indicators 170 are disposed at the second major surface 153. In an example, each connection module 100 includes two light indicators—one for the front 101 and one for the rear 102.
In some implementations, the module body 110 defines a recessed surface 116 within the open first end 115. In certain examples, the recessed surface 116 extends partially across the open first end 115 without blocking external access to the first port 112 through the open first end 115. The module circuit board arrangement 150 seats on the recessed surface 116. In an example, the module circuit board arrangement 150 is recessed within the module body 110 when the module circuit board arrangement 150 seats on the recessed surface 116. In another example, the module circuit board arrangement 150 extends flush with the module body 110 when the module circuit board arrangement 150 seats on the recessed surface 116. In yet another example, the module circuit board arrangement 150 may partially protrude through the open first end 115 of the module body 110 when the module circuit board arrangement 150 seats on the recessed surface 116.
In the example shown, the recessed surface 116 has a first portion 116a that extends axially across the open first end 115 from the front 101 to the rear 102; a second portion 116b that extends laterally across the open first end 115 between the opposite sides; and a third portion 116c that extends along a periphery of the open first end 115. In other examples, the recessed portion 116 may include some combination of the portions 116a, 116b, 116c or regions thereof. For example, various examples of a module body 110 may include only the third portion 116c, only include the second portion 116b combined with front and rear regions of the third portion 116c, or only include the first portion 116a combined with side regions of the third portion 116c.
In some implementations, the recessed surface 116 defines one or more additional recesses to accommodate components mounted to the module circuit board arrangement 150. For example, in certain implementations, the recessed surface 116 may define one or more first recesses 117 to accommodate the body 162 of the MRI contact sets 160 (see
In some implementations, module body 110 defines one or more openings 120 through which light from the light indicators 170 shines. For example, the module body 110 can define the openings 120 at the third recesses 119. In certain implementations, the openings 120 remain empty. In other implementations, light pipes are disposed in the openings 120 to transmit the light from the light indicators 170 external of the module body 120. In an example, the module body 110 has a first opening 120 at the front 101 and a second opening 120 at the rear 102. In such an example, the light indicator 170 at the front 101 would shine to indicate the connection module 100 or the front 101 of the connection module 100. In other examples, the module body 110 has multiple openings 120 at the front 101. In some such examples, each light indicator 170 may be associated with a particular port 112.
In some implementations, the module circuit board 151 does not extend beyond a footprint of the module body 110. In certain implementations, the module circuit board 151 is axially and laterally contained within a peripheral boundary B defined by the module body 110 (see
In certain implementations, the module circuit board arrangement 150 is at least partially recessed within the open first end 115 of the module body 110. In certain examples, circuit board 151 is fully recessed within the open first end 115. In an example, the outwardly facing circuit board connector 155 is accessible through the open first end 115 of the module body 110. In another example, the outwardly facing circuit board connector 155 protrudes outwardly through the open first end 115 of the module body 110.
The module circuit board arrangement 350 includes a first circuit board 351 configured to extend across a first open end of the module body 310, a second circuit board 331 configured to extend across an opposite second open end of the module body 310, and a connection member 341 electrically connecting the first and second circuit boards 351, 331. One or more MRI contact sets 160 extend from the first circuit board 351 into the one or more first ports 312. One or more MRI contact sets 160 extend from the second circuit board 331 into the one or more second ports 313.
The module controller and circuit board connector 355 are disposed at the first circuit board 351. In certain examples, the second circuit board 331 does not include an electronic controller. Rather, the module controller manages information obtained using the MRI contact sets 160 at the first circuit board 351 and the MRI contact sets 160 at the second circuit board 331. Information obtained by the MRI contact sets 160 at the second circuit board 331 is transmitted over the connection member 341 t the first circuit board 351. In certain examples, the connection member 341 includes a flexible circuit board (e.g., a rigid-flex printed circuit board assembly).
In some implementations, the first and second circuit boards 351, 331 are recessed within the module body 310. In other implementations, the first and second circuit boards 351, 331 are disposed partially exterior to the module body 310. In certain implementations, the first and second circuit boards 351, 331 are contained within peripheral boundaries of the first and second open ends of the module body 310. In an example, the connection member 341 is disposed within a sidewall of the module body 310. In another example, the connection member 341 is disposed external to the module body 310.
A module circuit board arrangement 450 couples to the module body 410 to provide the MRI contact set 160 to the first port 412. The module circuit board arrangement 450 includes a module controller 459 that manages information obtained using the MRI contact set 160 and a circuit board connector 455 that mates with a host circuit board connector 215 disposed on a host circuit board 210. In certain examples, the module circuit board 451 is recessed within the module body 410. In an example, the module circuit board arrangement 450 including the circuit board connector 455 is recessed within the module body 410.
The module body 510 defines an open first end 515 extending between the ports 512, 513. In the example shown, the open first end 515 is an open top of the module body 510. A module circuit board arrangement 550 is coupled to the module body 510 to provide an MRI contact set to the first port 512. For example, the module circuit board arrangement 550 may be disposed at the open first end 515 of the module body 510. In certain examples, the module circuit board arrangement 550 is recessed within the open first end 515 of the module body 510.
In certain example, the module circuit board arrangement 550 also provides an MRI contact set to the second port 513. In other implementations, MRI contact sets can be disposed at any desired configuration of ports. The module circuit board arrangement 550 includes a module controller 559 that manages information obtained using the MRI contact set and a circuit board connector 555 that mates with a host circuit board connector 215 disposed on a host circuit board 210. In an example, the module circuit board arrangement 550 including the circuit board connector 555 is recessed within the open first end 515 of the module body 510.
The above specification, examples and data provide a complete description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
This application is a continuation of application Ser. No. 15/354,739, filed Nov. 17, 2016, now U.S. Pat. No. 9,995,883, which is a continuation of application Ser. No. 14/669,166, filed Mar. 26, 2015, now U.S. Pat. No. 9,500,814, which application claims the benefit of provisional application Ser. No. 61/970,410, filed Mar. 26, 2014, and titled “Optical Adapter Module with Managed Connectivity,” which applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2078357 | Woodmansee et al. | Apr 1937 | A |
3243761 | Piorunneck | Mar 1966 | A |
RE26692 | Ruehlemann | Oct 1969 | E |
3954320 | Hardesty | May 1976 | A |
4127317 | Tyree | Nov 1978 | A |
4632335 | Dickson et al. | Dec 1986 | A |
4737120 | Grabbe et al. | Apr 1988 | A |
4814911 | Naoi et al. | Mar 1989 | A |
4953194 | Hansen et al. | Aug 1990 | A |
4968929 | Hauck et al. | Nov 1990 | A |
5041005 | McHugh | Aug 1991 | A |
5052940 | Bengal | Oct 1991 | A |
5064381 | Lin | Nov 1991 | A |
5107532 | Hansen et al. | Apr 1992 | A |
5161988 | Krupka | Nov 1992 | A |
5166970 | Ward | Nov 1992 | A |
5199895 | Chang | Apr 1993 | A |
5222164 | Bass, Sr. et al. | Jun 1993 | A |
5265181 | Chang | Nov 1993 | A |
5265187 | Morin et al. | Nov 1993 | A |
5305405 | Emmons et al. | Apr 1994 | A |
5353367 | Czosnowski et al. | Oct 1994 | A |
5393249 | Morgenstern et al. | Feb 1995 | A |
5394503 | Dietz, Jr. et al. | Feb 1995 | A |
5413494 | Dewey et al. | May 1995 | A |
5418334 | Williams | May 1995 | A |
5419717 | Abendschein et al. | May 1995 | A |
5448675 | Leone et al. | Sep 1995 | A |
5467062 | Burroughs et al. | Nov 1995 | A |
5470251 | Sano | Nov 1995 | A |
5473715 | Schofield et al. | Dec 1995 | A |
5483467 | Krupka et al. | Jan 1996 | A |
5579425 | Lampert et al. | Nov 1996 | A |
5674085 | Davis et al. | Oct 1997 | A |
5685741 | Dewey et al. | Nov 1997 | A |
5712942 | Jennings et al. | Jan 1998 | A |
5800192 | David et al. | Sep 1998 | A |
5821510 | Cohen et al. | Oct 1998 | A |
5854824 | Bengal et al. | Dec 1998 | A |
5871368 | Erdner et al. | Feb 1999 | A |
5910776 | Black | Jun 1999 | A |
6002331 | Laor | Dec 1999 | A |
6095837 | David et al. | Aug 2000 | A |
6095851 | Laity et al. | Aug 2000 | A |
6116961 | Henneberger et al. | Sep 2000 | A |
6222908 | Bartolutti et al. | Apr 2001 | B1 |
6222975 | Gilbert et al. | Apr 2001 | B1 |
6227911 | Boutros et al. | May 2001 | B1 |
6234830 | Ensz et al. | May 2001 | B1 |
6238235 | Shavit et al. | May 2001 | B1 |
6280231 | Nicholls | Aug 2001 | B1 |
6285293 | German et al. | Sep 2001 | B1 |
6300877 | Schannach et al. | Oct 2001 | B1 |
6330148 | Won et al. | Dec 2001 | B1 |
6330307 | Bloch et al. | Dec 2001 | B1 |
6350148 | Bartolutti et al. | Feb 2002 | B1 |
6364694 | Lien | Apr 2002 | B1 |
6409392 | Lampert et al. | Jun 2002 | B1 |
6421322 | Koziy et al. | Jul 2002 | B1 |
6422895 | Lien | Jul 2002 | B1 |
6424710 | Bartolutti et al. | Jul 2002 | B1 |
6437894 | Gilbert et al. | Aug 2002 | B1 |
6456768 | Boncek et al. | Sep 2002 | B1 |
D466479 | Pein et al. | Dec 2002 | S |
6499861 | German et al. | Dec 2002 | B1 |
6511231 | Lampert et al. | Jan 2003 | B2 |
6522737 | Bartolutti et al. | Feb 2003 | B1 |
6554484 | Lampert | Apr 2003 | B2 |
6574586 | David et al. | Jun 2003 | B1 |
6612856 | McCormack | Sep 2003 | B1 |
6626697 | Martin et al. | Sep 2003 | B1 |
6636152 | Schannach et al. | Oct 2003 | B2 |
6684179 | David | Jan 2004 | B1 |
6725177 | David et al. | Apr 2004 | B2 |
6743044 | Musolf et al. | Jun 2004 | B2 |
6784802 | Stanescu | Aug 2004 | B1 |
6793408 | Levy et al. | Sep 2004 | B2 |
6802735 | Pepe et al. | Oct 2004 | B2 |
6808116 | Eslambolchi et al. | Oct 2004 | B1 |
6811446 | Chang | Nov 2004 | B1 |
6814624 | Clark et al. | Nov 2004 | B2 |
6847856 | Bohannon | Jan 2005 | B1 |
6850685 | Tinucci et al. | Feb 2005 | B2 |
6898368 | Colombo et al. | May 2005 | B2 |
6905363 | Musolf et al. | Jun 2005 | B2 |
6932517 | Swayze et al. | Aug 2005 | B2 |
D510068 | Haggay et al. | Sep 2005 | S |
6939168 | Oleynick et al. | Sep 2005 | B2 |
6961675 | David | Nov 2005 | B2 |
6971895 | Sago et al. | Dec 2005 | B2 |
6976867 | Navarro et al. | Dec 2005 | B2 |
7046899 | Colombo et al. | May 2006 | B2 |
7077710 | Haggay et al. | Jul 2006 | B2 |
7081808 | Colombo et al. | Jul 2006 | B2 |
7088880 | Gershman | Aug 2006 | B1 |
7112090 | Caveney et al. | Sep 2006 | B2 |
7123810 | Parrish | Oct 2006 | B2 |
7153142 | Shifris et al. | Dec 2006 | B2 |
7165728 | Durrant et al. | Jan 2007 | B2 |
7193422 | Velleca et al. | Mar 2007 | B2 |
7207819 | Chen | Apr 2007 | B2 |
7210858 | Sago et al. | May 2007 | B2 |
7226217 | Benton et al. | Jun 2007 | B1 |
7234944 | Nordin et al. | Jun 2007 | B2 |
7241157 | Zhuang et al. | Jul 2007 | B2 |
7297018 | Caveney et al. | Nov 2007 | B2 |
7300214 | Doo et al. | Nov 2007 | B2 |
7312715 | Shalts et al. | Dec 2007 | B2 |
D559186 | Kelmer | Jan 2008 | S |
7315224 | Gurovich et al. | Jan 2008 | B2 |
7352289 | Harris | Apr 2008 | B1 |
7354202 | Luger | Apr 2008 | B1 |
7356208 | Becker | Apr 2008 | B2 |
7370106 | Caveney | May 2008 | B2 |
7384300 | Salgado et al. | Jun 2008 | B1 |
7396245 | Huang et al. | Jul 2008 | B2 |
7420766 | Oh | Sep 2008 | B2 |
7458517 | Durrant et al. | Dec 2008 | B2 |
7468669 | Beck et al. | Dec 2008 | B1 |
7479032 | Hoath et al. | Jan 2009 | B2 |
7490996 | Sommer | Feb 2009 | B2 |
7497709 | Zhang | Mar 2009 | B1 |
7519000 | Caveney et al. | Apr 2009 | B2 |
7534137 | Caveney et al. | May 2009 | B2 |
7547150 | Downie et al. | Jun 2009 | B2 |
7552872 | Tokita et al. | Jun 2009 | B2 |
7563116 | Wang | Jul 2009 | B2 |
7570861 | Smrha et al. | Aug 2009 | B2 |
7575454 | Aoki et al. | Aug 2009 | B1 |
7588470 | Li et al. | Sep 2009 | B2 |
7591667 | Gatnau Navarro et al. | Sep 2009 | B2 |
7605707 | German | Oct 2009 | B2 |
7607926 | Wang | Oct 2009 | B2 |
7635280 | Crumlin et al. | Dec 2009 | B1 |
7648377 | Naito et al. | Jan 2010 | B2 |
7682174 | Chen | Mar 2010 | B2 |
7722370 | Chin | May 2010 | B2 |
7727026 | Qin et al. | Jun 2010 | B2 |
7760094 | Kozischek et al. | Jul 2010 | B1 |
7772975 | Downie | Aug 2010 | B2 |
7782202 | Downie | Aug 2010 | B2 |
7785154 | Peng | Aug 2010 | B2 |
7798832 | Qin et al. | Sep 2010 | B2 |
7811119 | Caveney et al. | Oct 2010 | B2 |
7814240 | Salgado et al. | Oct 2010 | B2 |
7855697 | Chamarti et al. | Dec 2010 | B2 |
7856166 | Biribuze | Dec 2010 | B2 |
7867017 | Chen | Jan 2011 | B1 |
7869426 | Hough et al. | Jan 2011 | B2 |
7872738 | Abbott | Jan 2011 | B2 |
7880475 | Crumlin et al. | Feb 2011 | B2 |
7934022 | Velleca et al. | Apr 2011 | B2 |
7965186 | Downie et al. | Jun 2011 | B2 |
8044804 | McReynolds | Oct 2011 | B1 |
8075348 | Mei et al. | Dec 2011 | B2 |
8092249 | German | Jan 2012 | B2 |
8116434 | German et al. | Feb 2012 | B2 |
8138925 | Downie | Mar 2012 | B2 |
8157582 | Frey et al. | Apr 2012 | B2 |
8172468 | Jones | May 2012 | B2 |
8181229 | Macauley | May 2012 | B2 |
8203450 | German et al. | Jun 2012 | B2 |
8207906 | Tiscareno et al. | Jun 2012 | B2 |
8233804 | Aguren | Jul 2012 | B2 |
8248208 | Renfro, Jr. | Aug 2012 | B2 |
8264366 | Chamarti | Sep 2012 | B2 |
8282425 | Bopp et al. | Oct 2012 | B2 |
8287316 | Pepe et al. | Oct 2012 | B2 |
8333518 | Jones | Dec 2012 | B2 |
8410909 | de Jong | Apr 2013 | B2 |
8421626 | Downie | Apr 2013 | B2 |
8427335 | Caveney | Apr 2013 | B2 |
8665107 | Caveney | Mar 2014 | B2 |
8690593 | Anderson et al. | Apr 2014 | B2 |
9380358 | Caveney | Jun 2016 | B2 |
9500814 | Pepe et al. | Nov 2016 | B2 |
9995883 | Pepe et al. | Jun 2018 | B2 |
20020008613 | Nathan et al. | Jan 2002 | A1 |
20020081076 | Lampert et al. | Jun 2002 | A1 |
20020116813 | Scott et al. | Aug 2002 | A1 |
20020117571 | Scott et al. | Aug 2002 | A1 |
20030031423 | Zimmel | Feb 2003 | A1 |
20040052471 | Colombo et al. | Mar 2004 | A1 |
20040052498 | Colombo et al. | Mar 2004 | A1 |
20040117515 | Sago et al. | Jun 2004 | A1 |
20040184706 | Koreeda et al. | Sep 2004 | A1 |
20040240807 | Frohlich et al. | Dec 2004 | A1 |
20050215119 | Kaneko | Sep 2005 | A1 |
20050249477 | Parrish | Nov 2005 | A1 |
20060146438 | Oh | Jul 2006 | A1 |
20060148279 | German | Jul 2006 | A1 |
20060160395 | Macauley et al. | Jul 2006 | A1 |
20060193591 | Rapp et al. | Aug 2006 | A1 |
20060228086 | Holmberg et al. | Oct 2006 | A1 |
20070116411 | Benton et al. | May 2007 | A1 |
20070237470 | Aronson et al. | Oct 2007 | A1 |
20070254529 | Pepe et al. | Nov 2007 | A1 |
20080090450 | Harano et al. | Apr 2008 | A1 |
20080090454 | Hoath et al. | Apr 2008 | A1 |
20080100440 | Downie | May 2008 | A1 |
20080100456 | Downie | May 2008 | A1 |
20080100467 | Downie | May 2008 | A1 |
20080175532 | Ruckstuhl et al. | Jul 2008 | A1 |
20080175550 | Coburn et al. | Jul 2008 | A1 |
20080292261 | Kowalczyk et al. | Nov 2008 | A1 |
20090034911 | Murano | Feb 2009 | A1 |
20090096581 | Macauley | Apr 2009 | A1 |
20090097846 | Kozischek et al. | Apr 2009 | A1 |
20090108995 | Tucker | Apr 2009 | A1 |
20090148106 | Moore et al. | Jun 2009 | A1 |
20090148108 | Fukutomi | Jun 2009 | A1 |
20090166404 | German | Jul 2009 | A1 |
20090215310 | Hoath et al. | Aug 2009 | A1 |
20090232455 | Nhep | Sep 2009 | A1 |
20090249444 | Macauley | Oct 2009 | A1 |
20090325396 | Takeuchi | Dec 2009 | A1 |
20100048064 | Peng | Feb 2010 | A1 |
20100054685 | Cooke et al. | Mar 2010 | A1 |
20100079248 | Greveling | Apr 2010 | A1 |
20100080554 | Aguren | Apr 2010 | A1 |
20100085156 | Tucker | Apr 2010 | A1 |
20100098425 | Kewitsch | Apr 2010 | A1 |
20100210135 | German | Aug 2010 | A1 |
20100211664 | Raza et al. | Aug 2010 | A1 |
20100211665 | Raza et al. | Aug 2010 | A1 |
20100211697 | Raza et al. | Aug 2010 | A1 |
20100215049 | Raza et al. | Aug 2010 | A1 |
20100245057 | Chamarti | Sep 2010 | A1 |
20100303420 | Lin et al. | Dec 2010 | A1 |
20100303421 | He et al. | Dec 2010 | A1 |
20110043371 | German et al. | Feb 2011 | A1 |
20110092100 | Coffey et al. | Apr 2011 | A1 |
20110097925 | Caveney | Apr 2011 | A1 |
20110115494 | Taylor et al. | May 2011 | A1 |
20110116748 | Smrha et al. | May 2011 | A1 |
20110129185 | Lewallen et al. | Jun 2011 | A1 |
20110129186 | Lewallen et al. | Jun 2011 | A1 |
20110140856 | Downie | Jun 2011 | A1 |
20110222819 | Anderson et al. | Sep 2011 | A1 |
20110228473 | Anderson et al. | Sep 2011 | A1 |
20110235979 | Anderson et al. | Sep 2011 | A1 |
20110243505 | Su et al. | Oct 2011 | A1 |
20110255829 | Anderson et al. | Oct 2011 | A1 |
20110262077 | Anderson et al. | Oct 2011 | A1 |
20110274437 | Jones | Nov 2011 | A1 |
20120003877 | Bareel et al. | Jan 2012 | A1 |
20120007717 | Jong | Jan 2012 | A1 |
20120021636 | Debendictis et al. | Jan 2012 | A1 |
20120039569 | Kevern et al. | Feb 2012 | A1 |
20120088412 | Mattson et al. | Apr 2012 | A1 |
20120168521 | Jones | Jul 2012 | A1 |
20120208401 | Petersen | Aug 2012 | A1 |
20120234778 | Anderson et al. | Sep 2012 | A1 |
20130039624 | Scherer et al. | Feb 2013 | A1 |
20130076589 | Caveney | Mar 2013 | A1 |
20130084041 | Lin et al. | Apr 2013 | A1 |
20130163937 | Wang et al. | Jun 2013 | A1 |
20140038462 | Coffey et al. | Feb 2014 | A1 |
20140219656 | Lawson et al. | Aug 2014 | A1 |
20140286610 | Anderson et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2499803 | Apr 2004 | CA |
101968558 | Feb 2011 | CN |
102 44 304 | Mar 2004 | DE |
10 2004 033 940 | Feb 2006 | DE |
0 613 032 | Aug 1994 | EP |
1 199 586 | Apr 2002 | EP |
1 237 024 | Sep 2002 | EP |
1 467 232 | Oct 2004 | EP |
1 662 287 | May 2006 | EP |
2 957 936 | Dec 2015 | EP |
4-174406 | Jun 1992 | JP |
WO 0065696 | Nov 2000 | WO |
WO 0247215 | Jun 2002 | WO |
WO 2007061490 | May 2007 | WO |
WO 2010001400 | Jan 2010 | WO |
WO 2010081186 | Jul 2010 | WO |
WO 2010121639 | Oct 2010 | WO |
WO 2013189370 | Dec 2013 | WO |
Entry |
---|
Avaya's Enhanced SYSTIMAX® iPatch System Enables IT Managers to Optimise Network Efficiency and Cut Downtime, Press Release, May 9, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030509 on Jan. 7, 2009. |
Avaya's Enhanced SYSTIMAX® iPatch System Enables IT Managers to Optimise Network Efficiency and Cut Downtime, Press Release, May 20, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030520 on Jan. 7, 2009. |
Extended European Search Report for Application No. 15768931.6 dated Sep. 29, 2017. |
FOCIS 10—Fiber Optic Connector Intermateability Standard—Type LC, TIA/EIA-604-10A, 38 pages (Mar. 2002). |
Intelligent patching systems carving out a ‘large’ niche, Cabling Installation & Maintenance, vol. 12, Issue 7, Jul. 2004 (5 pages). |
intelliMAC: The intelligent way to make Moves, Adds or Changes! NORDX/CDT © 2003 (6 pages). |
International Search Report and Written Opinion for Application No. PCT/US2015/022810 dated Jun. 26, 2015. |
iTRACS Physical Layer Manager FAQ, obtained on Jun. 11, 2008 from http://www.itracs.com/products/physical-layer-manager-faqs.html (6 pages). |
Meredith, L., “Managers missing point of intelligent patching,” Daa Center News, Jun. 21, 2005, obtained Dec. 2, 2008 from http://searchdatacenter.techtarget.com/news/article/0,289142,sid80_gcil099991,00.html. |
Ohtsuki, F. et al., “Design of Optical Connectors with ID Modules,” Electronics and Communications in Japan, Part 1, vol. 77, No. 2, pp. 94-105 (Feb. 1994). |
SYSTIMAX® iPatch System Wins Platinum Network of the Year Award, Press Release, Jan. 30, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030130a on Jan. 7, 2009. |
TrueNet; TFP Series Rack Mount Fiber Panels, Spec Sheet; May 2008; 8 pages. |
Number | Date | Country | |
---|---|---|---|
20180348445 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
61970410 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15354739 | Nov 2016 | US |
Child | 15997878 | US | |
Parent | 14669166 | Mar 2015 | US |
Child | 15354739 | US |