Optical adapter module with managed connectivity

Abstract
A connection module includes a module body and a module circuit board arrangement. The module body defines a first port and an open first end providing access to the first port. The module circuit board arrangement extends across the open first end within a peripheral boundary defined by the module body. The module circuit board arrangement includes at least a first contact set that extends into the first port of the module body; an electronic controller that is electrically connected to the first contact set; and a circuit board connector facing outwardly from the module board arrangement. Example connection modules include optical adapters and electrical jacks.
Description
BACKGROUND

In communications infrastructure installations, a variety of communications devices can be used for switching, cross-connecting, and interconnecting communications signal transmission paths in a communications network. Some such communications devices are installed in one or more equipment racks, cabinets, hubs, or other frames or enclosures to permit organized, high-density installations to be achieved in limited space available for equipment.


SUMMARY

In accordance with some aspects of the disclosure, a connection module includes a module body defining a first port. The connection module also includes a module circuit board arrangement extending across an open first end of the module body. The module circuit board arrangement includes at least a first contact set that extends into the first port of the module body; and an electronic controller that is electrically connected to the first contact set. The module circuit board arrangement also includes an outwardly facing circuit board connector that mates with the circuit board connector of the system circuit board.


In some implementations, the module circuit board arrangement is contained within a peripheral boundary defined by the module body. In certain implementations, the module circuit board arrangement is at least partially recessed within the open first end of the module body. In an example, the outwardly facing circuit board connector is accessible through the open first end of the module body. In another example, the outwardly facing circuit board connector protrudes outwardly through the open first end of the module body.


In some examples, the module body forms an optical adapter that also defines a second port aligned with the first port along a common insertion axis. In an example, the module body is configured to receive optical LC connectors. In an example, the module body is configured to receive optical SC connectors. In an example, the module body is configured to receive optical MPO connectors. In other examples, the module body forms an electrical jack.


In certain examples, the module circuit board arrangement includes multiple contact sets that extend into ports of the module body. In certain examples, each contact set extends into a respective port.


In certain examples, the module circuit board arrangement also includes at least one light indicator that is electrically connected to the electronic controller. In examples, the module body defines a side opening through which light from the light indicator shines.


In some implementations, the module circuit board arrangement includes a second module circuit board that extends across an open second end of the module body opposite the open first end. The second module circuit board includes a second contact set extending into the second port of the module body. A flexible circuit extends between and electrically connects the module circuit board and the second module circuit board. In an example, the second module circuit board arrangement does not include a circuit board connector. In an example, the second module circuit board arrangement does not include an electronic controller.


In accordance with certain aspects of the disclosure, an optical adapter module includes an adapter body and an adapter circuit board arrangement. The adapter body defines first and second ports aligned along a common insertion axis. The adapter body defines an open first end bounded by a first end section of the adapter body. The open first end provides access to the first port. The adapter body defines a recessed surface within the open first end. The adapter circuit board arrangement seats on the recessed surface within the open first end of the adapter body so that side edges of the circuit board arrangement are disposed within the first end section of the adapter body. The adapter circuit board arrangement includes at least a first contact set that extends into the first port of the adapter body, an electronic controller that is electrically connected to the first contact set, and a circuit board connector facing outwardly from the circuit board arrangement.


In certain examples, the adapter body defines a further recessed surface on which the light indicator seats. In examples, the adapter body defines further recessed surfaces on which a support body of the first contact set seats. In an example, the adapter body defines an open channel in which a distal end of an extended contact member of the first contact set is disposed.


In accordance with certain aspects of the disclosure, a connection module includes a module body defining first and second ports aligned along a common insertion axis and defining an open top and an open bottom. The open top provides access to the first port and the open bottom provides access to the second port. The adapter circuit board arrangement couples to the module body. The adapter circuit board arrangement includes a first circuit board disposed at the open top of the module body, a second circuit board disposed at the open bottom of the module body, and a connection member that electrically connects the first and second circuit boards. Each of the first and second circuit boards includes at least one contact set extending into one of the ports. The first circuit board includes an electronic controller that is electrically coupled to the contact sets of the first and second circuit boards. The first circuit board also includes a circuit board connector electrically connected to the electronic controller. The circuit board connector faces away from the module body.


In an example, the connection member is disposed external of the module body.


A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate to individual features and to combinations of features. It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the embodiments disclosed herein are based.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the description, illustrate several aspects of the present disclosure. A brief description of the drawings is as follows:



FIG. 1 is a perspective view of an example connection module with a module circuit board arrangement shown exploded from a module body and a host circuit board shown exploded and rotated away from the connection module;



FIG. 2 is a bottom perspective view of an example module circuit board arrangement suitable for use in the connection module of FIG. 1;



FIG. 3 is a top perspective view of the example module circuit board arrangement of FIG. 2;



FIG. 4 is a top perspective view of an example module body suitable for use in the connection module of FIG. 1;



FIG. 5 is a top plan view of the example module body of FIG. 4;



FIG. 6 is a top perspective view of an example connection module with the circuit board removed so that contact sets and light indicators are visible within the module body;



FIG. 7 is a top perspective view of the example connection module of FIG. 1 in an assembled state;



FIG. 8 is a front elevational view of the connection module of FIG. 7 connected to a host circuit board;



FIG. 9 shows the connection module of FIG. 7 exploded from an example host circuit board;



FIG. 10 is an axial cross-sectional view of the connection module of FIG. 7 taken along the 10-10 lines in FIG. 8;



FIG. 11 is a front elevational view of another example connection module exploded away from an example host circuit board;



FIG. 12 is an axial cross-sectional view taken along the 12-12 lines of FIG. 11;



FIG. 13 is a schematic view of an example connection module defining an electrical jack; and



FIG. 14 is a schematic view of another example connection module defining an SC adapter.





DETAILED DESCRIPTION

Reference will now be made in detail to exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.


In places herein, the terms “top,” “bottom,” “upwardly,” “downwardly,” “front,” and “rear” are used for convenience. These terms are not intended to be limiting. For example, the terms do not indicate a necessary orientation for the object being described, but rather are based on the example illustrated orientation within the drawings.


In general, the disclosure relates to connection module that is configured to be installed at equipment having a system circuit board (e.g., host circuit board) with at least one circuit board connector. The connection module includes a module body defining a first port. The connection module also includes a module circuit board arrangement extending across an open first end of the module body. The module circuit board arrangement includes at least a first contact set that extends into the first port of the module body; and an electronic controller that is electrically connected to the first contact set. The module circuit board arrangement also includes an outwardly facing circuit board connector that mates with the circuit board connector of the system circuit board.


In some implementations, the system circuit board includes multiple circuit board connectors. Multiple connection modules can be installed at the system circuit board. Each connection module can include a circuit board connector that mates with one of the circuit board connectors of the system circuit board. In certain examples, the connection modules can be incrementally installed at the system circuit board. For example, one or more connection modules may be initially installed at the system circuit board while at least one circuit board connector of the system circuit board is left available. Over time, one or more connection modules can be added at the available circuit board connectors of the system circuit board.


In some implementations, the module circuit board arrangement is contained within a peripheral boundary defined by the module body. In certain implementations, the module circuit board arrangement is at least partially recessed within the open first end of the module body. In an example, the outwardly facing circuit board connector is accessible through the open first end of the module body. In another example, the outwardly facing circuit board connector protrudes outwardly through the open first end of the module body.



FIG. 1 illustrates an example connection module 100 exploded away from a system circuit board arrangement 200. The system circuit board arrangement includes a system circuit board 210 having a first major side 211 and an opposite second major side 212. A circuit board connector 215 is disposed at the first major side 211. The system circuit board arrangement 200 is rotated in FIG. 1 so that the first major side 211 is clearly visible.


The example connection module 100 includes a module body 110 and a module circuit board arrangement 150. In the illustrated example, the connection module 100 has a front 101, a rear 102, a top 103, and a bottom 104. The module body 110 defines a first port 112 at one of the front 101 and the rear 102. In some examples, the module body 110 forms an optical adapter that defines a second port 113 aligned with the first port 112 along a common insertion axis AI to align a pair of optical plug connectors. In other examples, the module body 110 forms an electrical jack that terminates conductors to signal contacts positioned to mate with plug contacts of an electrical plug connector received at the electrical jack. In certain examples, the module body 110 defines multiple ports 112, 113 at the front 101 and/or rear 102, respectively, of the module body 110.


The module body 110 also defines an open first end 115 at one of the top 103 and the bottom 104. The open first end 115 provides access to at least the first port 112. In an example, the open first end 115 also provides access to the second port 113. In certain examples, the open first end 115 provides access to multiple front ports 112 and/or to multiple rear ports 113. In the example shown, the module body 110 defines a first port 112 at the front 101, a second port 113 at the rear 102, and an open top end 115. In other examples, however, the module body 110 may define an open bottom end instead of or in addition to the open top end 115.


The module circuit board arrangement 150 includes a circuit board 151 that extends across the open first end 115 of the module body 110. The module circuit board arrangement 150 also includes at least a first media reading interface (MRI) contact set 160 (FIG. 2) that extends into the first port 112 of the module body 110. A module controller 159 is mounted to the circuit board 151 and electrically connected to the first MRI contact set 160. The module circuit board arrangement 150 also includes an outwardly facing circuit board connector 155 that mates with a circuit board connector 215 of a system circuit board 210.


In an example, the module controller 159 is configured to obtain information from an electronic memory device of a plug connector received at the first port 112 via the first MRI contact set 160. In another example, the module controller 159 is configured to write information to the electronic memory device of the plug connector received at the first port 112. In certain examples, the circuit board arrangement 150 includes multiple MRI contact sets 160 and the module controller 159 is configured to obtain information from electronic memory devices plug connectors received at the module body 110 via the MRI contact sets 160.


Additional information about MRI contact sets and electronic memory devices of plug connectors can be found in U.S. Publication No. 2011/0262077 and in U.S. Publication No. 2011/0115494, the disclosures of which are hereby incorporated herein by reference.


Mating the circuit board connectors of the module circuit board arrangement 150 and the system circuit board arrangement 200 connects the module controller 159 to any data network connected to the system circuit board arrangement 200. In certain examples, the system circuit board arrangement 200 includes a master controller that manages the module controllers 159 of multiple connection modules 100 installed at the system circuit board arrangement 200. In certain examples, power can be supplied to the module controller 159 via the system circuit board arrangement 200.



FIGS. 2 and 3 illustrate one example module circuit board arrangement 150 suitable for use with a connection module 100. The module circuit board arrangement 150 includes a circuit board 151 having a first major surface 152 and an opposite second major surface 153. When the module circuit board arrangement 150 is coupled to the module body 110, the first major surface 152 faces into the module body 110 and the second major surface 153 faces away from the module body 115. At least a first MRI contact set 160 is disposed at the first major surface 152. In some implementations, a plurality of MRI contact sets 160 are disposed at the first major surface 152. In certain examples, first and second MRI contact sets 160 can be disposed at the first major surface 152.


Each MRI contact set 160 includes one or more contact members 161 that are held together by a contact set body 162 (FIG. 2). For example, the body 162 can be overmolded around the contact members 161. In certain examples, the body 162 is attached to the board 151 (e.g., using pegs and holes). First ends 163 of the contact members 161 couple (e.g., are soldered) to contact pads 154 on the first major surface 152 of the circuit board 151. Second ends 164 of the contact members 161 extend away from the circuit board 151. In certain examples, one contact member 161 of each MRI contact set 160 has an extended portion 165 that extends past the second ends of the other contact members 161. The extended portion 165 aligns with a contact pad 154 on the first major surface 152 of the circuit board 151.


A module controller 159 is disposed at the second major surface 153 of the circuit board 151. The module controller 159 is electrically connected to the MRI contact sets 160. A circuit board connector 155 also is disposed at the second major surface 153. The circuit board connector 155 is configured to mate with the circuit board connector 215 of the system circuit board 210. In certain implementations, one or more light indicators 170 are disposed at the circuit board 151. In an example, the one or more light indicators 170 are disposed at the first major surface 152. In another example, the one or more light indicators 170 are disposed at the second major surface 153. In an example, each connection module 100 includes two light indicators—one for the front 101 and one for the rear 102.



FIGS. 4 and 5 illustrate one example module body 110 suitable for use in a connection module 100. In the example shown, the module body 110 defines two pairs of ports. Each pair includes a front port 112 and a rear port 113. In an example, the front ports are laterally aligned. In other examples, the module body 110 may define a greater or lesser number of port pairs. In still other examples, the module body 110 may define one or more ports at only the front 101 or only the rear 102. The example module body 110 shown includes split sleeves 114 configured to receive ferrules of axially aligned optical plug connectors to optically couple the optical plug connectors. In other examples, the module body 110 may be configured to align and optically couple ferruleless optical plug connectors.


In some implementations, the module body 110 defines a recessed surface 116 within the open first end 115. In certain examples, the recessed surface 116 extends partially across the open first end 115 without blocking external access to the first port 112 through the open first end 115. The module circuit board arrangement 150 seats on the recessed surface 116. In an example, the module circuit board arrangement 150 is recessed within the module body 110 when the module circuit board arrangement 150 seats on the recessed surface 116. In another example, the module circuit board arrangement 150 extends flush with the module body 110 when the module circuit board arrangement 150 seats on the recessed surface 116. In yet another example, the module circuit board arrangement 150 may partially protrude through the open first end 115 of the module body 110 when the module circuit board arrangement 150 seats on the recessed surface 116.


In the example shown, the recessed surface 116 has a first portion 116a that extends axially across the open first end 115 from the front 101 to the rear 102; a second portion 116b that extends laterally across the open first end 115 between the opposite sides; and a third portion 116c that extends along a periphery of the open first end 115. In other examples, the recessed portion 116 may include some combination of the portions 116a, 116b, 116c or regions thereof. For example, various examples of a module body 110 may include only the third portion 116c, only include the second portion 116b combined with front and rear regions of the third portion 116c, or only include the first portion 116a combined with side regions of the third portion 116c.


In some implementations, the recessed surface 116 defines one or more additional recesses to accommodate components mounted to the module circuit board arrangement 150. For example, in certain implementations, the recessed surface 116 may define one or more first recesses 117 to accommodate the body 162 of the MRI contact sets 160 (see FIG. 6). In certain implementations, the recessed surface 116 may define one or more second recesses 118 to accommodate deflection of the extended portions 165 of the MRI contact sets 160 (see FIG. 6). In certain implementations, the recessed surface 116 may define one or more third recesses 119 to accommodate the light indicators 170 (see FIG. 6).


In some implementations, module body 110 defines one or more openings 120 through which light from the light indicators 170 shines. For example, the module body 110 can define the openings 120 at the third recesses 119. In certain implementations, the openings 120 remain empty. In other implementations, light pipes are disposed in the openings 120 to transmit the light from the light indicators 170 external of the module body 120. In an example, the module body 110 has a first opening 120 at the front 101 and a second opening 120 at the rear 102. In such an example, the light indicator 170 at the front 101 would shine to indicate the connection module 100 or the front 101 of the connection module 100. In other examples, the module body 110 has multiple openings 120 at the front 101. In some such examples, each light indicator 170 may be associated with a particular port 112.



FIGS. 7 and 8 illustrate a module circuit board arrangement 150 mounted at the module body 110. The module circuit board arrangement 150 seats on the recessed surface 116 within the open first end 115 (see FIG. 7). The first and second MRI contact sets 160A, 160B (FIG. 6) extend into first and second ports 112, 113, respectively (see FIG. 8). In some implementations, the circuit board 151 is secured to the module body 110 (e.g., using adhesive). In other implementations, the circuit board 151 is removably attached to the module body 110 (e.g., snap-fit, friction-fit, etc.).


In some implementations, the module circuit board 151 does not extend beyond a footprint of the module body 110. In certain implementations, the module circuit board 151 is axially and laterally contained within a peripheral boundary B defined by the module body 110 (see FIG. 7). For example, the peripheral boundary B can be defined by top edges of the module body 110 that extend along the front 101, rear 102, and opposite sides of the module body 110.


In certain implementations, the module circuit board arrangement 150 is at least partially recessed within the open first end 115 of the module body 110. In certain examples, circuit board 151 is fully recessed within the open first end 115. In an example, the outwardly facing circuit board connector 155 is accessible through the open first end 115 of the module body 110. In another example, the outwardly facing circuit board connector 155 protrudes outwardly through the open first end 115 of the module body 110.



FIGS. 9 and 10 illustrate mounting the connection module 100 to a system circuit board arrangement 200. The system circuit board 210 extends across top edges of the module body 110. In some implementations, the module circuit board arrangement 150 is recessed sufficiently within the open first end 115 of the module body 110 to create a chamber 125 between the second major surface 153 of the circuit board 151 and the opposing major surface of the 211 of the system circuit board 210 (see FIG. 10). The chamber 125 accommodates the module controller 159. The chamber 125 also accommodates the circuit board connectors 155, 215.



FIGS. 11 and 12 illustrate an alternative example connection system 300 suitable for installation at the system circuit board arrangement 200. The connection module 300 includes a module body 310 defining a first port 312 and a second port 313. A module circuit board arrangement 350 couples to the module body 310 to provide MRI contact sets 160 to the first and second ports 312, 313 of the module body 310. The module circuit board arrangement 350 includes MRI contact sets 160 extending into both ports 312, 313. In certain examples, the module body 310 defines multiple first ports 312 and multiple second ports 313 and the module circuit board arrangement 350 includes MRI contact sets 160 extending into at least one of the first ports 312 and at least one of the second ports 313.


The module circuit board arrangement 350 includes a first circuit board 351 configured to extend across a first open end of the module body 310, a second circuit board 331 configured to extend across an opposite second open end of the module body 310, and a connection member 341 electrically connecting the first and second circuit boards 351, 331. One or more MRI contact sets 160 extend from the first circuit board 351 into the one or more first ports 312. One or more MRI contact sets 160 extend from the second circuit board 331 into the one or more second ports 313.


The module controller and circuit board connector 355 are disposed at the first circuit board 351. In certain examples, the second circuit board 331 does not include an electronic controller. Rather, the module controller manages information obtained using the MRI contact sets 160 at the first circuit board 351 and the MRI contact sets 160 at the second circuit board 331. Information obtained by the MRI contact sets 160 at the second circuit board 331 is transmitted over the connection member 341 t the first circuit board 351. In certain examples, the connection member 341 includes a flexible circuit board (e.g., a rigid-flex printed circuit board assembly).


In some implementations, the first and second circuit boards 351, 331 are recessed within the module body 310. In other implementations, the first and second circuit boards 351, 331 are disposed partially exterior to the module body 310. In certain implementations, the first and second circuit boards 351, 331 are contained within peripheral boundaries of the first and second open ends of the module body 310. In an example, the connection member 341 is disposed within a sidewall of the module body 310. In another example, the connection member 341 is disposed external to the module body 310.



FIG. 13 illustrates another example connection module 400 suitable for installation at the system circuit board arrangement 200. The connection module 400 includes a module body 410 defining a first port 412. A cable 405 having one or more conductors is terminated at the module body 410. Electrical contacts 408, which are electrically connected to the conductors of the cable 405, extend into the port 412. An MRI contact set 160 also extends into the port 412. In the example shown, the MRI contact set 160 is disposed at an opposite side of the port 412 from the conductor contacts 408. In other implementations, however, the contact sets 160, 408 can be disposed in any desired configuration within the port 412.


A module circuit board arrangement 450 couples to the module body 410 to provide the MRI contact set 160 to the first port 412. The module circuit board arrangement 450 includes a module controller 459 that manages information obtained using the MRI contact set 160 and a circuit board connector 455 that mates with a host circuit board connector 215 disposed on a host circuit board 210. In certain examples, the module circuit board 451 is recessed within the module body 410. In an example, the module circuit board arrangement 450 including the circuit board connector 455 is recessed within the module body 410.



FIG. 14 illustrates another example connection module 500 suitable for installation at the system circuit board arrangement 200. The connection module 500 includes a module body 510 defining a first port 512 and a second port 513. In certain examples, the module body 510 can include a plurality of port pairs. Each port pair 512, 513 align optical fibers received at the ports 512, 513 to aid in coupling the optical fibers. In certain implementations, the module body 510 includes outwardly extending flanges 514 that facilitate mounting of the module body 510 to a panel, bulkhead, tray, or other such structure. In an example, the ports 512, 513 of the module body 510 are configured to receive SC optical connectors.


The module body 510 defines an open first end 515 extending between the ports 512, 513. In the example shown, the open first end 515 is an open top of the module body 510. A module circuit board arrangement 550 is coupled to the module body 510 to provide an MRI contact set to the first port 512. For example, the module circuit board arrangement 550 may be disposed at the open first end 515 of the module body 510. In certain examples, the module circuit board arrangement 550 is recessed within the open first end 515 of the module body 510.


In certain example, the module circuit board arrangement 550 also provides an MRI contact set to the second port 513. In other implementations, MRI contact sets can be disposed at any desired configuration of ports. The module circuit board arrangement 550 includes a module controller 559 that manages information obtained using the MRI contact set and a circuit board connector 555 that mates with a host circuit board connector 215 disposed on a host circuit board 210. In an example, the module circuit board arrangement 550 including the circuit board connector 555 is recessed within the open first end 515 of the module body 510.


The above specification, examples and data provide a complete description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Claims
  • 1. A circuit board arrangement comprising: a system circuit board having a first major side;a plurality of circuit board connectors disposed in a row at the first major side of the system circuit board;a plurality of connection modules mounted to the first major surface of the system circuit board at the circuit board connectors, each connection module including an optical adapter that defines a front port and a rear port, each optical adapter also defining an opening leading to an interior of the optical adapter; anda plurality of module circuit board arrangements each disposed at the opening of a respective one of the optical adapters, each module circuit board arrangement including a media reading interface facing the interior of the respective optical adapter and being accessible by a plug connector received at one of the front and rear ports of the respective optical adapter.
  • 2. The circuit board arrangement of claim 1, wherein a first of the optical adapters includes a plurality of front ports and a plurality of rear ports.
  • 3. The circuit board arrangement of claim 2, wherein the module circuit board arrangement of the first optical adapter carries a plurality of media reading interfaces, each of the media reading interfaces of the module circuit board arrangement of the first optical adapter being aligned with one of the front ports or one of the rear ports.
  • 4. The circuit board arrangement of claim 1, wherein each module circuit board arrangement includes a circuit board connector that mates with one of the circuit board connectors of the system circuit board.
  • 5. The circuit board arrangement of claim 4, wherein the circuit board connector of each module circuit board arrangement is electrically coupled to each media reading interface of the module circuit board arrangement.
  • 6. The circuit board arrangement of claim 4, wherein each circuit board connector of the module circuit board arrangements is externally-facing.
  • 7. The circuit board arrangement of claim 4, wherein each circuit board connector of the module circuit board arrangements is disposed within an outer periphery of the respective optical adapter.
  • 8. The circuit board arrangement of claim 7, wherein each circuit board connector of the module circuit board arrangements is recessed within a body of the optical adapter.
  • 9. The circuit board arrangement of claim 1, wherein each module circuit board arrangement includes a module controller configured to obtain information from an electronic storage device.
  • 10. The circuit board arrangement of claim 1, wherein each module circuit board arrangement is disposed within the opening of the respective one of the optical adapters.
  • 11. The circuit board arrangement of claim 1, wherein a first of the connection modules is configured to receive an optical LC connector.
  • 12. The circuit board arrangement of claim 1, wherein a first of the connection modules is configured to receive an optical SC connector.
  • 13. The circuit board arrangement of claim 1, wherein a first of the connection modules is configured to receive an optical MPO connector.
  • 14. The circuit board arrangement of claim 1, wherein a first of the connection modules is configured to receive an electrical plug connector.
  • 15. The circuit board arrangement of claim 1, wherein the opening of each connection module is disposed between the front and rear ports.
  • 16. The circuit board arrangement of claim 1, wherein each module circuit board arrangement is recessed within a body of the optical adapter.
  • 17. The circuit board arrangement of claim 16, wherein each module circuit board arrangement is sufficiently recessed to accommodate a module controller between the module circuit board arrangement and the system circuit board.
  • 18. The circuit board arrangement of claim 1, wherein each module circuit board arrangement also includes a module controller electrically connected to the media reading interface.
  • 19. The circuit board arrangement of claim 1, wherein each media reading interface includes a contact member accessible from within the respective connection module.
  • 20. The circuit board arrangement of claim 19, wherein the contact member of each media reading interface is one of a plurality of contact members.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 15/354,739, filed Nov. 17, 2016, now U.S. Pat. No. 9,995,883, which is a continuation of application Ser. No. 14/669,166, filed Mar. 26, 2015, now U.S. Pat. No. 9,500,814, which application claims the benefit of provisional application Ser. No. 61/970,410, filed Mar. 26, 2014, and titled “Optical Adapter Module with Managed Connectivity,” which applications are incorporated herein by reference in their entirety.

US Referenced Citations (260)
Number Name Date Kind
2078357 Woodmansee et al. Apr 1937 A
3243761 Piorunneck Mar 1966 A
RE26692 Ruehlemann Oct 1969 E
3954320 Hardesty May 1976 A
4127317 Tyree Nov 1978 A
4632335 Dickson et al. Dec 1986 A
4737120 Grabbe et al. Apr 1988 A
4814911 Naoi et al. Mar 1989 A
4953194 Hansen et al. Aug 1990 A
4968929 Hauck et al. Nov 1990 A
5041005 McHugh Aug 1991 A
5052940 Bengal Oct 1991 A
5064381 Lin Nov 1991 A
5107532 Hansen et al. Apr 1992 A
5161988 Krupka Nov 1992 A
5166970 Ward Nov 1992 A
5199895 Chang Apr 1993 A
5222164 Bass, Sr. et al. Jun 1993 A
5265181 Chang Nov 1993 A
5265187 Morin et al. Nov 1993 A
5305405 Emmons et al. Apr 1994 A
5353367 Czosnowski et al. Oct 1994 A
5393249 Morgenstern et al. Feb 1995 A
5394503 Dietz, Jr. et al. Feb 1995 A
5413494 Dewey et al. May 1995 A
5418334 Williams May 1995 A
5419717 Abendschein et al. May 1995 A
5448675 Leone et al. Sep 1995 A
5467062 Burroughs et al. Nov 1995 A
5470251 Sano Nov 1995 A
5473715 Schofield et al. Dec 1995 A
5483467 Krupka et al. Jan 1996 A
5579425 Lampert et al. Nov 1996 A
5674085 Davis et al. Oct 1997 A
5685741 Dewey et al. Nov 1997 A
5712942 Jennings et al. Jan 1998 A
5800192 David et al. Sep 1998 A
5821510 Cohen et al. Oct 1998 A
5854824 Bengal et al. Dec 1998 A
5871368 Erdner et al. Feb 1999 A
5910776 Black Jun 1999 A
6002331 Laor Dec 1999 A
6095837 David et al. Aug 2000 A
6095851 Laity et al. Aug 2000 A
6116961 Henneberger et al. Sep 2000 A
6222908 Bartolutti et al. Apr 2001 B1
6222975 Gilbert et al. Apr 2001 B1
6227911 Boutros et al. May 2001 B1
6234830 Ensz et al. May 2001 B1
6238235 Shavit et al. May 2001 B1
6280231 Nicholls Aug 2001 B1
6285293 German et al. Sep 2001 B1
6300877 Schannach et al. Oct 2001 B1
6330148 Won et al. Dec 2001 B1
6330307 Bloch et al. Dec 2001 B1
6350148 Bartolutti et al. Feb 2002 B1
6364694 Lien Apr 2002 B1
6409392 Lampert et al. Jun 2002 B1
6421322 Koziy et al. Jul 2002 B1
6422895 Lien Jul 2002 B1
6424710 Bartolutti et al. Jul 2002 B1
6437894 Gilbert et al. Aug 2002 B1
6456768 Boncek et al. Sep 2002 B1
D466479 Pein et al. Dec 2002 S
6499861 German et al. Dec 2002 B1
6511231 Lampert et al. Jan 2003 B2
6522737 Bartolutti et al. Feb 2003 B1
6554484 Lampert Apr 2003 B2
6574586 David et al. Jun 2003 B1
6612856 McCormack Sep 2003 B1
6626697 Martin et al. Sep 2003 B1
6636152 Schannach et al. Oct 2003 B2
6684179 David Jan 2004 B1
6725177 David et al. Apr 2004 B2
6743044 Musolf et al. Jun 2004 B2
6784802 Stanescu Aug 2004 B1
6793408 Levy et al. Sep 2004 B2
6802735 Pepe et al. Oct 2004 B2
6808116 Eslambolchi et al. Oct 2004 B1
6811446 Chang Nov 2004 B1
6814624 Clark et al. Nov 2004 B2
6847856 Bohannon Jan 2005 B1
6850685 Tinucci et al. Feb 2005 B2
6898368 Colombo et al. May 2005 B2
6905363 Musolf et al. Jun 2005 B2
6932517 Swayze et al. Aug 2005 B2
D510068 Haggay et al. Sep 2005 S
6939168 Oleynick et al. Sep 2005 B2
6961675 David Nov 2005 B2
6971895 Sago et al. Dec 2005 B2
6976867 Navarro et al. Dec 2005 B2
7046899 Colombo et al. May 2006 B2
7077710 Haggay et al. Jul 2006 B2
7081808 Colombo et al. Jul 2006 B2
7088880 Gershman Aug 2006 B1
7112090 Caveney et al. Sep 2006 B2
7123810 Parrish Oct 2006 B2
7153142 Shifris et al. Dec 2006 B2
7165728 Durrant et al. Jan 2007 B2
7193422 Velleca et al. Mar 2007 B2
7207819 Chen Apr 2007 B2
7210858 Sago et al. May 2007 B2
7226217 Benton et al. Jun 2007 B1
7234944 Nordin et al. Jun 2007 B2
7241157 Zhuang et al. Jul 2007 B2
7297018 Caveney et al. Nov 2007 B2
7300214 Doo et al. Nov 2007 B2
7312715 Shalts et al. Dec 2007 B2
D559186 Kelmer Jan 2008 S
7315224 Gurovich et al. Jan 2008 B2
7352289 Harris Apr 2008 B1
7354202 Luger Apr 2008 B1
7356208 Becker Apr 2008 B2
7370106 Caveney May 2008 B2
7384300 Salgado et al. Jun 2008 B1
7396245 Huang et al. Jul 2008 B2
7420766 Oh Sep 2008 B2
7458517 Durrant et al. Dec 2008 B2
7468669 Beck et al. Dec 2008 B1
7479032 Hoath et al. Jan 2009 B2
7490996 Sommer Feb 2009 B2
7497709 Zhang Mar 2009 B1
7519000 Caveney et al. Apr 2009 B2
7534137 Caveney et al. May 2009 B2
7547150 Downie et al. Jun 2009 B2
7552872 Tokita et al. Jun 2009 B2
7563116 Wang Jul 2009 B2
7570861 Smrha et al. Aug 2009 B2
7575454 Aoki et al. Aug 2009 B1
7588470 Li et al. Sep 2009 B2
7591667 Gatnau Navarro et al. Sep 2009 B2
7605707 German Oct 2009 B2
7607926 Wang Oct 2009 B2
7635280 Crumlin et al. Dec 2009 B1
7648377 Naito et al. Jan 2010 B2
7682174 Chen Mar 2010 B2
7722370 Chin May 2010 B2
7727026 Qin et al. Jun 2010 B2
7760094 Kozischek et al. Jul 2010 B1
7772975 Downie Aug 2010 B2
7782202 Downie Aug 2010 B2
7785154 Peng Aug 2010 B2
7798832 Qin et al. Sep 2010 B2
7811119 Caveney et al. Oct 2010 B2
7814240 Salgado et al. Oct 2010 B2
7855697 Chamarti et al. Dec 2010 B2
7856166 Biribuze Dec 2010 B2
7867017 Chen Jan 2011 B1
7869426 Hough et al. Jan 2011 B2
7872738 Abbott Jan 2011 B2
7880475 Crumlin et al. Feb 2011 B2
7934022 Velleca et al. Apr 2011 B2
7965186 Downie et al. Jun 2011 B2
8044804 McReynolds Oct 2011 B1
8075348 Mei et al. Dec 2011 B2
8092249 German Jan 2012 B2
8116434 German et al. Feb 2012 B2
8138925 Downie Mar 2012 B2
8157582 Frey et al. Apr 2012 B2
8172468 Jones May 2012 B2
8181229 Macauley May 2012 B2
8203450 German et al. Jun 2012 B2
8207906 Tiscareno et al. Jun 2012 B2
8233804 Aguren Jul 2012 B2
8248208 Renfro, Jr. Aug 2012 B2
8264366 Chamarti Sep 2012 B2
8282425 Bopp et al. Oct 2012 B2
8287316 Pepe et al. Oct 2012 B2
8333518 Jones Dec 2012 B2
8410909 de Jong Apr 2013 B2
8421626 Downie Apr 2013 B2
8427335 Caveney Apr 2013 B2
8665107 Caveney Mar 2014 B2
8690593 Anderson et al. Apr 2014 B2
9380358 Caveney Jun 2016 B2
9500814 Pepe et al. Nov 2016 B2
9995883 Pepe et al. Jun 2018 B2
20020008613 Nathan et al. Jan 2002 A1
20020081076 Lampert et al. Jun 2002 A1
20020116813 Scott et al. Aug 2002 A1
20020117571 Scott et al. Aug 2002 A1
20030031423 Zimmel Feb 2003 A1
20040052471 Colombo et al. Mar 2004 A1
20040052498 Colombo et al. Mar 2004 A1
20040117515 Sago et al. Jun 2004 A1
20040184706 Koreeda et al. Sep 2004 A1
20040240807 Frohlich et al. Dec 2004 A1
20050215119 Kaneko Sep 2005 A1
20050249477 Parrish Nov 2005 A1
20060146438 Oh Jul 2006 A1
20060148279 German Jul 2006 A1
20060160395 Macauley et al. Jul 2006 A1
20060193591 Rapp et al. Aug 2006 A1
20060228086 Holmberg et al. Oct 2006 A1
20070116411 Benton et al. May 2007 A1
20070237470 Aronson et al. Oct 2007 A1
20070254529 Pepe et al. Nov 2007 A1
20080090450 Harano et al. Apr 2008 A1
20080090454 Hoath et al. Apr 2008 A1
20080100440 Downie May 2008 A1
20080100456 Downie May 2008 A1
20080100467 Downie May 2008 A1
20080175532 Ruckstuhl et al. Jul 2008 A1
20080175550 Coburn et al. Jul 2008 A1
20080292261 Kowalczyk et al. Nov 2008 A1
20090034911 Murano Feb 2009 A1
20090096581 Macauley Apr 2009 A1
20090097846 Kozischek et al. Apr 2009 A1
20090108995 Tucker Apr 2009 A1
20090148106 Moore et al. Jun 2009 A1
20090148108 Fukutomi Jun 2009 A1
20090166404 German Jul 2009 A1
20090215310 Hoath et al. Aug 2009 A1
20090232455 Nhep Sep 2009 A1
20090249444 Macauley Oct 2009 A1
20090325396 Takeuchi Dec 2009 A1
20100048064 Peng Feb 2010 A1
20100054685 Cooke et al. Mar 2010 A1
20100079248 Greveling Apr 2010 A1
20100080554 Aguren Apr 2010 A1
20100085156 Tucker Apr 2010 A1
20100098425 Kewitsch Apr 2010 A1
20100210135 German Aug 2010 A1
20100211664 Raza et al. Aug 2010 A1
20100211665 Raza et al. Aug 2010 A1
20100211697 Raza et al. Aug 2010 A1
20100215049 Raza et al. Aug 2010 A1
20100245057 Chamarti Sep 2010 A1
20100303420 Lin et al. Dec 2010 A1
20100303421 He et al. Dec 2010 A1
20110043371 German et al. Feb 2011 A1
20110092100 Coffey et al. Apr 2011 A1
20110097925 Caveney Apr 2011 A1
20110115494 Taylor et al. May 2011 A1
20110116748 Smrha et al. May 2011 A1
20110129185 Lewallen et al. Jun 2011 A1
20110129186 Lewallen et al. Jun 2011 A1
20110140856 Downie Jun 2011 A1
20110222819 Anderson et al. Sep 2011 A1
20110228473 Anderson et al. Sep 2011 A1
20110235979 Anderson et al. Sep 2011 A1
20110243505 Su et al. Oct 2011 A1
20110255829 Anderson et al. Oct 2011 A1
20110262077 Anderson et al. Oct 2011 A1
20110274437 Jones Nov 2011 A1
20120003877 Bareel et al. Jan 2012 A1
20120007717 Jong Jan 2012 A1
20120021636 Debendictis et al. Jan 2012 A1
20120039569 Kevern et al. Feb 2012 A1
20120088412 Mattson et al. Apr 2012 A1
20120168521 Jones Jul 2012 A1
20120208401 Petersen Aug 2012 A1
20120234778 Anderson et al. Sep 2012 A1
20130039624 Scherer et al. Feb 2013 A1
20130076589 Caveney Mar 2013 A1
20130084041 Lin et al. Apr 2013 A1
20130163937 Wang et al. Jun 2013 A1
20140038462 Coffey et al. Feb 2014 A1
20140219656 Lawson et al. Aug 2014 A1
20140286610 Anderson et al. Sep 2014 A1
Foreign Referenced Citations (18)
Number Date Country
2499803 Apr 2004 CA
101968558 Feb 2011 CN
102 44 304 Mar 2004 DE
10 2004 033 940 Feb 2006 DE
0 613 032 Aug 1994 EP
1 199 586 Apr 2002 EP
1 237 024 Sep 2002 EP
1 467 232 Oct 2004 EP
1 662 287 May 2006 EP
2 957 936 Dec 2015 EP
4-174406 Jun 1992 JP
WO 0065696 Nov 2000 WO
WO 0247215 Jun 2002 WO
WO 2007061490 May 2007 WO
WO 2010001400 Jan 2010 WO
WO 2010081186 Jul 2010 WO
WO 2010121639 Oct 2010 WO
WO 2013189370 Dec 2013 WO
Non-Patent Literature Citations (12)
Entry
Avaya's Enhanced SYSTIMAX® iPatch System Enables IT Managers to Optimise Network Efficiency and Cut Downtime, Press Release, May 9, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030509 on Jan. 7, 2009.
Avaya's Enhanced SYSTIMAX® iPatch System Enables IT Managers to Optimise Network Efficiency and Cut Downtime, Press Release, May 20, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030520 on Jan. 7, 2009.
Extended European Search Report for Application No. 15768931.6 dated Sep. 29, 2017.
FOCIS 10—Fiber Optic Connector Intermateability Standard—Type LC, TIA/EIA-604-10A, 38 pages (Mar. 2002).
Intelligent patching systems carving out a ‘large’ niche, Cabling Installation & Maintenance, vol. 12, Issue 7, Jul. 2004 (5 pages).
intelliMAC: The intelligent way to make Moves, Adds or Changes! NORDX/CDT © 2003 (6 pages).
International Search Report and Written Opinion for Application No. PCT/US2015/022810 dated Jun. 26, 2015.
iTRACS Physical Layer Manager FAQ, obtained on Jun. 11, 2008 from http://www.itracs.com/products/physical-layer-manager-faqs.html (6 pages).
Meredith, L., “Managers missing point of intelligent patching,” Daa Center News, Jun. 21, 2005, obtained Dec. 2, 2008 from http://searchdatacenter.techtarget.com/news/article/0,289142,sid80_gcil099991,00.html.
Ohtsuki, F. et al., “Design of Optical Connectors with ID Modules,” Electronics and Communications in Japan, Part 1, vol. 77, No. 2, pp. 94-105 (Feb. 1994).
SYSTIMAX® iPatch System Wins Platinum Network of the Year Award, Press Release, Jan. 30, 2003, obtained from http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2003/pr-030130a on Jan. 7, 2009.
TrueNet; TFP Series Rack Mount Fiber Panels, Spec Sheet; May 2008; 8 pages.
Related Publications (1)
Number Date Country
20180348445 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
61970410 Mar 2014 US
Continuations (2)
Number Date Country
Parent 15354739 Nov 2016 US
Child 15997878 US
Parent 14669166 Mar 2015 US
Child 15354739 US