This application is directed, in general, to an optical amplifier and methods of making and using such devices.
Optical multi-core fibers include several core regions, wherein each core region is capable of propagating substantially independent optical signals. Such fibers may provide significantly greater data capacity than a single core fiber. Thus, multi-core fibers enable significant increases to the rate of data transfer in optical systems for lower cost than would be the case for one or multiple single-mode fibers.
One aspect provides an optical device. The optical device comprises a first optical coupler located over a surface of a substrate such that the optical coupler is able to end-couple to an optical core of a first optical fiber having an end facing and adjacent to the first optical coupler and the surface. The optical device further comprises a second optical coupler located over the surface such that the second optical coupler is able to end-couple to an optical core having an end facing and adjacent to the second optical coupler. The optical device also comprises a pump coupler being configured to couple pump light to an optical path that connects the first optical coupler and the second optical coupler.
Another aspect provides a method. The method comprises forming a first optical coupler located over a surface of a substrate such that the optical coupler is able to end-couple to an optical core of a first optical fiber having an end facing and adjacent to the first optical coupler and the surface. The method also comprises forming a second optical coupler located over the surface such that the second optical coupler is able to end-couple to an optical core having an ends facing and adjacent to the second optical coupler. The method further comprises forming a pump coupler located over the surface, the pump coupler configured to couple pump light to an optical path that connects the first optical coupler and the second optical coupler.
Reference is made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Herein, optical components may be, e.g., formed over a surface of a substrate using layer deposition, layer doping, and patterning processes that are conventionally used in the micro-electronics and/or integrated optics fields.
The IPD 101 includes first and second integrated planar arrays 105, 110 of optical couplers 230 and optical waveguides 125 over a planar surface of a substrate 102. The optical waveguides 125 connect the optical couplers 230 of the first and second integrated planar arrays 105, 110 in a one-to-one manner. The optical couplers 230 of the first integrated planar array 105 optically end-couple to corresponding optical cores of a first multi-core fiber (MCF) 115, e.g., the output MCF. The optical couplers 230 of the second integrated planar array 110 optically end-couple to corresponding optical cores of a second MCF 120, e.g., the input MCF. But, in some embodiments, one or more optical cores of the MCFs 115, 120 may not couple to the IPD 100. The substrate 102 may optionally include an optical isolation layer 103, e.g. a dielectric layer, to optically isolate the substrate 102 from optical components formed thereover.
The laser pump source 126 transmits pump light to the optical waveguides 125 to amplify light transmitted between the first and second MCFs 115, 120 via the IPD.
The device 100 may selectively amplify light received from the different optical cores of the MCF 120 as described further below.
Examples of some grating couplers that may be suitable for use as the optical couplers 230 may be described, e.g., in U.S. patent application Ser. No. 12/972,667 (the '667 Application) titled “Multi-Core Optical Cable to Photonic Circuit Coupler” to Christopher Doerr, incorporated herein by reference in its entirety. In some embodiments the optical couplers may include the use of a 45° mirror configured to redirect the light from one or more of the waveguides 125 into a core of one of the MCFs 115, 120.
The optical couplers 230 are often arranged in a lateral pattern that corresponds in form and size to a lateral pattern of optical cores within an MCF to be coupled, e.g., as discussed in the '667 application. In the illustrated embodiment, the example array of
In the illustrated embodiment, the optical core 330 makes an angle φ with respect the surface normal of the optical coupling segment 210 to produce a polarization-separating optical coupler. In particular, at the particular angle φ determined in part by the wavelength of the optical signal 340 a TE polarization mode 420 of the optical signal 340 couples to the optical coupling segment 210 with a propagation direction to the right as
The isolation assembly includes lenses 510, 520 each having a focal length f. Between the lenses 510, 520 are located a beam displacer 530, a Faraday rotator 540, a quarter-wave plate 550 and a beam displacer 560. The lens 510 is spaced at a distance of about f from, e.g. the end 350 to collimate light beams from the optical cores of the MCF. The lens 520 is spaced at a distance of about f from, e.g. the integrated planar array 105, e.g., to focus collimated light beams from the optical cores of the MCF 115 onto the optical couplers. The lenses 510, 520 are, e.g., spaced at a distance of about 2f from each other. The isolator assembly directs light from the end 350, e.g. the optical signal 340, to the indicated corresponding optical coupler 230. Light from the other cores of the MCF 115 are similarly directed to the other corresponding optical couplers 230 of the integrated planar array 105.
Returning to
The laser pump source 126 may transmit the pump light to an optical bus network 145 that transmits pump light to the individual optical waveguides 125 via programmable or adjustable optical taps 150.
In some embodiments, the laser pump source 126 is external, and an optical waveguide 130, e.g., an SCF, an optical coupler 135, e.g. a 1-D array of gratings, and a waveguide 140 connect the laser pump source 126 to the optical bus network 145.
In other embodiments (not shown), the laser pump source 126 may be integrated over the substrate 102, and a planar waveguide over the substrate 102 may connect the laser pump source 126 to the waveguide 140.
Each programmable optical tap 150 may transmit pump light from the optical bus network 145 to the corresponding one of the optical waveguides 125 via a waveguide 155 and a pump coupler 160. Each pump coupler 160 may include, e.g., a Mach-Zehnder Interferometer (MZI) configured as a 2×1 optical coupler to combine pump light with light from one of the integrated planar arrays 105, 110 such that the combined light is directed to the other of the integrated planar arrays 110, 105.
The programmable optical taps 150 may be separately adjustable to vary the amount of pump light coupled from the optical bus network 145 to the various individual optical waveguides 125. Thus, the degree of optical amplification of light from each optical core of the input one of the MCFs 115, 120 may be separately adjusted to provide a desired amplification thereof.
In some embodiments the optical bus network 145 is replaced by a tree network. For example, 1×2 adjustable couplers may be configured in a tree configuration to divide the power from the laser pump laser 126 to a desired number of optical waveguides 125.
In some embodiments, additional pump lasers (not shown) may be used to pump the MCF 115 and/or the MCF 120. Each pump laser may be connected to one or more programmable taps (not shown) that connect to one or more of the MCF 115, 120 optical cores. In one embodiment, the amplifier 100 includes a pump laser corresponding to each optical core of the MCF 115 and/or the MCF 120. In such embodiments the programmable optical taps 150 are not necessary. In another embodiment, the optical paths that connect each of multiple pump lasers to the optical waveguides 125 may be interconnected to provide redundant pumping capability. For example, if one pump laser fails, another pump laser can be switched in to power the cores of the MCF 115 and/or the MCF 120 associated with the failed pump laser.
In some embodiments, the optical amplifier 800 includes optional variable optical attenuators (VOAs) 810a, 810b. The VOAs 810a, 810b may be independently controlled to attenuate any of the TE signal components and/or any of the TM components of signals amplified by the optical amplifier 800. Thus, the relative intensity of polarization modes of an optical signal may be altered, e.g. to account for polarization-dependent attenuation within the optical amplifier 800 itself or elsewhere.
Some embodiments include one or more photodetectors 820, e.g. photodiodes, configured to monitor the optical power in the optical cores of each optical waveguide 125. The photodetectors may thereby indirectly monitor the optical power in one or more of the optical cores of the MCF 115, 120. Such monitoring may be used to, e.g. provide feedback for controlling the programmable optical taps 150 to deliver a desired pump power to the optical waveguide 125 and/or optical cores of the MCFs 115, 120.
Turning to
In a step 1210, a first array, e.g., the integrated planar array 105, of optical couplers e.g. the optical couplers 230, is formed over a surface of a substrate. The first array is an integrated planar array of optical couplers that are laterally arranged to end-couple to corresponding individual optical cores of a first multi-core fiber, e.g., the MCF 115.
In a step 1220 a second array, e.g., the integrated planar array 110, of optical couplers, e.g., the optical couplers 230, is formed over the same surface of the substrate. The optical couplers of the second array are able to end-couple in a one-to-one manner to optical cores having ends facing and adjacent to the second array. In some embodiments the second array is an integrated planar array of optical couplers that are laterally arranged, such that individual optical couplers end-couple to corresponding individual optical cores of a second multi-core fiber, e.g., the MCF 120.
In a step 1230 a plurality of optical waveguides, e.g. the optical waveguides 125, is formed over the surface. The optical waveguides connect in a one-to-one manner the optical couplers of the first array to the optical couplers of the second array.
In a step 1240 a plurality of pump couplers, e.g. the pump couplers 160, is formed such that each optical waveguide has a pump coupler connected thereto. The pump coupler couples to each optical waveguide between ends of that optical waveguide.
The following provides various optional features of the method 1200. In some cases these optional features may be combined.
Each pump coupler may be adjustable to vary an amount of pump light inserted into the connected optical waveguide. A plurality of variable optical attenuators, e.g. the VOAs 810a. 810b, may be formed wherein each variable optical attenuator is located along one of the optical waveguides. A pump light source, e.g. the laser pump source 126, may be coupled to the pump couplers.
The optical couplers of the second array, e.g. the integrated planar array 110, may be laterally located over a surface to be able to end-couple in a one-to-one manner to the optical cores of a second multi-core fiber, e.g. the MCF 120, having an end facing and adjacent to the first array and the surface. The optical couplers of the second array may be edge facet couplers, e.g. the edge facet couplers 1110. The optical waveguides may be capable of amplifying light therein when optically pumped via the pump couplers. Ends of optical cores of an erbium-doped multi-core fiber may be located proximate the first array of optical couplers such that the optical core are configured to receive pump light from the optical couplers.
A laser pump source may be coupled to the optical pump couplers, wherein the laser pump source has an output wavelength suitable to amplify optical signals in the telecommunications C or L band by Raman amplification. A plurality of second optical waveguides, e.g. the optical waveguides 125b, may be formed over the surface, wherein the second optical waveguides connect in a one-to-one manner the optical couplers of the first array to the optical couplers of the second array.
Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.
This application is a continuation of U.S. patent application Ser. No. 13/012,730, issued as U.S. Pat. No. 8,548,291, entitled “OPTICAL AMPLIFIER FOR MULTI-CORE OPTICAL FIBER”, filed on Jan. 24, 2011, to Christopher Doerr, et al, and is commonly assigned with the present invention and is incorporated herein by reference as if reproduced herein in its entirety. This application claims the benefit of provisional patent application Ser. No. 61/428,154 to Doerr, et al., filed on Dec. 29, 2010, incorporated herein by reference. This application is related to application Ser. No. 13/012,712, entitled “CORE-SELECTIVE OPTICAL SWITCHES” by Doerr, et al., filed on Jan. 24, 2011, and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3985423 | Tseng | Oct 1976 | A |
5123068 | Hakoun et al. | Jun 1992 | A |
5442723 | Vinchant et al. | Aug 1995 | A |
6275317 | Doerr et al. | Aug 2001 | B1 |
6321001 | Heflinger | Nov 2001 | B1 |
6377396 | Sun et al. | Apr 2002 | B1 |
6467969 | Shmulovich | Oct 2002 | B1 |
6487329 | Foltzer | Nov 2002 | B2 |
6594420 | Lange et al. | Jul 2003 | B1 |
6687043 | Davies | Feb 2004 | B2 |
6696917 | Heitner et al. | Feb 2004 | B1 |
7206473 | Mino et al. | Apr 2007 | B2 |
7565047 | Nishizawa et al. | Jul 2009 | B2 |
7845860 | Fiorentino et al. | Dec 2010 | B2 |
8548291 | Doerr et al. | Oct 2013 | B2 |
8837878 | Chen et al. | Sep 2014 | B2 |
20020044718 | Nishi et al. | Apr 2002 | A1 |
20020110328 | Bischel et al. | Aug 2002 | A1 |
20030016439 | Courtois et al. | Jan 2003 | A1 |
20030185514 | Bendett et al. | Oct 2003 | A1 |
20030228088 | Liu | Dec 2003 | A1 |
20040208579 | Bendett et al. | Oct 2004 | A1 |
20040208586 | Kinoshita | Oct 2004 | A1 |
20050123246 | Morse et al. | Jun 2005 | A1 |
20050152648 | Madsen et al. | Jul 2005 | A1 |
20050219682 | Natori et al. | Oct 2005 | A1 |
20060029323 | Nikonov et al. | Feb 2006 | A1 |
20080192333 | Bolshtyansky et al. | Aug 2008 | A1 |
20080193136 | Masuda et al. | Aug 2008 | A1 |
20090026745 | Dumont et al. | Jan 2009 | A1 |
20090180734 | Fiorentino et al. | Jul 2009 | A1 |
20090231684 | Gonthier et al. | Sep 2009 | A1 |
20100178007 | Thomson et al. | Jul 2010 | A1 |
20110274438 | Fiorentino et al. | Nov 2011 | A1 |
20120155805 | Doerr | Jun 2012 | A1 |
20120155806 | Doerr et al. | Jun 2012 | A1 |
20120170933 | Doerr et al. | Jul 2012 | A1 |
20120195600 | Winzer | Aug 2012 | A1 |
20130051729 | Chen et al. | Feb 2013 | A1 |
20130216184 | Kopp et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1157687 | Aug 1997 | CN |
S62118310 | May 1987 | JP |
H01257921 | Oct 1989 | JP |
2004040810 | May 2004 | WO |
2010080157 | Jul 2010 | WO |
Entry |
---|
Foreign Communication From a Related Counterpart Application, Chinese Application No. 201180061426.2, Chinese Office Action dated Aug. 7, 2014, 5 pages. |
Foreign Communication From a Related Counterpart Application, Chinese Application No. 201180061426.2, Partial Translation of Chinese Office Action dated Aug. 7, 2014, 4 pages. |
Palen, E., “Optical Coupling to Monolithic Integrated Photonic Circuits,” 2007 Proceedings of the International Society for Optical Engineering, 2007, vol. 6478, pp. 64780K-1-64780K-6. |
Thomson, R., et al., “Ultrafast Laser Inscription of a High-Gain Er-Doped Bismuthate Glass Waveguide Amplifier,” Optics Express, vol. 18, No. 12, Jun. 7, 2010, pp. 13212-13219. |
Foreign Communication From a Related Counterpart Application, Korean Application No. 2013-7016862, Korean Office Action dated Jun. 25, 2014, 6 pages. |
Foreign Communication From a Related Counterpart Application, Korean Application No. 2013-7016862, Partial Translation of the Korean Office Action dated Jun. 25, 2014, 6 pages. |
Zhu, B., et al., “Seven-core Multicore Fiber Transmissions for Passive Optical Network,” Opt. Express 18, 11117-11122 (2010). |
Thomson, R.R., et al., “Ultrafast Laser Inscription of a Three Dimensional Fan-out Device for Multicore Fiber Coupling Applications,” CLEO 2008, JWA62. |
Thomson, R.R., et al., “Ultrafast-Laser Inscription of a Three Dimensional Fan-out Device for Multicore Fiber Coupling Applications,” Optics Express, vol. 15, Issue 18, pp. 11691-11697 (2007). |
Wang, Zhechao, et al., “Experimental Demonstration of a High Efficiency Polarization Splitter Based on a One-Dimensional Grating with a Bragg Reflector Underneath”, IEEE Photonics Technology Letters, vol. 22, No. 21, Nov. 1, 2010, pp. 1568-1570. |
Wang, Zhechao, et al., “Experimental Demonstration of an Ultracompact Polarization Beam Splitter Based on a Bidirectional Grating Coupler”, 2009 OSA/ACP 2009, 2 pages. |
Maier, Guido, et al., “Optical-Switch Benes Architecture Based on 2-D MEMS”, 2006 IEEE, 6 pages. |
Tang, Yongbo, et al., “Proposal for a Grating Waveguide Serving as Both a Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits”; IEEE Photonics Technology Letters, vol. 21, No. 4, Feb. 15, 2009, pp. 242-244. |
Taillaert, Dirk, et al., “A Compact Two-Dimensional Grating Coupler Used as a Polarization Splitter”, IEEE Photonics Technology Letters, vol. 15, No. 9 Sep. 2003, pp. 1249-1251. |
Doerr, Christopher R., et al., “Monolithic Polarization and Phase Diversity Coherent Receiver in Silicon”; Journal of Lightwave Technology, 2010 IEEE, pp. 520-525. |
OCC—Optical Cable Corporation, Fiber Optic Cable Indoor/outdoor & Premises, 2010, 27 pages. |
Foreign Communication From a Related Counterpart Application, Japanese Application No. 2013-547585, Japanese Office Action dated Jul. 31, 2014, 6 pages. |
Foreign Communication From a Related Counterpart Application, Korean Application No. 2013-7016862, Notice of Final Rejection dated Jan. 28, 2014, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20150049379 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61428154 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13012730 | Jan 2011 | US |
Child | 13967570 | US |