The described invention relates to the field of optical signal amplification. In particular, the invention relates to amplifying an optical signal using pumping light beams having multiple wavelengths.
A waveguide may serve as an optical amplifier by doping it with ions of a rare earth element such as Erbium. An optical signal propagating in the waveguide is amplified when a pumping light beam is introduced. For example, Erbium ions, excited to a higher energy state with a pumping light beam having a wavelength of approximately 980 nm or 1480 nm, will amplify an optical signal in a wide wavelength band around 1530-1600 nm as the Erbium ions fall down to a lower energy state. This technique is well-known in optical fiber amplification.
Modern optical networks use single-mode optical fibers for transmission over long distances. This avoids signal degradation coming from chromatic dispersion, i.e. dependence of the speed of the light on its wavelength. For efficient interfacing with single mode fibers, all optical components, including fiber or waveguide amplifiers, are effectively single-mode. Due to a general principle of optics, “brightness conservation theorem”, power of light in a single mode cannot be increased using just linear passive (not adding energy) optical elements. This results in a fact that the power of light with a certain wavelength from only one mode can be coupled to a single mode waveguide. For amplifiers, it translates that only one pump laser with a certain wavelength can supply pump light in each direction of propagation and each polarization.
The optical signal experiences gain in an optical amplifier provided that the intensity of the pump is higher than a certain threshold value dependent on the intensity of the optical signal and material properties of the optical amplifier. In order to achieve high enough gain, the intensity of the pump must be much higher than the threshold value. Consequently, a high power of a pump laser is typically required.
There are several disadvantages of the above methods compared to the invention described below. First, the relatively high power laser used in the described co-propagating and counter-propagating amplification is expensive. Second, high power lasers have a high power dissipation, which may cause thermal issues in their packaging. Third, the reliability of high power lasers is generally not as good as that of lower power lasers.
An apparatus and method for amplifying an optical signal using multiple wavelength pumping light beams is disclosed. Multiple lower-power light sources provide the pumping light beams. In one embodiment, laser diodes provide the pumping light beams into an optical multiplexer where all the pumping light beams are combined. The optical multiplexer is coupled to a waveguide where the optical signal is to be amplified. The combined optical signal and multiple wavelength pumping light beams are routed to an amplification waveguide, in which the optical signal is amplified.
An optical signal 118 is input via a waveguide 120 that is embedded within the substrate 105. There are various ways to fabricate a waveguide embedded in a substrate, such as by diffusion of various ionic species, etching, and epitaxial growth. “Embedded within a substrate” is meant to include these various ways, including silicon-on-insulator. In some cases, the waveguide may actually be deposited on top of a substrate and covered with a cladding material different from the substrate, but is also meant to be covered by the term “embedded within a substrate”.
In one embodiment, an array waveguide grating serves as the optical multiplexer 122. In another embodiment, an echelle grating serves as the optical multiplexer 122. In one embodiment, the waveguide 120 and the optical multiplexer 122 are evanescently coupled together with a spacing between them down to a few microns. In another embodiment, the waveguide 120 is coupled to a waveguide 130 having the multiplexed pumping light beams after they have been multiplexed together.
After the optical signal 118 is coupled to the multiple wavelength pumping light beams, the combined light beams coexist within amplification waveguide 130. In one embodiment, the waveguide 120 and the optical multiplexer 122 are located in the undoped portion 112 of the device substrate, and the amplification waveguide 130 is located in the doped portion 114 of the device substrate.
In one embodiment, a plurality of laser diodes 140 provides multiple wavelengths of pumping light beams centered about a base wavelength. For example, the laser diodes may provide pumping light beams centered about 980 nm with small variations. Pumping light beams centered about 980 nm with a 2 nm variation include 980 nm, 980 nm+/−2 nm, 980 nm+/−4 nm, and so forth.
Although the variations from the center wavelength need not be periodic or identical, if they overlap too closely with other wavelengths then the power of that wavelength will not be efficiently transferred into the amplification waveguide due to the conservation of brightness in passive components. For example, if four light sources each having power P and identical wavelength were multiplexed together into the amplification waveguide, the amount of power transferred to the amplification waveguide is approximately P (less some loss). Approximately 3P power would be reflected or scattered. On the other hand, if the four light sources each have power P and slightly different wavelengths, the amount of power transferred to the amplification waveguide is 4P (less some loss).
In one embodiment, Vertical Cavity Surface Emitting Lasers (VCSELs) are used to provide the pumping light beams. Low power VCSELs may be used for the amplification. For example, a VCSEL may emit, but is not limited to, less than 20 mW of power. Comparable high power lasers used in co-propagation and counter-propagation architectures as shown in
The optical signal 118 is input into amplification waveguide 130, which is in the doped section 114 of the device substrate 105. The light sources 142 provide pumping light beams similar to the light sources 140 as previously described with respect to FIG. 3. The pumping light beams are combined in an optical multiplexer 124 and then directed into the amplification waveguide 130, where the optical signal 118 is amplified. In one embodiment, the doped region 114 is doped with Erbium, the optical signal is approximately 1550 nm, and the pumping light beams are centered about either 980 nm or 1440 nm.
In one embodiment, an output waveguide 160 is evanescently coupled to one end of waveguide 130, and the amplified signal is transferred to the output waveguide 160.
Similar to
An optical signal 118 is input into waveguide 120, which is evanescently coupled into amplification waveguide 130. Light sources 140 provide multiple wavelength pumping light beams into an optical multiplexer 122 which is also coupled into the amplification waveguide 130, and light sources 142 provide multiple wavelength pumping light beams into an optical multiplexer 124 which is also coupled into the amplification waveguide 130.
The optical signal 118 is amplified in the amplification waveguide 130 and is then coupled into the waveguide 160, from which it exits the device substrate 105.
In the
In one embodiment, the light sources 140, 142 are coupled to the optical multiplexer 122, 124 via optical fibers (not shown). In another embodiment, the light sources 140, 142 are coupled directly to the substrate 105.
Additionally, in one embodiment, the light sources 140 may provide a first set of pumping light beams centered around a first wavelength, and the light sources 142 may provide a second set of pumping light beams centered around a second wavelength that is different from the first wavelength.
Thus, an apparatus and method for amplifying an optical signal is disclosed. However, the specific arrangements and methods described herein are merely illustrative. For example, there are various ways to fabricate a waveguide embedded in a substrate, such as by diffusion of various ionic species, etching, and epitaxial growth. One skilled in the art could use any of various methods to fabricate such an embedded waveguide. Numerous modifications in form and detail may be made without departing from the scope of the invention as claimed below. The invention is limited only by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4515431 | Shaw et al. | May 1985 | A |
4785459 | Baer | Nov 1988 | A |
5181223 | Baer | Jan 1993 | A |
5227913 | McCaughan et al. | Jul 1993 | A |
5271031 | Baer | Dec 1993 | A |
5365538 | Tumminelli et al. | Nov 1994 | A |
5463649 | Ashby et al. | Oct 1995 | A |
5535051 | Basiev et al. | Jul 1996 | A |
5761234 | Craig et al. | Jun 1998 | A |
5774488 | Kmetec | Jun 1998 | A |
5920423 | Grubb et al. | Jul 1999 | A |
5982802 | Thony et al. | Nov 1999 | A |
6069907 | Chang | May 2000 | A |
6160824 | Meissner et al. | Dec 2000 | A |
6212310 | Waarts et al. | Apr 2001 | B1 |
6243515 | Heflinger et al. | Jun 2001 | B1 |
6289027 | Lawrence et al. | Sep 2001 | B1 |
6356574 | Craig et al. | Mar 2002 | B1 |
6418156 | Peressini | Jul 2002 | B1 |
6459829 | Yamauchi et al. | Oct 2002 | B1 |
6493476 | Bendett | Dec 2002 | B2 |
6721087 | Alduino et al. | Apr 2004 | B2 |
Number | Date | Country |
---|---|---|
0 821 451 | Jan 1998 | EP |
0128333 | Aug 2000 | EP |
2 784 809 | Jan 1998 | FR |
2001-308422 | Nov 2001 | JP |
WO 8704881 | Aug 1987 | WO |
WO 0128049 | Mar 2001 | WO |
WO 0128049 | Apr 2001 | WO |
PCTUS 0237677 | Nov 2002 | WO |
PCTUS 0237696 | Nov 2002 | WO |
WO 03052887 | Jun 2003 | WO |
WO 03052888 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030112498 A1 | Jun 2003 | US |