The present invention relates to an optical amplifier, and in particular to an integrated optical amplifier utilizing a reflective semiconductor optical amplifier (RSOA).
Conventional hybrid integrated optical amplifiers, which combine one type of platform for the main device layer, e.g. silicon photonic integrated circuit, and a different type for the gain medium, e.g. Group III-V material, typically require a 180° curved waveguide in the gain medium, so that the input into and the output from the gain medium are provided at a single mating surface with the main device layer. Unfortunately, the radius of curvature of the curved waveguide must be kept relatively large to ensure proper confinement and controlled amplification. Isolators are often used to minimize light reflecting back into the light source; however, isolators are not easily integrated into photonic integrated circuits.
An object of the present invention is to overcome the shortcomings of the prior art by eliminating the need for the 180° curved waveguides and isolators by providing an optical amplifier including a coupler for splitting an input optical signal into two sub-beams, for passage through a gain medium, and a reflector for reflecting the two sub-beams back through the gain medium to the coupler. A phase tuner may also be provided to ensure coherence cancellation between the two sub-beams to maximize output and minimize back reflection without requiring an isolator.
Accordingly, the present invention relates to an optical amplifier device comprising:
an input port for launching an input optical signal;
a coupler including an input optically coupled to the input port, first and second input/outputs, and an output, wherein the coupler is capable of separating the input optical signal into first and second sub-beams, and outputting the first and second sub-beams via the first and second input/outputs, respectively;
a gain medium optically coupled to the first and second input/outputs, capable of amplifying the first and second sub-beams forming first and second amplified sub-beams;
a reflector for reflecting the first and second amplified sub-beams back to the coupler;
an output port optically coupled to the output for outputting the amplified optical signal; and
a first phase shifter capable of adjusting the phase of the first sub-beam and the first amplified sub-beam, so that the first amplified sub-beam combines coherently with the second amplified sub-beam causing coherent cancellation therebetween, whereby substantially all of the amplified optical signal exits the output and the output port;
wherein the coupler is further capable of combining the first and second amplified sub-beams into the amplified optical signal, and outputting the amplified optical signal via the output to the output port.
Another aspect of the present invention relates to an optical amplifier device comprising:
a first input port for launching a first input optical signal;
a first coupler including first, second, third and fourth branches, the first branch optically coupled to the first input port, wherein the first coupler is capable of separating the first input optical signal into first and second sub-beams onto the second and third branches, respectively;
a first gain medium optically coupled to the second and third branches, capable of amplifying the first and second sub-beams forming first and second amplified sub-beams, and
a first reflector for reflecting the first and second amplified sub-beams back to the coupler; and
a first output port optically coupled to the fourth branch for outputting a first amplified optical signal;
a first phase shifter capable of adjusting the phase of the first sub-beam and the first amplified sub-beam, so that the first amplified sub-beam combines coherently with the second amplified sub-beam causing coherent cancellation therebetween, whereby substantially all of the first amplified optical signal exits the fourth branch and the first output port;
wherein the first coupler is further capable of combining the first and second amplified sub-beams into the first amplified optical signal, and outputting the first amplified optical signal via the fourth branch to the first output port;
a second input port for launching a second input optical signal;
a second coupler including fifth, sixth, seventh and eighth branches, the fifth branch optically coupled to the second input port, wherein the second coupler is capable of separating the second input optical signal into third and fourth sub-beams onto the sixth and seventh branches, respectively;
a second gain medium optically coupled to the sixth and seventh branches, capable of amplifying the third and fourth sub-beams forming third and fourth amplified sub-beams;
a second reflector for reflecting the third and fourth amplified sub-beams back to the second coupler; and
a second output port optically coupled to the eighth branch for outputting a second amplified optical signal;
a second phase shifter capable of adjusting the phase of the third sub-beam and the third amplified sub-beam, so that the third amplified sub-beam combines coherently with the fourth amplified sub-beam causing coherent cancellation therebetween, whereby substantially all of the second amplified optical signal exits the eighth branch and the second output port;
wherein the second coupler is further capable of combining the third and fourth amplified sub-beams into the second amplified optical signal, and outputting the second amplified optical signal via the eighth branch to the second output port.
The invention will be described in greater detail with reference to the accompanying drawings which represent preferred embodiments thereof, wherein:
While the present teachings are described in conjunction with various embodiments and examples, it is not intended that the present teachings be limited to such embodiments. On the contrary, the present teachings encompass various alternatives and equivalents, as will be appreciated by those of skill in the art.
With reference to
The gain medium 2i may comprise any suitable amplification material, e.g. a suitable group gain material, such as InP, GaAs and GaN based materials, in particular a reflective semiconductor optical amplifier (RSOA), which may be based on bulk, quantum well or quantum dot material. The gain medium 2i may be provided on the photonic integrated chip 11, as illustrated in
The photonic integrated chip 11 may include a separate substrate with a semiconductor, e.g. silicon, device layer formed thereon, which includes the coupler 31 or the couplers 31-3n and all connecting waveguides. Ideally the photonic integrated chip 11 comprises a silicon on insulator (SOI) structure including an upper silicon device layer, a middle silicon dioxide cladding layer, and a bottom silicon substrate. The advantage of this arrangement is that electrical controls on the photonic integrated chip 11 may control the properties of the amplifier 1, e.g. wavelength.
When the gain medium 2i is embedded within the semiconductor photonic integrated chip 11, as in
Each optical coupler 3i may include a first port or branch 21i on one side optically coupled to the input port 7i, second and third ports or branches 22i and 23i on an opposite side optically coupled to the gain medium 2i, and a fourth port or branch 24i on the one side optically coupled to the output port 8i. The first and fourth ports or branches 21 and 24 may be optically coupled to additional optical elements in the device layer of the photonic integrated chip 11 and/or to an edge of the photonic integrated chip 11. The terms optically coupled or coupled are intended to mean connected for the sake of transmitting light therebetween, typically directly connected or utilizing some form of waveguide structure, e.g. integrated waveguides in the device layer, with or without other intermediate optical elements therebetween. The optical coupler 3i, e.g. a 2×2 directional coupler (DC), may be connected to the gain medium 2i in order to split an incoming beam of light into two sub-beams, one sub-beam including a first percentage, e.g. 40%-60%, ideally 50%, of the power directed to a first channel 15ai of the gain medium 2i, and a second sub-beam including a second percentage, e.g. 40%-60%, ideally, 50% (or −3 dB) directed to the second channel 15bi of the gain medium 2i. The coupling ratio may be optimized to trade for coupling losses in the device layer and amplification imbalances in the two waveguide channels 15a and 15b.
One or more I/O waveguides 16ai and 16bi, from the gain medium 2i may be angled at a small acute angle to a normal from the output facet of the gain medium 2i, e.g. by 5° to 15°, ideally by 9°, and include an anti-reflection coating to reduce the back reflection at the output facet.
The reflector 6 may be comprised of a reflective surface on the RSOA, a reflective surface or coating in the pit housing the gain medium 2i, or on a surface or coating of the photonic chip 11 or the gain medium chip 12i, such as an outer edge of the photonic chip 11, as illustrated in
An optical coupler 13 may be provided for coupling the light between the gain medium 2i, in particular from the gain medium chip 12i, and the device layer on the photonic chip 11, in particular the coupler 3i. Due to the large mode mismatch between the I/O waveguides 16ai and 16bi (or the waveguide channels 15ai and 15bi) from the gain medium 2i and the waveguides in the device layer of the photonic chip 11, the optical coupler 13 may comprise an optical spot-size converter (SSC), which may be provided in the device layer of the photonic chip 11 to reduce the coupling loss between the gain medium 2i and the photonic chip 11. Alternatively or in addition, the I/O waveguides 16ai and 16bi may include a tapering width and or height for expanding the mode reentering the gain medium 2i and for contracting the mode leaving the gain medium chip 12i.
One of more phase shifters or phase tuning sections 31 may be provided in or between the optical coupler 3i and the gain medium 2i, coupled to one or both branches 22 and 23, as illustrated in
To ensure the amplitude of each of the sub-beams is substantially the same or at a desired level relative to each other when combining in the coupler 3i to minimize back reflection at the input port 7i, the controller 32 may also independently adjust or tune the drive current, i.e. the amplification, provided to each channel 15ai and 15bi of the gain medium 2i via control lines 17ai and 17bi, respectively. The tuning of the drive current may also act as or act in conjunction with the phase tuner 31.
An optical sensor may be provided between the input port 7i and the coupler 3i for detecting an amount of back reflection from the gain medium 2i. The optical sensor may include a monitor tap 19, ideally in the form of a directional coupler, provided on the waveguide between the first port 21i and the input port 7i for separating off a small test portion, e.g. <5%, of the return light and delivering the test portion to a photodetector 20, to provide a measure of back reflection from the amplifier 1i. The controller 32 receives the measure of the back reflection via control line 37, and may tune the phase tuner 31 and/or the drive currents to the channels 15a and 15b to minimize the back reflection at the input port 7i, and therefore maximize the output power in the amplified output beam at the output port 8i.
An optical filter 41i may be provided, ideally between the input port 7i and the first port or branch 21i, for passing one or more selected optical wavelengths in the input optical signal and filtering out unwanted wavelengths, prior to amplification in the gain medium 2i. With reference to
With reference to
In another embodiment, illustrated in
Alternatively, a plurality of separate gain mediums 21 to 2n may be grown onto the single photonic chip 111 or a plurality of gain medium chips 121 to 12n, e.g. a RSOA, may be placed, e.g. flip-chip bonded, onto the single photonic chip 111 to form the amplifiers 11 to 1n defined in the device layer formed thereon, as hereinbefore defined with reference to
The photonic integrated chip 111 may include a separate substrate with a semiconductor, e.g. silicon, device layer formed thereon, which includes the couplers 31 to 3n and all connecting waveguides. Ideally the photonic integrated chip 111 comprises a silicon on insulator (SOI) structure including an upper silicon device layer, a middle silicon dioxide cladding layer, and a bottom silicon substrate. The advantage of this arrangement is that electrical controls on the photonic integrated chip 111 may control the properties of the amplifiers 11 to 1n, e.g. wavelength and gain.
In another embodiment, illustrated in
Alternatively, the gain mediums 102 may be grown onto the single photonic integrated chip 111 or a single gain medium chip 112, e.g. a RSOA, may be placed, e.g. flip-chip bonded, onto the single photonic integrated chip 111 to form the amplifiers 1011 to 101n defined in the device layer formed thereon, as hereinbefore defined with reference to
The photonic chip 111 may include a separate substrate with a semiconductor, e.g. silicon, device layer formed thereon, which includes the couplers 31 to 3n and all connecting waveguides. Ideally the photonic integrated chip 111 comprises a silicon on insulator (SOI) structure including an upper silicon device layer, a middle silicon dioxide cladding layer, and a bottom silicon substrate. The advantage of this arrangement is that electrical controls on the photonic integrated chip 111 may control the properties of the amplifiers 1011 to 101n, e.g. wavelength and gain.
The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.