Optical and temperature feedbacks to control display brightness

Information

  • Patent Grant
  • 7391172
  • Patent Number
    7,391,172
  • Date Filed
    Monday, February 26, 2007
    18 years ago
  • Date Issued
    Tuesday, June 24, 2008
    16 years ago
Abstract
An illumination control circuit allows a user to set a desired brightness level and maintains the desired brightness level over temperature and life of a light source. The illumination control circuit uses a dual feedback loop with both optical and thermal feedbacks. The optical feedback loop controls power to the light source during normal operations. The thermal feedback loop overrides the optical feedback loop when the temperature of the light source becomes excessive.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a backlight system, and more particularly relates to using optical and temperature feedbacks to control the brightness of the backlight.


2. Description of the Related Art


Backlight is used in liquid crystal display (LCD) applications to illuminate a screen to make a visible display. The applications include integrated displays and projection type systems, such as a LCD television, a desktop monitor, etc. The backlight can be provided by a light source, such as, for example, a cold cathode fluorescent lamp (CCFL), a hot cathode fluorescent lamp (HCFL), a Zenon lamp, a metal halide lamp, a light emitting diode (LED), and the like. The performance of the light source (e.g., the light output) is sensitive to ambient and lamp temperatures. Furthermore, the characteristics of the light source change with age.


SUMMARY OF THE INVENTION

One embodiment of the present invention is an illumination control circuit which allows a user to set a desired brightness level and maintains the desired brightness level over temperature and life of a light source (e.g., a fluorescent lamp). The illumination control circuit uses an optical sensor (e.g., a visible light sensor) to maintain consistent brightness over lamp life and over extreme temperature conditions. The illumination control circuit further includes a temperature sensor to monitor lamp temperature and prolongs lamp life by reducing power to the fluorescent lamp when the lamp temperature is excessive. In one embodiment, the illumination control circuit optionally monitors ambient light and automatically adjusts lamp power in response to variations for optimal power efficiency.


The brightness (or the light intensity) of the light source (e.g., CCFL) is controlled by controlling a current (i.e., a lamp current) through the CCFL. For example, the brightness of the CCFL is related to an average current provided to the CCFL. Thus, the brightness of the CCFL can be controlled by changing the amplitude of the lamp current (e.g., amplitude modulation) or by changing the duty cycle of the lamp current (e.g., pulse width modulation).


A power conversion circuit (e.g., an inverter) is generally used for driving the CCFL. In one embodiment, the power conversion circuit includes two control loops (e.g., an optical feedback loop and a thermal feedback loop) to control the lamp current. A first control loop senses the visible light produced by the CCFL, compares the detected visible light to a user defined brightness setting, and generates a first brightness control signal during normal lamp operations. A second feedback loop senses the temperature of the CCFL, compares the detected lamp temperature to a predefined temperature limit, and generates a second brightness control signal that overrides the first brightness control signal to reduce the lamp current when the detected lamp temperature is greater than the predefined temperature limit. In one embodiment, both of the control loops use error amplifiers to perform the comparisons between detected levels and respective predetermined levels. The outputs of the error amplifiers are wired-OR to generate a final brightness control signal for the power conversion circuit.


In one embodiment, an illumination control circuit includes an optical or a thermal feedback sensor integrated with control circuitry to provide adjustment capabilities to compensate for temperature variations, to disguise aging, and to improve the response speed of the light source. For example, LCD computer monitors make extensive use of sleep functions for power management. The LCD computer monitors exhibit particular thermal characteristics depending on the sleep mode patterns. The thermal characteristics affect the “turn on” brightness levels of the display. In one embodiment, the illumination control circuit operates in a boost mode to expedite the display to return to a nominal brightness after sleep mode or an extended off period.


In one embodiment, a light sensor (e.g., an LX1970 light sensor from Microsemi Corporation) is coupled to a monitor to sense the perceived brightness of a CCFL used in the backlight or display. For example, the light sensor can be placed in a hole in the back of the display. The light sensor advantageously has immunity to infrared light and can accurately measure perceived brightness when the CCFL is in a warming mode. The output frequency of the CCFL shifts from infrared to the visible light spectrum as the temperature increases during the warming mode.


In one embodiment, the output of the light sensor is used by a boost function controller to temporary increase lamp current to the CCFL to reach a desired brightness level more quickly than using standard nominal lamp current levels. The light sensor monitors the CCFL light output and provides a closed loop feedback method to determine when a boost in the lamp current is desired. In an alternate embodiment, a thermistor is used to monitor the temperature of the CCFL lamp and to determine when boosted lamp current is desired.


In one embodiment, an inverter is used to drive the CCFL. The inverter includes different electrical components, and one of the components with a temperature profile closely matching the temperature profile of the CCFL is used to track the warming and cooling of a LCD display. The component can be used as a reference point for boost control functions when direct access to lamp temperature is difficult.


Providing a boost current to the CCFL during initial activation or reactivation from sleep mode of the display improves the response time of the display. For example, the display brightness may be in the range of 40%-50% of the nominal range immediately after turn on. Using a normal start up current (e.g., 8 mA) at 23 degrees C., the 90% brightness level may be achieved in 26 minutes. Using a 50% boost current (e.g., 12 mA), the 90% brightness level may be achieved in 19 seconds. The boost level can be adjusted as desired to vary the warm-up time of the display. The warm-up time is a function of the display or monitor settling temperature. For example, shorter sleep mode periods mean less warm-up times to reach the 90% brightness level.


In one embodiment, the boost control function can be implemented with low cost and low component count external circuitry. The boost control function enhances the performance of the display monitor for a computer user. For example, the display monitor is improved by reducing the time to reach 90% brightness by 50 to 100 times. The boost control function benefits office or home computing environments where sleep mode status is frequent. Furthermore, as the size of LCD display panels increase in large screen displays, the lamp length and chassis also increase. The larger lamp and chassis leads to system thermal inertia, which slows the warm-up time. The boost control function can be used to speed up the warm-up time.


In one embodiment, a light sensor monitors an output of a CCFL. A boost control circuit compares an output of the light sensor to a desired level. When the output of the light sensor is less than the desired level, the CCFL is operated at a boost mode (e.g., at an increased or boosted lamp current level). As the output of the light sensor reaches the desired level, indicating that the brightness is approaching a desired level, the boosted lamp current is reduced to a preset nominal current level.


In one embodiment, the boost control circuit is part of the optical feedback loop and facilitates a display that is capable of compensating for light output degradation over time. For example, as the lamp output degrades over usage hours, the lamp current level can be increased to provide a consistent light output. LCD televisions and automotive GPS/Telematic displays can offer substantially the same brightness provided on the day of purchase after two years of use.


For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage of group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a power conversion circuit with dual feedback loops in accordance with one embodiment of the invention.



FIG. 2 illustrates light output of a CCFL with respect to temperature.



FIG. 3 illustrates panel brightness with respect to time as a display panel cycles on and off.



FIG. 4 illustrates waveforms for panel brightness and a light sensor output with respect to time as a display panel cycles on and off.



FIG. 5 illustrates waveforms for panel brightness and temperatures of select inverter components with respect to time as a display panel cycles on and off.



FIG. 6 illustrates waveforms comparing warm-up times using a standard drive current and a boost current.



FIG. 7 illustrates waveforms comparing percentage of light output with respect to hours of operation for various operating conditions.



FIG. 8 illustrates waveforms comparing light outputs with and without optical feedback over the life of a CCFL.



FIG. 9 illustrates power savings associated with decreasing brightness based on ambient light environment.



FIGS. 10A and 10B respectively illustrate a block diagram and wavelength sensitivity for one embodiment of a light sensor used to monitor visible light output of a lamp.



FIG. 11 is a schematic illustration of one embodiment of an automatic brightness control circuit that senses light output of a lamp and adjusts an inverter brightness control signal.



FIG. 12 illustrates waveforms for panel brightness and temperatures of select inverter components with respect to time using the automatic brightness control circuit as a display panel cycles on and off.



FIG. 13 illustrates one embodiment of a LCD monitor with a light detector which is interfaced to a lamp inverter for closed loop illumination control.





DETAILED DESCRIPTION OF THE INVENTION

Various embodiments of the present invention will be described hereinafter with reference to the drawings. FIG. 1 is a block diagram of a power conversion circuit (or backlight system) with dual feedback loops in accordance with one embodiment of the invention. The backlight system may be advantageously used in automotive applications which are exposed to relatively extreme temperature variations and suffer brightness loss at low ambient temperatures. The backlight system can also be used in other LCD applications, such as computer notebooks, computer monitors, handheld devices, television displays, and the like. The dual feedback loops allow a user to set a desired brightness level for a backlight light source and maintain the desired brightness level over operating temperature and over degradation of the light source efficacy over life. The dual feedback loops also extend the useful life of the light source by maintaining safe operating conditions for the light source.


The power conversion circuit of FIG. 1 generates a substantially alternating current (AC) output voltage (V-OUT) to drive a fluorescent lamp (e.g., a CCFL) 106. In one embodiment, an inverter 100 generates the substantially AC output voltage from a direct current (DC) input voltage. The inverter 100 includes a controller 102 which accepts a brightness control input signal (BRITE-IN) and generates switching signals (A, B) to a high voltage circuit 104 to generate the substantially AC output voltage. A corresponding AC lamp current (I-LAMP) flows through the CCFL 106 to provide illumination.


In one embodiment, the dual feedback loops control the brightness of the CCFL 106 and include an optical feedback loop and a lamp temperature feedback loop. The dual feedback loops generate the brightness control input signal to the controller 102. The brightness of the CCFL 106 is a function of the root mean square (RMS) level of the lamp current, ambient temperature of the CCFL 106, and life of the CCFL 106. For example, FIG. 2 illustrates light output of a CCFL with respect to temperature. The lamp brightness is affected by ambient and lamp temperatures. A graph 200 shows the relationship for a standard pressure CCFL at a nominal operating lamp current of 6 mA.


Lamp brightness decreases as the CCFL 106 ages (or when the lamp temperature decreases) even though the RMS level of the lamp current remains the same. The dual feedback loops facilitate consistent lamp brightness over lamp life and varying lamp temperature by compensating with adjusted RMS levels of the lamp current. The dual feedback loops further facilitate prolonged lamp life by monitoring the temperature of the CCFL 106.


As shown in FIG. 1, the optical feedback loop includes a visible light sensor 110, an optional gain amplifier 112, and a first error amplifier 114. The visible light sensor 110 monitors the actual (or perceived) brightness of the CCFL 106 and outputs an optical feedback signal indicative of the lamp brightness level. The optional gain amplifier 112 conditions (e.g., amplifies) the optical feedback signal and presents a modified optical feedback signal to the first error amplifier 114. In one embodiment, the modified optical feedback signal is provided to an inverting input of the first error amplifier 114. A first reference signal (LAMP BRIGHTNESS SETTING) indicative of a desired lamp intensity is provided to a non-inverting input of the first error amplifier 114. The first reference signal can be defined (varied or selected) by a user.


The first error amplifier 114 outputs a first brightness control signal used to adjust the lamp drive current to achieve the desired lamp intensity. For example, the lamp current is regulated by the optical feedback loop such that the modified optical feedback signal at the inverting input of the first error amplifier 114 is substantially equal to the first reference signal. The optical feedback loop compensates for aging of the CCFL 106 and lamp temperature variations during normal operations (e.g., when the lamp temperature is relatively cool). For example, the optical feedback loop may increase the lamp drive current as the CCFL 106 ages or when the lamp temperature drops.


There is a possibility that an aged lamp in hot ambient temperature may be driven too hard and damaged due to excessive heat. The lamp temperature feedback loop monitors the lamp temperature and overrides the optical feedback loop when the lamp temperature exceeds a predetermined temperature threshold. In one embodiment, the lamp temperature feedback loop includes a lamp temperature sensor 108 and a second error amplifier 116. The lamp temperature sensor 108 can detect the temperature of the CCFL 106 directly or derive the lamp temperature by measuring ambient temperature, temperature of a LCD bezel, amount of infrared light produced by the CCFL 106, or variations in the operating voltage (or lamp voltage) across the CCFL 106. In one embodiment, select components (e.g., switching transistors or transformers) in the inverter 100 can be monitored to track lamp temperature.


The lamp temperature sensor 108 outputs a temperature feedback signal indicative of the lamp temperature to an inverting input of the second error amplifier 116. A second reference signal (LAMP TEMPERATURE LIMIT) indicative of the predetermined temperature threshold is provided to a non-inverting input of the second error amplifier 116. The second error amplifier 116 outputs a second brightness control signal that overrides the first brightness control signal to reduce the lamp drive current when the lamp temperature exceeds the predetermined temperature threshold. Reducing the lamp drive current helps reduce the lamp temperature, thereby extending the life of the CCFL 106.


In one embodiment, the output of the first error amplifier 114 and the output of the second error amplifier 116 are wire-ORed (or coupled to ORing diodes) to generate the brightness control input signal to the controller 102. For example, a first diode 118 is coupled between the output of the first error amplifier 114 and the controller 102. A second diode 120 is coupled between the output of the second error amplifier 116 and the controller 102. The first diode 118 and the second diode 120 have commonly connected anodes coupled to the brightness control input of the controller 102. The cathode of the first diode 118 is coupled to the output of the first error amplifier 114, and the cathode of the second diode 120 is coupled to the output of the second error amplifier 116. Other configurations or components are possible to implement an equivalent ORing circuit to accomplish the same function.


In the above configuration, the error amplifier with a relatively lower output voltage dominates and determines whether the optical feedback loop or the lamp temperature feedback loop becomes the controlling loop. For example, the second error amplifier 116 have a substantially higher output voltage during normal operations when the lamp temperature is less than the predetermined temperature threshold and is effectively isolated from the brightness control input by the second diode 120. The optical feedback loop controls the brightness control input during normal operations and automatically adjusts the lamp drive current to compensate for aging and temperature variations of the CCFL 106. Control of the brightness control input transfers to the lamp temperature feedback loop when the temperature of the CCFL 106 becomes too high. The temperature of the CCFL 106 may be excessive due to relatively high external ambient temperature, relatively high lamp drive current, or a combination of both. The lamp temperature feedback loop reduces (or limits) the lamp drive current to maintain the lamp temperature at or below a predetermined threshold. In one embodiment, the first and second error amplifiers 114, 116 have integrating functions to provide stability to the respective feedback loops.


In one embodiment, the brightness control input signal is a substantially DC control voltage that sets the lamp current. For example, the RMS level of the lamp current may vary with the level of the control voltage. A pull-up resistor 122 is coupled between the brightness control input of the controller 102 and a pull-up control voltage (MAX-BRITE) corresponding to a maximum allowable lamp current. The pull-up control voltage dominates when both of the outputs of the respective error amplifiers 114, 116 are relatively high. The output of the first error amplifier 114 may be relatively high during warm-up or when the CCFL 106 becomes too old to produce the desired light intensity. The output of the second error amplifier 116 may be relatively high when the temperature of the CCFL 106 is relatively cold.



FIG. 3 illustrates panel brightness with respect to time as a display panel cycles on and off or exits from sleep mode. Computer applications make extensive use of sleep functions for power management. A graph 300 shows different warm-up times depending on how much time elapsed since the display panel was turned off or entered the sleep mode and allowed to cool down. For example, initial panel brightness may be only 60-70% of steady-state panel brightness during warm-up after the display panel turns on or exits from sleep mode. The warm-up time takes longer when the display panel has been inactive for a while, in cooler ambient temperatures, or for larger display panels.


In one embodiment, an optical feedback loop or a temperature feedback loop is used to decrease the warm-up time. For example, a controller controlling illumination of the display panel can operate in overdrive or a boost mode to improve response of the display brightness. The boost mode provides a higher lamp drive current than normal operating lamp current to speed up the time to reach sufficient panel brightness (e.g., 90% of steady-state). In one embodiment, the brightness control input signal described above can be used to indicate to the controller when boost mode operation is desired.



FIG. 4 illustrates waveforms for panel brightness and a light sensor output with respect to time as a display panel cycles on and off. A graph 402 shows the panel brightness. A graph 400 shows the light sensor output which closely tracks the panel brightness. In one embodiment, the light sensor output is produced by a visible light sensor (e.g., part number LX1970 from Microsemi Corporation).



FIG. 5 illustrates waveforms for panel brightness and temperatures of select inverter components with respect to time as a display panel cycles on and off. A graph 500 shows the panel brightness. A graph 502 shows the temperature profile of a transformer and a graph 504 shows the temperature profile of a transistor as the panel brightness changes. A graph 506 shows the temperature profile of a lower lamp and a graph 508 shows the temperature profile of an upper lamp as the panel brightness changes. As discussed above, a select component (e.g., the transistor or the transformer) can be used in an indirect method to monitor lamp temperature.



FIG. 6 illustrates waveforms comparing warm-up times using a standard drive current and a boost current. A graph 600 shows a relatively slow response time for a lamp when a nominal current (e.g., 8 mA) is used to drive the lamp. A graph 602 shows an improved response time for the lamp when a boosted current (e.g., 12 mA) is used to drive the lamp during warm-up.



FIG. 7 illustrates waveforms comparing percentage of light output with respect to hours of operation for various operating conditions. A graph 700 shows the light output during life test of a lamp driven by a direct drive inverter running at 1% duty cycle. A graph 702 shows the light output during life test of a lamp driven by the direct drive inverter running at 150% of the rated lamp current or a typical inverter running at 67% of the rated lamp current. A graph 706 shows the light output during life test of a lamp driven by a typical inverter running at 100% of the rated lamp current. Finally, a graph 708 shows the light output during life test of a lamp driven by a typical inverter running at 150% of the rated lamp current. CCFLs degrade at a predictable rate over time. Lamp life specifications are defined as the point at which the display brightness level reduces to 50% of the original level.



FIG. 8 illustrates waveforms comparing light outputs with and without optical feedback over the life of a CCFL. A graph 802 shows the degradation of the light output as the CCFL ages. A graph 800 shows more consistent brightness over the life of the CCFL by using the optical feedback loop described above. Monitoring the perceived brightness of the CCFL provides a low cost and high performance method to maintain “out of the box” brightness levels as the CCFL ages.



FIG. 9 illustrates power savings associated with decreasing brightness based on ambient light environment. A graph 900 shows increasing power consumption by a CCFL to produce substantially the same perceived intensity for a display panel as the ambient light increases from a dark environment (e.g., on an airplane) to a bright environment (e.g., daylight). Power can be saved by sensing the ambient (or environment) conditions and adjusting the lamp drive current accordingly. In one embodiment, the optical feedback loop described above can be modified to sense ambient light and make adjustments to lamp current for optimal efficiency. For example, operating lamp current can be decreased/increased when ambient light decreases/increases to save power while achieving substantially the same perceived brightness.



FIGS. 10A and 10B respectively illustrate a block diagram and wavelength sensitivity for one embodiment of a light sensor 1000 used to monitor visible light output of a CCFL or ambient light. CCFLs emit less visible light and more infrared light under relatively cold operating temperatures (e.g., during warm-up). The light sensor 1000 advantageously monitors mostly the visible portion of the light. In one embodiment, the light sensor (e.g., the LX1970 from Microsemi Corporation) 1000 includes a PIN diode array 1002 with an accurate, linear, and very repeatable current transfer function. The light sensor 1000 outputs a current sink 1004 and a current source 1006 with current levels that vary with sensed ambient light. The complementary current outputs of the light sensor 1000 can be easily scaled and converted to a voltage signal by connecting one or more resistors to either or both outputs. Referring to FIG. 10B, a graph 1008 shows the frequency response of the light sensor 1000 which approximates the frequency (or spectral) response of human eyes shown by graph 1010.



FIG. 11 is a schematic illustration of one embodiment of an automatic brightness control circuit that senses lamp light and generates a control signal for adjusting the operating current of the lamp. For example, the automatic brightness control circuit can vary the control signal until the sensed lamp light corresponds to a desired level indicated by a user input (e.g., DIM INPUT). Alternately, the automatic brightness control circuit can indicate when boost mode operation is desired to improve response speed of the lamp. The automatic brightness control circuit includes a visible light (or photo) sensor 1100 and an error gain amplifier 1110. In one embodiment, the visible light sensor 1100 and the error gain amplifier 1110 are both powered by a substantially DC supply voltage (e.g., +5 VDC). The visible light sensor 1100 monitors the lamp light and outputs a feedback current that is proportional to the level of the lamp light.


In one embodiment, the feedback current is provided to a preliminary low pass filter comprising a first capacitor 1102 coupled between the output of the visible light sensor 1100 and ground and a resistor divider 1104, 1106 coupled between the supply voltage and ground. The filtered (or converted) feedback current is provided to an inverting input of an integrating amplifier. For example, the output of the visible light sensor 1100 is coupled to an inverting input of the error gain amplifier 1110 via a series integrating resistor 1108. An integrating capacitor 1112 is coupled between the inverting input of the error gain amplifier 1110 and an output of the error gain amplifier 1110.


In one embodiment, a desired intensity (or dimming) level is indicated by presenting a reference level (DIM INPUT) at a non-inverting input of the integrating amplifier. The reference level can be variable or defined by a user. The reference level can be scaled by a series resistor 1116 coupled between the reference level and the non-inverting input of the error amplifier 1110 and a resistor divider 1114, 1118 coupled to the non-inverting input of the error amplifier 1110. The output of the error amplifier 1110 can be further filtered by a series resistor 1120 with a resistor 1122 and capacitor 1124 coupled in parallel at the output of the automatic brightness control circuit to generate the control signal for adjusting the operating lamp current.



FIG. 12 is a graph illustrating panel brightness and temperatures of select inverter components with respect to time using the automatic brightness control circuit to monitor lamp intensity as a display panel cycles on and off. A graph 1200 shows the panel brightness modified by the automatic brightness control circuit. A graph 1202 shows the associated temperature profile for a transformer and a graph 1204 shows the associated temperature profile for a transistor in the inverter. Finally, a graph 1206 shows the upper lamp temperature profile. In comparison with similar graphs shown in FIG. 5, the corresponding graphs in FIG. 12 show faster transitions in reaching the desired panel brightness after turn on or exiting sleep mode by using the automatic brightness control circuit.



FIG. 13 illustrates one embodiment of a LCD monitor 1300 with light detectors 1306, 1312 which are interfaced to a lamp inverter 1304 for closed loop illumination control. One or more visible light detectors 1312 may be located proximate to one or more backlight lamps to monitor lamp intensity. The visible light detectors 1312 enhance warm-up and maintain constant backlight intensity over lamp life and operating temperature. An additional visible light detector 1306 may be located in a corner of the LCD monitor 1300 for monitoring ambient light. The additional visible light detector 1306 facilitates automatic adjustment of backlight intensity based on environment lighting. The lamp inverter 1304 with one or more low profile transformers 1302 can be located in a corner of the LCD monitor 1300. In one embodiment, the LCD monitor 1300 further includes embedded stereo speakers 1308 and a Class-D audio amplifier 1310.


Although described above in connection with CCFLs, it should be understood that a similar apparatus and method can be used to drive light emitting diodes, hot cathode fluorescent lamps, Zenon lamps, metal halide lamps, neon lamps, and the like


While certain embodiments of the invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the invention. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Claims
  • 1. An illumination control circuit comprising: a first optical sensor configured to detect visible light produced by a light source and to generate a first optical sensor output;an error amplifier configured to generate a control signal based on a comparison of the first optical sensor output to a reference level;a second optical sensor configured to detect ambient light and to generate a second optical sensor output; andan inverter controller configured to generate driving signals to control power to the light source, wherein the inverter controller operates in a boost mode to power the light source using a boosted AC current of a substantially constant level when the control signal from the error amplifier indicates that the first optical sensor output is less than the reference level, operates in a normal mode to power the light source using a nominal AC current that has a lower level than the boosted AC current when the control signal indicates that the first optical sensor output is greater than the reference level, and further adjusts power to the light source in response to a change in the second optical sensor output indicating a change in ambient light conditions.
  • 2. The illumination control circuit of claim 1, wherein the light source provides backlight for a liquid crystal display and the second optical sensor is placed in front of the liquid crystal display.
  • 3. The illumination control circuit of claim 1, wherein the error amplifier is an integrating amplifier and the control signal is a substantially DC control voltage that sets the level of a substantially AC current for the light source.
  • 4. The illumination control circuit of claim 1, wherein the reference level corresponds to a desired brightness level of the light source and is variable by a user.
  • 5. The illumination control circuit of claim 1, wherein the level of the boosted AC current is approximately 150% of the level of an initial nominal AC current.
  • 6. The illumination control circuit of claim 1, wherein the first optical sensor comprises a first PIN diode array that outputs a first current source and a first current sink with respective current levels that vary with detected visible light from the light source while the second optical sensor comprises a second PIN diode array that outputs a second current source and a second current sink with respective current levels that vary with sensed ambient light.
  • 7. The illumination control circuit of claim 6, further comprising a low pass filter or a gain amplifier coupled to one of the current sources or one of the current sinks to generate the first and the second optical sensor outputs.
  • 8. The illumination control circuit of claim 1, wherein the light source is a light emitting diode, a cold cathode fluorescent lamp, a hot cathode fluorescent lamp, a Zenon lamp, or a metal halide lamp.
  • 9. The illumination control circuit of claim 1, wherein the first optical sensor output is provided to an inverting input of the error amplifier and the reference level is provided to a non-inverting input of the error amplifier.
  • 10. The illumination control circuit of claim 9, further comprising a low pass filter at an output of the error amplifier.
  • 11. The illumination control circuit of claim 9, further comprising a pull-up resistor coupled between an output of the error amplifier and a pull-up control voltage corresponding to a predetermined maximum AC current for the light source.
  • 12. A method to improve response speed of a light source, the method comprising the steps of: sensing light produced by the light source with a first visible light sensor;comparing an output of the first visible light sensor to a predetermined threshold level;providing a substantially constant boost current to the light source when the output of the first visible light sensor is less than the predetermined threshold level;providing a preset nominal current to the light source when the output of the first visible light sensor is approximately equal to or greater than the predetermined threshold level, wherein the preset nominal current has a lower average level than the boost current;sensing ambient light with a second visible light sensor; andfurther adiusting power to the light source in response to changes in an output of the second visible light sensor.
  • 13. The method of claim 12, wherein the substantially constant boost current is adjustable to vary the response speed of the light source.
  • 14. The method of claim 12, wherein at least one of the first and the second visible light sensors is substantially immune to infrared light.
  • 15. The method of claim 12, wherein the substantially constant boost current has a level that is at least 1.5 times higher than the level of the preset nominal current.
  • 16. A liquid crystal display monitor comprising: at least one visible light detector located proximate to one or more backlight lamps to monitor the intensity of the backlight lamps;an inverter that monitors an output of the visible light detector and provides power to illuminate the backlight lamps, wherein the inverter operates in a boost mode to provide a boosted current to the backlight lamps when the output of the visible light detector is less than a threshold level and operates in a normal mode to provide a nominal current that has a lower level than the boosted current to the backlight lamps when the output of the visible light detector is greater than a threshold level; andan additional visible light detector located in a corner of the liquid crystal display monitor for monitoring ambient light, wherein said nominal current is adjusted responsive to said additional visible light detector.
  • 17. The liquid crystal display monitor of claim 16, wherein each of the visible light detectors comprises a PIN diode array configured to generate complementary current outputs.
  • 18. The liquid crystal display monitor of claim 16, wherein the inverter decreases brightness of the backlight lamps when an output of the additional visible light detector indicates a relatively dark environment and increases brightness of the backlight lamps when the output of the additional visible light detector indicates a relatively bright environment.
  • 19. The liquid crystal display monitor of claim 16, further comprising embedded stereo speakers and a class-D audio amplifier.
  • 20. The liquid crystal display monitor of claim 16, wherein the backlight lamps comprise a plurality of cold cathode fluorescent lamps.
CLAIM FOR PRIORITY

This is a continuation application based on U.S. application Ser. No. 10/937,889, filed Sep. 9, 2004, now U.S. Pat. No. 7,183,727, which claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 60/505,074 entitled “Thermal and Optical Feedback Circuit Techniques for Illumination Control,” filed on Sep. 23, 2003, the entirety of which is incorporated herein by reference.

US Referenced Citations (364)
Number Name Date Kind
2429162 Russell et al. Oct 1947 A
2440984 Summers May 1948 A
2572258 Goldfield et al. Oct 1951 A
2965799 Brooks et al. Dec 1960 A
2968028 Eilichi et al. Jan 1961 A
3141112 Eppert Jul 1964 A
3449629 Wigert et al. Jun 1969 A
3565806 Ross Feb 1971 A
3597656 Douglas Aug 1971 A
3611021 Wallace Oct 1971 A
3683923 Anderson Aug 1972 A
3737755 Calkin et al. Jun 1973 A
3742330 Hodges et al. Jun 1973 A
3916283 Burrows Oct 1975 A
3936696 Gray Feb 1976 A
3944888 Clark Mar 1976 A
4053813 Kornrumpf et al. Oct 1977 A
4060751 Anderson Nov 1977 A
4204141 Nuver May 1980 A
4277728 Stevens Jul 1981 A
4307441 Bello Dec 1981 A
4353009 Knoll Oct 1982 A
4388562 Josephson Jun 1983 A
4392087 Zansky Jul 1983 A
4437042 Morais et al. Mar 1984 A
4441054 Bay Apr 1984 A
4453522 Salzgeber Jun 1984 A
4463287 Pitel Jul 1984 A
4469988 Cronin Sep 1984 A
4480201 Jaeschke Oct 1984 A
4523130 Pitel Jun 1985 A
4544863 Hashimoto Oct 1985 A
4555673 Huijsing et al. Nov 1985 A
4562338 Seiichi Dec 1985 A
4567379 Corey et al. Jan 1986 A
4572992 Masaki Feb 1986 A
4574222 Anderson Mar 1986 A
4585974 Stupp et al. Apr 1986 A
4622496 Dattilo et al. Nov 1986 A
4626770 Price, Jr. Dec 1986 A
4630005 Clegg et al. Dec 1986 A
4663566 Nagano May 1987 A
4663570 Luchaco et al. May 1987 A
4672300 Harper Jun 1987 A
4675574 Delflache Jun 1987 A
4682080 Ogawa et al. Jul 1987 A
4686615 Ferguson Aug 1987 A
4689802 McCambridge Aug 1987 A
4698554 Stupp et al. Oct 1987 A
4700113 Stupp et al. Oct 1987 A
4717863 Zeiler Jan 1988 A
4745339 Izawa et al. May 1988 A
4761722 Pruitt Aug 1988 A
4766353 Burgess Aug 1988 A
4779037 LoCascio Oct 1988 A
4780696 Jirka Oct 1988 A
4792747 Schroeder Dec 1988 A
4812781 Regnier Mar 1989 A
4847745 Shekhawat Jul 1989 A
4862059 Tominaga et al. Aug 1989 A
4885486 Shekhawat et al. Dec 1989 A
4893069 Harada et al. Jan 1990 A
4902942 El-Hamamsy et al. Feb 1990 A
4939381 Shibata Jul 1990 A
4998046 Lester Mar 1991 A
5023519 Jensen Jun 1991 A
5030887 Guisinger Jul 1991 A
5036255 McKnight et al. Jul 1991 A
5049790 Herfurth et al. Sep 1991 A
5057808 Dhyanchand Oct 1991 A
5083065 Sakata et al. Jan 1992 A
5089748 Ihms Feb 1992 A
5105127 Lavaud et al. Apr 1992 A
5130565 Girmay Jul 1992 A
5130635 Kase Jul 1992 A
5173643 Sullivan et al. Dec 1992 A
5220272 Nelson Jun 1993 A
5235254 Ho Aug 1993 A
5289051 Zitta Feb 1994 A
5317401 Dupont et al. May 1994 A
5327028 Yum et al. Jul 1994 A
5349272 Rector Sep 1994 A
5406305 Shimoura et al. Apr 1995 A
5410221 Mattas et al. Apr 1995 A
5420779 Payne May 1995 A
5430641 Kates Jul 1995 A
5434477 Crouse et al. Jul 1995 A
5440208 Uskali et al. Aug 1995 A
5463287 Kurihara et al. Oct 1995 A
5471130 Agiman Nov 1995 A
5475284 Lester et al. Dec 1995 A
5475285 Konopka Dec 1995 A
5479337 Voigt Dec 1995 A
5485057 Smallwood et al. Jan 1996 A
5485059 Yamashita et al. Jan 1996 A
5485487 Orbach et al. Jan 1996 A
5493183 Kimball Feb 1996 A
5495405 Fujimura et al. Feb 1996 A
5510974 Gu et al. Apr 1996 A
5514947 Berg May 1996 A
5519289 Katyl et al. May 1996 A
5528192 Agiman Jun 1996 A
5539281 Shackle et al. Jul 1996 A
5548189 Williams Aug 1996 A
5552697 Chan Sep 1996 A
5557249 Reynal Sep 1996 A
5563473 Mattas et al. Oct 1996 A
5563501 Chan Oct 1996 A
5574335 Sun Nov 1996 A
5574356 Parker Nov 1996 A
5608312 Wallace Mar 1997 A
5612594 Maheshwari Mar 1997 A
5612595 Maheshwari Mar 1997 A
5615093 Nalbant Mar 1997 A
5619104 Eunghwa Apr 1997 A
5619402 Liu Apr 1997 A
5621281 Kawabata et al. Apr 1997 A
5629588 Oda et al. May 1997 A
5635799 Hesterman Jun 1997 A
5652479 LoCascio et al. Jul 1997 A
5663613 Yamashita et al. Sep 1997 A
5705877 Shimada Jan 1998 A
5710489 Nilssen Jan 1998 A
5712533 Corti Jan 1998 A
5712776 Palara et al. Jan 1998 A
5719474 Vitello Feb 1998 A
5744915 Nilssen Apr 1998 A
5748460 Ishihawa May 1998 A
5751115 Jayaraman et al. May 1998 A
5751120 Zeitler et al. May 1998 A
5751560 Yokoyama May 1998 A
5754012 LoCascio May 1998 A
5754013 Praiswater May 1998 A
5760760 Helms Jun 1998 A
5770925 Konopka et al. Jun 1998 A
5777439 Hua Jul 1998 A
5786801 Ichise Jul 1998 A
5796213 Kawasaki Aug 1998 A
5808422 Venkitasubrahmanian et al. Sep 1998 A
5818172 Lee Oct 1998 A
5822201 Kijima Oct 1998 A
5825133 Conway Oct 1998 A
5828156 Roberts Oct 1998 A
5844540 Terasaki Dec 1998 A
5854617 Lee et al. Dec 1998 A
5859489 Shimada Jan 1999 A
5872429 Xia et al. Feb 1999 A
5880946 Biegel Mar 1999 A
5883473 Li et al. Mar 1999 A
5886477 Honbo et al. Mar 1999 A
5892336 Lin et al. Apr 1999 A
5901176 Lewison May 1999 A
5910709 Stevanovic et al. Jun 1999 A
5910713 Nishi et al. Jun 1999 A
5912812 Moriarty, Jr. et al. Jun 1999 A
5914842 Sievers Jun 1999 A
5923129 Henry Jul 1999 A
5923546 Shimada et al. Jul 1999 A
5925988 Grave et al. Jul 1999 A
5930121 Henry Jul 1999 A
5930126 Griffin et al. Jul 1999 A
5936360 Kaneko Aug 1999 A
5939830 Praiswater Aug 1999 A
6002210 Nilssen Dec 1999 A
6011360 Gradzki et al. Jan 2000 A
6016245 Ross Jan 2000 A
6020688 Moisin Feb 2000 A
6028400 Pol et al. Feb 2000 A
6037720 Wong et al. Mar 2000 A
6038149 Hiraoka et al. Mar 2000 A
6040662 Asayama Mar 2000 A
6043609 George et al. Mar 2000 A
6049177 Felper Apr 2000 A
6069448 Yeh May 2000 A
6072282 Adamson Jun 2000 A
6091209 Hilgers Jul 2000 A
6104146 Chou et al. Aug 2000 A
6108215 Kates et al. Aug 2000 A
6111370 Parra Aug 2000 A
6114814 Shannon et al. Sep 2000 A
6121733 Nilssen Sep 2000 A
6127785 Williams Oct 2000 A
6127786 Moisin Oct 2000 A
6137240 Bogdan Oct 2000 A
6150772 Crane Nov 2000 A
6157143 Bigio et al. Dec 2000 A
6160362 Shone et al. Dec 2000 A
6169375 Moisin Jan 2001 B1
6172468 Hollander Jan 2001 B1
6181066 Adamson Jan 2001 B1
6181083 Moisin Jan 2001 B1
6181084 Lau Jan 2001 B1
6188183 Greenwood et al. Feb 2001 B1
6188553 Moisin Feb 2001 B1
6194841 Takahashi et al. Feb 2001 B1
6198234 Henry Mar 2001 B1
6198236 O'Neill Mar 2001 B1
6211625 Nilssen Apr 2001 B1
6215256 Ju Apr 2001 B1
6218788 Chen et al. Apr 2001 B1
6229271 Liu May 2001 B1
6239558 Fujimura et al. May 2001 B1
6252355 Meldrum et al. Jun 2001 B1
6255784 Weindorf Jul 2001 B1
6259215 Roman Jul 2001 B1
6259615 Lin Jul 2001 B1
6281636 Okutsu et al. Aug 2001 B1
6281638 Moisin Aug 2001 B1
6291946 Hinman Sep 2001 B1
6294883 Weindorf Sep 2001 B1
6307765 Choi Oct 2001 B1
6310444 Chang Oct 2001 B1
6313586 Yamamoto et al. Nov 2001 B1
6316881 Shannon et al. Nov 2001 B1
6316887 Ribarich et al. Nov 2001 B1
6317347 Weng Nov 2001 B1
6320329 Wacyk Nov 2001 B1
6323602 De Groot et al. Nov 2001 B1
6331755 Ribarich et al. Dec 2001 B1
6340870 Yamashita et al. Jan 2002 B1
6344699 Rimmer Feb 2002 B1
6351080 Birk et al. Feb 2002 B1
6356035 Weng Mar 2002 B1
6359393 Brown Mar 2002 B1
6362577 Ito et al. Mar 2002 B1
6388388 Weindorf et al. May 2002 B1
6396217 Weindorf May 2002 B1
6396722 Lin May 2002 B2
6417631 Chen et al. Jul 2002 B1
6420839 Chiang et al. Jul 2002 B1
6424100 Kominami et al. Jul 2002 B1
6429839 Sakamoto Aug 2002 B1
6433492 Buonavita Aug 2002 B1
6441943 Roberts et al. Aug 2002 B1
6445141 Kastner et al. Sep 2002 B1
6452344 MacAdam et al. Sep 2002 B1
6459215 Nerone et al. Oct 2002 B1
6459216 Tsai Oct 2002 B1
6469922 Choi Oct 2002 B2
6472827 Nilssen Oct 2002 B1
6472876 Notohamiprodjo et al. Oct 2002 B1
6479810 Weindorf Nov 2002 B1
6483245 Weindorf Nov 2002 B1
6486618 Li Nov 2002 B1
6494587 Shaw et al. Dec 2002 B1
6495972 Okamoto et al. Dec 2002 B1
6501234 Lin et al. Dec 2002 B2
6507286 Weindorf et al. Jan 2003 B2
6509696 Bruning et al. Jan 2003 B2
6515427 Oura et al. Feb 2003 B2
6515881 Chou et al. Feb 2003 B2
6521879 Rand et al. Feb 2003 B1
6522558 Henry Feb 2003 B2
6531831 Chou et al. Mar 2003 B2
6534934 Lin et al. Mar 2003 B1
6559606 Chou et al. May 2003 B1
6563479 Weindorf et al. May 2003 B2
6570344 Lin May 2003 B2
6570347 Kastner May 2003 B2
6583587 Ito et al. Jun 2003 B2
6593703 Sun Jul 2003 B2
6628093 Stevens Sep 2003 B2
6630797 Qian et al. Oct 2003 B2
6633138 Shannon et al. Oct 2003 B2
6642674 Liao et al. Nov 2003 B2
6650514 Schmitt Nov 2003 B2
6654268 Choi Nov 2003 B2
6664744 Dietz Dec 2003 B2
6680834 Williams Jan 2004 B2
6703998 Kabel et al. Mar 2004 B1
6707264 Lin et al. Mar 2004 B2
6710555 Terada et al. Mar 2004 B1
6864867 Biebl Mar 2004 B2
6717371 Klier et al. Apr 2004 B2
6717372 Lin et al. Apr 2004 B2
6717375 Noguchi et al. Apr 2004 B2
6724602 Giannopoulos Apr 2004 B2
6765354 Klein Jul 2004 B2
6781325 Lee Aug 2004 B2
6784627 Suzuki et al. Aug 2004 B2
6803901 Numao Oct 2004 B1
6804129 Lin Oct 2004 B2
6809718 Wei et al. Oct 2004 B2
6809938 Lin et al. Oct 2004 B2
6816142 Oda et al. Nov 2004 B2
6856099 Chen et al. Feb 2005 B2
6856519 Lin et al. Feb 2005 B2
6870330 Choi Mar 2005 B2
6876157 Henry Apr 2005 B2
6897698 Gheorghiu et al. May 2005 B1
6900599 Ribarich May 2005 B2
6900600 Rust et al. May 2005 B2
6900993 Lin et al. May 2005 B2
6922023 Hsu et al. Jul 2005 B2
6930893 Vinciarelli Aug 2005 B2
6936975 Lin et al. Aug 2005 B2
6947024 Lee et al. Sep 2005 B2
6967449 Ishihara Nov 2005 B2
6967657 Lowles et al. Nov 2005 B2
6969958 Henry Nov 2005 B2
6979959 Henry Dec 2005 B2
7026860 Gheorghiu et al. Apr 2006 B1
7057611 Lin et al. Jun 2006 B2
7075245 Liu Jul 2006 B2
7095392 Lin Aug 2006 B2
7120035 Lin et al. Oct 2006 B2
7151394 Gheorghiu et al. Dec 2006 B2
7183724 Ball Feb 2007 B2
7187140 Ball Mar 2007 B2
7190123 Lee Mar 2007 B2
7202458 Park Apr 2007 B2
7233117 Wang et al. Jun 2007 B2
7236020 Virgil Jun 2007 B1
20010036096 Lin Nov 2001 A1
20020030451 Moisin Mar 2002 A1
20020097004 Chiang et al. Jul 2002 A1
20020114114 Schmitt Aug 2002 A1
20020118182 Weindorf Aug 2002 A1
20020130786 Weindorf Sep 2002 A1
20020135319 Bruning et al. Sep 2002 A1
20020140538 Yer Oct 2002 A1
20020145886 Stevens Oct 2002 A1
20020153852 Liao et al. Oct 2002 A1
20020171376 Rust et al. Nov 2002 A1
20020180380 Lin Dec 2002 A1
20020180572 Kakehashi et al. Dec 2002 A1
20020181260 Chou et al. Dec 2002 A1
20020195971 Qian et al. Dec 2002 A1
20030001524 Lin et al. Jan 2003 A1
20030020677 Nakano Jan 2003 A1
20030025462 Weindorf Feb 2003 A1
20030080695 Ohsawa May 2003 A1
20030090913 Che-Chen et al. May 2003 A1
20030117084 Stack Jun 2003 A1
20030141829 Yu Jul 2003 A1
20030161164 Shannon et al. Aug 2003 A1
20030227435 Hsieh Dec 2003 A1
20040000879 Lee Jan 2004 A1
20040012556 Yong et al. Jan 2004 A1
20040017348 Numao Jan 2004 A1
20040032223 Henry Feb 2004 A1
20040051473 Jales et al. Mar 2004 A1
20040145558 Cheng Jul 2004 A1
20040155596 Ushijima Aug 2004 A1
20040155853 Lin Aug 2004 A1
20040189217 Ishihara et al. Sep 2004 A1
20040257003 Hsieh et al. Dec 2004 A1
20040263092 Liu Dec 2004 A1
20050062436 Jin Mar 2005 A1
20050093471 Jin May 2005 A1
20050093472 Jin May 2005 A1
20050093482 Ball May 2005 A1
20050093483 Ball May 2005 A1
20050093484 Ball May 2005 A1
20050094372 Jin May 2005 A1
20050099143 Kohno May 2005 A1
20050156536 Ball Jul 2005 A1
20050156539 Ball Jul 2005 A1
20050156540 Ball Jul 2005 A1
20050162098 Ball Jul 2005 A1
20050218825 Chiou Oct 2005 A1
20050225261 Jin Oct 2005 A1
20060022612 Henry Feb 2006 A1
20060049959 Sanchez Mar 2006 A1
Foreign Referenced Citations (9)
Number Date Country
0326114 Aug 1989 EP
0587923 Mar 1994 EP
0597661 May 1994 EP
06168791 Jun 1994 JP
8-204488 Aug 1996 JP
10-2003-0075461 Oct 2003 KR
554643 Sep 2003 TW
WO 9415444 Jul 1994 WO
WO 9809369 Mar 1998 WO
Related Publications (1)
Number Date Country
20070132398 A1 Jun 2007 US
Provisional Applications (1)
Number Date Country
60505074 Sep 2003 US
Continuations (1)
Number Date Country
Parent 10937889 Sep 2004 US
Child 11679046 US