The present invention relates to optical aperture multipliers, and in particular, optical aperture multipliers that include a rectangular optical waveguide optically coupled with thin slab-type optical waveguides.
Optical devices that provide two-dimensional optical aperture expansion (or multiplication) have been described in various publications by Lumus Ltd (Israel). In one particular set of such optical devices, two-dimensional aperture expansion is achieved by way of two optical waveguides. The first optical waveguide has two pairs of parallel faces that form a rectangular cross-section and has a first set of partially reflective internal surfaces that are oblique to a direction of elongation of the first optical waveguide. The second optical waveguide, in the form of a thin slab, is optically coupled to the first (rectangular) waveguide and has a pair of parallel major external faces and a second set of partially reflective internal surfaces oblique to the major external faces. The optical coupling and the sets of partially reflecting internal surfaces are such that image light coupled into the rectangular waveguide advances along the rectangular waveguide by four-fold internal reflection (at the two pairs of parallel faces) and a proportion of intensity of the image is reflected at the first set of internal surfaces so as to be coupled into the second waveguide. The image light then advances by internal reflection at the major external faces of the second waveguide, and a proportion of intensity of the image is reflected at the second set of internal surfaces so as to be coupled out of the second waveguide to be viewed by an eye of a viewer.
Aspects of the present invention provide optical aperture multipliers having rectangular waveguides. Certain preferred embodiments according to a first aspect of the present invention provide optical aperture multipliers, each of which has an optical coupling-in configuration for delivering image light into a first rectangular optical waveguide that is optically coupled with a second thin slab-type optical waveguide. The rectangular waveguide has two pairs of parallel faces (that form a rectangular cross-section) and is configured to guide light by four-fold internal reflection at the two pairs of parallel faces, and to couple the guided light into the second waveguide via a set of partially reflective surfaces internal to the rectangular waveguide. The second waveguide has a pair of parallel faces and is configured to guide the coupled-in light by internal reflection at the pair of parallel faces, and to couple the guided light outwards toward a viewer via a set of partially reflective surfaces internal to the second waveguide (or via one or more diffractive elements). In certain embodiment, the optical coupling-in configuration is deployed on a portion of the front or back side of the rectangular waveguide that adjoins a second region of the interface between the two waveguides that has a different optical characteristic from a first region of the interface. In one set of embodiments, the first region of the interface includes a reflective coating, and the second region is either uncoated or includes a low index material or coating. In another set of embodiments, the first region of the interface is uncoated, and the second region is coated with a low index material.
Certain preferred embodiments according to a second aspect of the present invention provide a rectangular waveguide that does not include a set of partially reflective surfaces internal to the rectangular waveguide. Instead, the optical coupling of light from the rectangular waveguide into the second waveguide is performed by a partially reflective surface that is associated with, and parallel to, the lower face of the rectangular waveguide that forms the optical coupling (interface) with the second waveguide. In certain preferred embodiments, the partially reflective surface is formed by coating the lower face of the rectangular waveguide with one or more dielectric layers, and the light that is coupled into the rectangular waveguide is s-polarized with regard to the coated lower face. The use of a partially reflective surface instead of a set of partially reflective surfaces internal to the rectangular waveguide can simplify the fabrication process and reduce the manufacturing costs of the optical aperture multiplier.
According to the teachings of an embodiment of the present invention, there is provided an optical aperture multiplier. The optical aperture multiplier comprises: a first optical waveguide having a first pair of parallel faces including a first face and a second face, and a second pair of parallel faces including a third face and a fourth face, the pairs of parallel faces together forming a rectangular cross-section, the first optical waveguide configured for guiding light by four-fold internal reflection at the pairs of parallel faces and being associated with an coupling-out configuration that couples light out of the first optical waveguide into a second optical waveguide that is optically coupled with the first optical waveguide, the first or second face is subdivided into a first region and a second region having respectively different optical characteristics; and an optical coupling-in configuration including a surface that transmits light into the first waveguide, the surface being deployed in association with a portion of the third or fourth face that adjoins the second region such that an edge associated with the surface trims an input collimated image in a first dimension and a boundary between the first and second regions trims the input collimated image in a second dimension to produce a trimmed collimated image that advances through the first optical waveguide by four-fold internal reflection.
Optionally, the boundary between the first and second regions together with an image of the boundary presents an apparent input optical aperture when viewed along an optical input axis.
Optionally, some of the input collimated image is reflected at a point on the first face that intersects with or is overlapped by the edge.
Optionally, the edge is a first edge of the surface, and the surface includes a second edge that is a common edge with a light entrance surface that receives the input collimated image from an optical image generator.
Optionally, the edge is parallel to the light entrance surface.
Optionally, the edge is non-parallel to the light entrance surface.
Optionally, the surface receives the input collimated image from an optical image generator, and the edge is a first edge of the surface, and the surface includes a second edge that is a common edge with a reflective surface that reflects the received input collimated image back to the surface so as to be trimmed by the edge.
Optionally, the optical aperture multiplier further comprises the second optical waveguide, the second optical waveguide has a third pair of parallel faces and is configured to guide light by internal reflection at the third pair of parallel faces, and the second optical waveguide includes a plurality of partially reflective surfaces between, and oblique to, the third pair of parallel faces, that couples light out of the second optical waveguide.
Optionally, a coating or material is deployed in association with the second face so as to subdivide the first face into the first and second regions.
Optionally, the optical aperture multiplier further comprises an optical substrate including a fifth face and optically coupled with the first optical waveguide at the first face, and a coating or material is associated with the first face so as to subdivide the first face into the first and second regions.
Optionally, the optical coupling-out configuration includes a plurality of partially reflective surfaces that at least partially traverse the first optical waveguide and are inclined obliquely to a direction of elongation of the first optical waveguide.
Optionally, the optical coupling-out configuration includes a partially reflective surface associated with the second face.
There is also provided according to an embodiment of the teachings of the present invention an optical aperture multiplier. The optical aperture multiplier comprises: a first optical waveguide having a first pair of parallel faces including a first face and a second face, and a second pair of parallel faces including a third face and a fourth face, the pairs of parallel faces together forming a rectangular cross-section, a partially reflective surface is associated with, and is parallel to, the second face; an optical coupling-in configuration for coupling polarized light corresponding to an image into the first optical waveguide with an initial direction of propagation at a coupling angle oblique to both the first and second pairs of parallel faces, the polarized light being s-polarized with regard to the second face; and a second optical waveguide having a plurality of faces including a third pair of parallel faces, the second optical waveguide being optically coupled with the first optical waveguide at an interface between the second face and one of the faces of the second optical waveguide, an optical coupling-out configuration is associated with the second optical waveguide, the optical coupling and the partially reflective surface are configured such that, when the light corresponding to the image is coupled into the first optical waveguide, the light advances by four-fold internal reflection along the first optical waveguide, with a proportion of intensity of the light transmitted at the partially reflective surface so as to be coupled into the second optical waveguide, and propagates within the second optical waveguide by internal reflection at the third pair of parallel faces, with a proportion of intensity of the light propagating within the second optical waveguide deflected out of the second optical waveguide by the optical coupling-out configuration.
Optionally, at least a majority portion of the second face includes one or more dielectric coating layers so as to form the partially reflective surface and such that the partially reflective surface is partially reflective to s-polarized light.
Optionally, the optical aperture multiplier further comprises a waveplate located at the interface for rotating a polarization state of the light to be coupled into the second optical waveguide.
Optionally, the optical coupling-out configuration includes a plurality of partially reflective surfaces deployed within the second optical waveguide oblique to the third pair of parallel faces.
Optionally, the optical coupling-out configuration includes a diffractive optical element associated with at least one of the faces of the third pair of parallel faces.
There is also provided according to an embodiment of the teachings of the present invention an optical aperture multiplier. The optical aperture multiplier comprises: a first optical waveguide having a first pair of parallel faces including a first face and a second face, and a second pair of parallel faces including a third face and a fourth face, the pairs of parallel faces together forming a rectangular cross-section, a partially reflective surface is associated with, and is parallel to, the second face; and a second optical waveguide having a plurality of faces including a third pair of parallel faces, the second optical waveguide being optically coupled with the first optical waveguide at an interface between the second face and one of the faces of the second optical waveguide, a light redirecting arrangement is associated with a first region of the second optical waveguide and an optical coupling-out configuration is associated with a second region of the second optical waveguide, the optical coupling, the partially reflective surface, the light redirecting arrangement, and the optical coupling-out configuration are configured such that, when light corresponding to an image is coupled into the first optical waveguide the light advances by four-fold internal reflection along the first optical waveguide, with a proportion of intensity of the light transmitted at the partially reflective surface so as to be coupled into the first region of the second optical waveguide, and propagates within the first region of the second optical waveguide by internal reflection at the third pair of parallel faces, with a proportion of intensity of the light deflected by the light redirecting arrangement so as to be redirected into the second region of the optical waveguide, and propagates within the second region of the second optical waveguide by internal reflection at the third pair of parallel faces, with a proportion of intensity of the light propagating within the second region of the second optical waveguide deflected out of the second optical waveguide by the optical coupling-out configuration.
Optionally, the optical coupling-out configuration includes a plurality of partially reflective surfaces deployed within the second optical waveguide oblique to the third pair of parallel faces.
Optionally, the optical coupling-out configuration includes a diffractive optical element associated with at least one of the faces of the third pair of parallel faces.
Optionally, the light redirecting arrangement includes a plurality of partially reflective surfaces deployed within the first region of the second optical waveguide oblique to the additional face.
Optionally, the light redirecting arrangement includes a diffractive optical element associated with one of the faces of the second optical waveguide.
There is also provided according to an embodiment of the teachings of the present invention an optical aperture multiplier. The optical aperture multiplier comprises: a first optical waveguide having a first pair of parallel faces including a first face and a second face, and a second pair of parallel faces including a third face and a fourth face, the pairs of parallel faces together forming a rectangular cross-section, a partially reflective surface is associated with, and is parallel to, the second face; and a second optical waveguide having a third pair of parallel faces including a fifth face and a sixth face, an optical coupling-out configuration is associated with the second optical waveguide, and the first optical waveguide is optically coupled with the second optical waveguide and inclined relative to the second optical waveguide such that the second face is inclined obliquely to the fifth face, the optical coupling and the partially reflective surface are configured such that, when the light corresponding to an image is coupled into the first optical waveguide, the light advances by four-fold internal reflection along the first optical waveguide, with a proportion of intensity of the light transmitted at the partially reflective surface so as to enter the second optical waveguide, and some of the light that enters the second optical waveguide propagates within the second optical waveguide by internal reflection at the third pair of parallel faces, with a proportion of intensity of the light propagating within the second optical waveguide deflected out of the second optical waveguide by the optical coupling-out configuration.
Optionally, the optical aperture multiplier further comprises an intermediate window that provides the optical coupling between the first and second optical waveguides, the intermediate window deployed such that some of the light transmitted at the partially reflective surface that enters the second optical waveguide is reflected at the fifth face back toward to the intermediate window.
Unless otherwise defined herein, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein may be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
Some embodiments of the present invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
Attention is now directed to the drawings, where like reference numerals or characters indicate corresponding or like components. In the drawings:
Embodiments of aspects of the present invention provide optical devices in the form of optical aperture multipliers having rectangular waveguides.
The principles and operation of the optical devices and methods according to present invention may be better understood with reference to the drawings accompanying the description. The accompanying drawings are provided with an xyz coordinate system that is arbitrarily labeled but which is consistent between the drawings. This xyz coordinate system is used herein to better explain the disclosed embodiments by providing a common reference frame among the drawings.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the examples. The invention is capable of other embodiments or of being practiced or carried out in various ways. Initially, throughout this document, references are made to directions, such as, for example, front and back, top and bottom, upper and lower, and the like. These directional references are exemplary only, and are used only for ease of presentation and refer to the arbitrary orientations as illustrated in the drawings. The final optical devices may be deployed in any required orientation.
Referring now to the drawings,
The optical waveguide 10 is formed from a light-transmitting material (light-transmitting substrate) and has first and second pairs of parallel faces 12a, 12b, 14a, 14b forming a rectangular cross-section (i.e., the first and second pairs of faces are orthogonal). The optical waveguide 10 also has an additional pair of faces 16a, 16b (which may or may not be parallel faces). In certain embodiments in which the faces 16a, 16b are parallel faces, the faces 16a, 16b may be orthogonal to the first and second pairs of faces 12a, 12b, 14a, 14b. According to certain embodiments of the present invention, the optical waveguide 10 has a plurality of mutually parallel partially reflective internal surfaces (also referred to as “facets”) 18 that at least partially traverse the optical waveguide 10 and are inclined obliquely to the direction of elongation of the optical waveguide 10 (oblique to the faces 12a, 12b). In certain embodiments, the facets 18 are oblique to both faces 12a, 12b and 14a, 14b. Throughout this document, the terms “face”, “external face”, and “external surface” are used interchangeably. As will become apparent, some of such faces are major faces (also referred to as “major external faces” or “major external surfaces”).
In preferred embodiments, the optical aperture multiplier 1 also includes a second optical waveguide 20, optically coupled with the optical waveguide 10, having a third pair of parallel faces 22a, 22b. Here too, according to certain embodiments of the present invention, a plurality of mutually parallel partially reflective internal surfaces (“facets”) 28 at least partially traverse the optical waveguide 20 and are inclined obliquely to the faces 22a, 22b. The optical waveguide 20 also has two additional pairs of faces 24a, 24a, 26a, 26b, each of which is non-parallel to faces 22a, 22b, and each of which may or may not be a pair of parallel faces. In certain embodiments, the pairs of faces 22a, 22b, 24a, 24b, 26a, 26b are mutually orthogonal. In certain embodiments, the facets 28 are also inclined obliquely to the face 24a, however, as will be discussed, in other embodiments the facets 28 can be parallel to the face 24a.
The optical waveguide 20 is also formed from a light-transmitting material (light-transmitting substrate 19), and preferably from the same material that is used to form the optical waveguide 10 (such that the two optical waveguides 10, 20 have the same refractive index), but forms a thin slab-type waveguide, where the distances between the pairs of faces 24a, 24b, 26a, 26b are at least an order of magnitude greater than the distance between the faces 22a, 22b.
Preferably, the faces 16a, 26a are parallel, as are the faces 16b, 26b. In addition, preferably the faces 14a, 22a are parallel, as are the faces 14b, 22b.
The optical waveguide 20 is optically coupled with the optical waveguide 10 at an interface 40 between the faces 12b, 24a. In other words, the optical coupling between the optical waveguides 10, 20 defines the interface 40 that is formed between the faces 12b, 24a. It is a particular feature of certain embodiments of the present invention that the optical coupling-in configuration 80 is deployed in association with a portion of the front or back face 14a, 14b of the waveguide 20 that adjoins a particular region 46 of the face 12b (and hence the interface 40) to enable filling of the optical waveguide 10 with the injected aperture of the light beam 60. The specifics of the deployment of the optical coupling-in configuration 80 relative to the waveguides 10, 20 will be described in detail in subsequent sections of the present disclosure, with particular reference to
The optical coupling between the optical waveguides 10, 20, and the deployment and configuration of partially reflective surfaces 18, 28 and the optical coupling-in configuration 80 are such that, when the optical coupling-in configuration 80 couples (injects) the image light 60 into the optical waveguide 10 with an initial direction of propagation at a coupling angle oblique to both the first and second pairs of parallel faces 12a, 12b, 14a, 14b, the image advances by four-fold internal reflection (images 62a, 62b, 62c, 62d) along optical waveguide 10, with a proportion of intensity of the image reflected at the partially reflective surfaces 18 so as to be coupled into the optical waveguide 20, and then propagates through two-fold internal reflection (images 64a, 64b) within the optical waveguide 20, with a proportion of intensity of the image reflected (deflected) at the partially reflective surfaces 28 so as to be directed outwards from one of the parallel faces 22a as a visible image 66, seen by the eye 2 of a viewer. The eye 2 that is located at some position within a permitted range of positions designated by an eye-motion box (EMB) 3 (that is, a shape, typically represented as a rectangle, spaced away from the plane of the face 22a of the optical waveguide 20 from which the pupil of the eye 2 will view the projected image).
The optical waveguide 10 is referred to herein as a two-dimensional (2D) waveguide in the sense that it guides the injected image in two dimensions by reflection between two sets of parallel faces 12a, 12b, 14a, 14b, while the optical waveguide 20 is referred to as a one-dimensional (1D) waveguide or light-guide optical element (LOE), guiding the injected image in only one dimension between one pair of parallel faces 22a, 22b. Light beam 60 (generated by an optical image generator, not depicted) is injected into the optical waveguide 10 by the optical coupling-in configuration 80 at an angle. Consequently, the light propagates along the optical waveguide 10 while being internally reflected from all four external faces 12a, 12b, 14a, 14b of the optical waveguide 10 as shown in the side view of
Part of the guided light beams (for example 62a and 62b) within the optical waveguide 10 are reflected by the facets 18 downward through the interface 40 and onto an input coupling surface (face 24a) of the optical waveguide 20. In the optical waveguide 20, these beams are defined as 64a and 64b. Beams 64a and 64b are reflected by the external faces 22a, 22b and become conjugate, i.e., beam 64a is reflected to be 64b and vice versa (as depicted in
As previously mentioned, the external front and back faces 14a, 14b of optical waveguide 10 should be parallel to each other and, in this implementation, to the corresponding external faces 22a, 22b of the optical waveguide 20. Any deviation from parallelism will cause the coupled images 64a and 64b not to be precise conjugate images, and image quality will degrade.
The facets 28 within the optical waveguide 20 reflect beam 64b outside of the optical waveguides and toward the eye 2 as a visible image (referred to as a “projected image”). In the illustrated embodiment, the partial reflectivity of the facets 18, 28 is determined by optical coatings (selectively reflective coatings) on the facets 18, 28.
Each of the sets of facets 18, 28 is an optical coupling-out configuration that is associated with the respective optical waveguide and that functions to couple propagating light out of the optical waveguide. However, as will be discussed in subsequent sections of the present disclosure, other embodiments are contemplated in which the optical coupling-out configurations take other forms. For example, in certain embodiments, instead of internal facets 18, the optical coupling-out configuration associated with the first optical waveguide 10 can take the form of a partially reflective surface at the interface 40 between the optical waveguides 10, 20 that is parallel to the bottom face 12b of the waveguide 10. In certain embodiments, the optical coupling-out configuration associated with the second optical waveguide 20 can take the form of one or more diffractive elements on one or more portions of the faces 22a, 22b.
The combined reflections by the external faces and internal facets of the waveguides 10 and 20 expand the original injected aperture in both first and second dimensions. The waveguide 10 expands the aperture in the first dimension (which is the x dimension in
It is noted that in many of the embodiments illustrated herein, the faces 22a, 22b are actually formed as external faces of cover plates 39a, 39b that are optically attached to the external faces 27a, 27b of the light-transmitting substrate 19 from which the optical waveguide 20 is formed. The facets 28 generally extend between the external faces 27a, 27b of the substrate, and thus do not extend between the faces 22a, 22b of the cover plates 39a, 39b. The cover plates 39a, 39b can be used to avoid double reflections, i.e., situations in which images 64a or 64b are reflected twice from the same facet. Specifically, the cover plates 39a, 39b help to ensure that, after being reflected once by a facet 28, the transmitted portion of the light will propagate over or under that facet, advancing directly to the next facet, thereby resulting in enhanced image uniformity. In certain embodiments, however, the cover plates 39a, 39b can be excluded, and the thickness of the substrate 19 can be adjusted such that the external faces 27a, 27a of the substrate 19 and the faces 22a, 22b of the waveguide 10 are one in the same. An example of an optical aperture multiplier having a thin slab-type optical waveguide 20 without cover plates is illustrated in
It is also noted that as the image advances through the optical waveguide 10, the intensity of the illumination gradually decreases due to the progressive coupling-out of light by the facets 18. In order to achieve better uniformity and light efficiency, in certain preferred embodiments the reflectivity of the facets 18 increases along the direction of propagation of light through the optical waveguide 10, which provides a gradual increase in the intensity of light coupled into the optical waveguide 20. In the same fashion, in certain embodiments the reflectivity of the facets 28 also preferably increases along the direction of propagation of light through the optical waveguide 20 to offset decreases in light intensity imparted by the progressive coupling-out of light by the facets 28.
Parenthetically, wherever an image is represented herein by a light beam, it should be noted that the beam is a sample beam of the image, which typically is formed by multiple beams at slightly differing angles each corresponding to a point or pixel of the image. Except where specifically referred to as an extremity of the image, the beams illustrated are typically a centroid of the image.
With particular reference to
The first optical characteristic is a partially reflective characteristic which preserves conditions of internal reflection, such that light reflected from one of the faces 12a, 14a, 14b that is incident to portions of the face 12b in the region 45 is reflected at the face 12b (so as continue propagation through the waveguide 10 by internal reflection), but also such light that is deflected by the facets 18 towards portions of the face 12b in the region 46 is transmitted by the face 12b into the waveguide 20. The second optical characteristic, which is different from the first optical characteristic, is a transmissive characteristic, such that light from the optical coupling-in configuration 80 can enter the waveguide 10 via transmission through a portion of the waveguide 10 that adjoins the region 46.
Moreover, the optical waveguide 10 is subdivided into first and second waveguide regions 11, 13 by the rectangular cross-sectional plane P (which in the arbitrarily labeled coordinate system is the yz plane) in the optical waveguide 10 that is orthogonal to the direction of elongation and passes through the boundary 47 between the two regions 45, 46. The bottom face of the first waveguide region 11 is the first region 45 of the face 12b (in other words the first region 45 corresponds to the first waveguide region 11), and the bottom face of the second waveguide region 13 is the second region 46 of the face 12b (in other words the second region 46 corresponds to the second waveguide region 13, which is also referred to as a “coupling-in region” of the waveguide 10).
In certain embodiments, the subdivision of the face 12 is effectuated at least in part by a coating or material 44 that is deployed in association with a majority portion of the face 12b that extends along the majority, but not the entirety, of the face 12b in the direction of elongation. The extension of the coating or material 44 is also preferably along the entirety of the face 12b in the transverse (or lateral) direction (which in the arbitrarily labeled coordinate system is along the z-axis), as illustrated in
In certain embodiments, the extension of the material or coating 44 is along at least 70% of the face 12b in the direction of elongation, however, the amount of the extension in the direction of elongation may be at least 80% or at least 90%.
The material or coating 44 can be applied to either or both of the faces 12b, 24a prior to coupling the two waveguides 10, 20 together such that the material or coating 44 extends along the majority portion (region 45) of the face 12b, and such that the material or coating 44 is absent from the minority portion 46 of the face 12b (which in the illustrated embodiment is proximate to faces 16b, 26b).
In one example, the material or coating 44 is a reflective coating that can be a selectively reflective coating such as an angularly selective reflective (ASR) coating that reflects incident light at only a particular range of angles of incidence (AOIs) and transmits light outside of that range of angles (preferably in accordance with the reflectivity shown in
In another example, a thin film of partially reflective material having selectively reflective properties as discussed above can be applied to the majority of the face 12b (or alternatively the face 24a) in the direction of elongation prior to bonding together the faces 12b, 24a.
In yet another example, the material or coating 44 is a partially reflective material in the form of a separate partially reflective surface that is located between the faces 12b, 24a, and that extends along the majority of the faces 12b, 24a in the direction of elongation. The partially reflective surface can be formed from any thin plate of material that is coated with a reflective coating having selectively reflective properties as discussed above.
In certain embodiments, the region 46 is formed merely by applying the material or coating 44 to the majority portion of the face 12b (or the face 24a) and withholding the material or coating 44 from the remaining minority portion of the face 12b (or the face 24a), such that the first region 45 is a “coated portion” and the second region 46 is an “uncoated portion” whereby the coated and uncoated portions intrinsically have different optical characteristics. However, in certain preferred embodiments, a low refractive index material or coating (i.e., material or coating having a refractive index lower than the refractive index of the material used to fabricate the optical waveguide 10, 20), having an optical characteristic different from the material or coating 44, is associated with the remaining minority portion of the face 12b so as to extend along the minority portion (region 46) of the face 12b. In one example, a thin plate of low index material is used. The thin plate can either be deposited directly on the minority portion of one of the faces 12b or 24a and then adhesively bonded to the other of faces 24a or 12b with a thin adhesive layer, or can be adhesively bonded to the faces 12b, 24a using thin adhesive layers. In another example, a thin coating layer of a solid dielectric material. A family of Aerogel materials having a very low refractive index (1.1-1.2), as well as stabilizing mechanical properties, have been developed over the years, and may be particularly suitable for forming the region 46. In another example, low index optical cement is deployed at the minority portion 46 and is also used to help bond together the optical waveguides 10, 20.
In certain embodiments, the region 46 is formed merely by applying a low index material to the minority portion of the face 12b (or the face 24a) and not applying any coating or material to the majority portion of the face 12b (or the face 24a), such that the first region 45 is an “uncoated portion” and the second region 46 is a “coated portion” whereby again these coated and uncoated portions intrinsically have different optical characteristics.
In embodiments in which facets 18 are used to couple light out of the waveguide 10 and into the waveguide 20, the material or coating 44 may not be necessary, whereby the reflection of the propagating light at the face 12b is by total internal reflection. In such embodiments, the subdivision of the face 12b into the two regions can be effectuated by applying a low index material to the minority portion of the face 12b (or face 24a) and not applying any coating or material to the majority portion of the face 12b (or face 24a). In embodiments in which the bottom face 12b of the waveguide 10 is implemented as a partial reflector for coupling a proportion of the intensity of the propagating light out of the waveguide 10 (and into the waveguide 20), subdivision of the face 12b into the two aforementioned regions is preferably effectuated at least in part by application of the coating or material 44 at the majority portion of the face 12b (or face 24a). In such embodiments, the coating or material 44 is preferably implemented as a dielectric coating and/or metallic coating, as will be discussed in subsequent sections below.
In order to obtain uniform intensity across the expanded aperture, the injected initial aperture of the beam should be uniform and should “fill” the waveguide. The term “fill” is used in this context to indicate that rays corresponding to each point (pixel) in the image are present across the entire cross-section of the optical waveguide 10. Conceptually, this property implies that, if the optical waveguide 10 were to be cut transversely at any point, and if an opaque sheet with a pinhole was then placed over the cut end, the pinhole could be placed anywhere across the cross-section and would result in a complete projected image. In fact, for the optical waveguide 10, this would result in projection of four complete images 62a, 62b, 62c, and 62d, of which 62b and 62d are inverted. In order to ensure filling of the waveguide with the input image 60, a slightly oversized input image should be trimmed to size on entry to into the waveguide 10. This ensures that the multiplied adjacent apertures will not overlap on the one hand, and will not have gaps on the other. The trimming of the image 60 is performed by the optical coupling-in configuration 80 as the image is injected into the waveguide 10 but before the image 60 is guided within the waveguide 10 by four-fold internal reflection.
With continued reference to
Turning now to
The face 81 is a light-transmissive surface (i.e., a light entrance surface) through which light from the optical coupling-in configuration 80 enters (i.e. is transmitted into) the waveguide 10 (or waveguide 20), and therefore it is preferable that the face 81 is index matched to the faces 14a, 22a to prevent refraction of the injected image light upon entry to the waveguide. In certain embodiments, an index matching optical cement can be used to provide index matching and bonding between the face 81 and the waveguides 10, 20.
The optical coupling-in configuration 80 is configured and deployed such that all of the light within a desired angular field of view passes between the boundary 47 and the image of the boundary 47 (which presents an apparent input optical aperture) so as to enter the waveguide 10 and advance through the waveguide 10 by four-fold internal reflection. As will be discussed, this deployment ensures that the marginal rays of the desired angular field of view that enter the waveguide 10 are incident at points along the boundary 47.
In the illustrated configuration, the coupling prism is simplified such that the edges 82, 82 are mutually parallel and such that the edge 84 is parallel to the extensional direction of the face 83, which is a light entrance surface of the prism. The coupling prism is preferably designed such that the light entrance face 83 is perpendicular (orthogonal) to the center beam (ray 60B) in order to reduce optical aberrations. In practice, the orientation of the face 83 is set according to the propagation direction of the central ray 60B (which is based on the position and spatial orientation of the optical image generator).
The configuration and deployment of the optical coupling-in configuration 80 enables the optical coupling-in configuration 80 to trim the input image, as will now be described with reference to
After the rays 60A, 60B, 60C enter a waveguide at points 93a, 93b, 93c, the rays are trimmed in a first dimension (vertical dimension) by edge 86 such that the waveguide is uniformly illuminated in the vertical direction (along the y-axis in the drawings). The rays 60A, 60B, 60C are then trimmed in a second dimension orthogonal to the first dimension (i.e., laterally, along the z-axis in the drawings) at the boundary 47 such that all of the beams uniformly illuminate the waveguide 10 in the lateral dimension (z dimension). In particular, the ray 60A is reflected at a point 92 at the upper face 12a (that intersects with or is overlapped by the edge 84) onto a point on the boundary 47. The ray 60B is also reflected (at a different point) of the upper face 12a onto a point on the boundary 47, and the marginal ray 60C is transmitted into the waveguide 10 from the waveguide 20 via the face 12b through a point on the boundary 47. The trimmed image then advances through the waveguide 10 by four-fold internal reflection.
Conceptually, the boundary 47, together with its image, when viewed along an optical input axis along which the image 60 is to be introduced, present an apparent input optical aperture to the optical waveguide 10 across the entire desired angular field of view. The optical coupling-in configuration 80 trims the input image 60 such that all of the light within that field of view passes through the apparent input optical aperture (i.e., between the boundary 47 and the image of the boundary 47) so as to enter the waveguide 10 and advance through the waveguide 10 by four-fold internal reflection. Any other light rays that are not trimmed by the optical coupling-in configuration 80 do not pass through the apparent input optical aperture, and therefore do not enter the waveguide 10.
It is noted that the deployment and configuration of the optical coupling-in configuration 80 is preferably such that the surface 81 does not overlap with the projection of any of the facets 28 in the plane parallel to the faces 22a, 22b (which in the arbitrarily labeled coordinate system is the xy plane). This non-overlapping geometry and orientation helps to prevent situations in which light that is coupled out by one or more of the facets 28 is coupled back into the optical coupling-in configuration 80 which can re-introduce the coupled-out light back into the optical waveguide 10.
The configuration illustrated in
The optical coupling-in configurations illustrated in
The first region 55 occupies (i.e., extends along) the majority, but not the entirety, of the face 12a along the direction of elongation, whereas the second region 56 occupies (extends along) the remaining minority portion of the face 12a along the direction of elongation. The region 55 is preferably at least 70% of the face 12a in the direction of elongation, however, the particular amount of the extension in the direction of elongation may be based on the optical design specification of the optical aperture multiplier, in particular the size and deployment position of the optical coupling-in configuration 80, as will be discussed in subsequent sections of the present disclosure. In certain cases, the amount of the extension in the direction of elongation may be at least 80% or at least 90%.
In certain embodiments, the subdivision is effectuated by a coating or material 54 that is deployed in association with the face 12a in a manner similar to that of the coating or material 44. Specifically, the coating or material 54 is deployed in association with a majority portion of the face 12a that extends along the majority, but not the entirety, of the face 12a in the direction of elongation. The extension of the coating or material 54 is also preferably along the entirety of the face 12a in the transverse (or lateral) direction. The deployment of the coating or material 54 subdivides the face 12a into non-overlapping first and second regions 55, 56 that have respective first and second optical characteristics, whereby the first region 55 of the face 12a is associated with the material or coating 54, and the second region 56 of the face 12a is not associated with the material or coating 54.
As before, the optical waveguide 10 is subdivided into the first and second waveguide regions 11, 13 by the rectangular cross-sectional plane P that passes through the boundary 57 between the two regions 55, 56. The top face of the first waveguide region 11 is the first region 55 of the face 12a (in other words the first region 55 corresponds to the first waveguide region 11), and the top face of the second waveguide region 13 is the second region 56 of the face 12a (in other words the second region 56 corresponds to the second waveguide region 13).
The coating or material 54 can be implemented in various ways. In one example, a metallic coating is applied to the majority of the face 12a. In another example, a low refractive index material or coating (such as Aerogel materials or low index optical cement is applied to the majority of the face 12a. associated with the remaining minority portion of the face 12b so as to extend along the minority portion (region 46) of the face 12b. In other embodiments, the material 54 is the material itself from which the substrate 30 is constructed, which has a refractive index less than the refractive index of the waveguide 10 such that internal reflection at the face 12a is preserved.
In the embodiment illustrated in
Similar to as in the configuration illustrated in
The behavior of the rays 60A, 60B, 60C in
It is noted that in the top-down configuration illustrated in
As should be apparent, an inverted variation of the configuration illustrated in
In addition to transmitting some of the image light via the prism into the waveguide 10, the substrate 30 can also provide structural and and/or bonding support to the optical coupling-in configuration, for example by allowing bonding (via index matched optical adhesive) between portions of the face 81 and portions of the face 34a. It is also noted that although the substrate 30 is represented here as having parallel faces 36a, 36b that are coincident and parallel to faces 16a, 26a and 16b, 26b, the substrate 30 can be reduced in size such that the substrate is only located at portions of the waveguide 10 that adjoin the region 56. In such reduced-size embodiments, the face 36a can lie at or just before the vertex 88 of the optical coupling-in configuration. Although the embodiments of the optical coupling-in configuration described thus far have pertained to a non-limiting implementation as a coupling prism having a light entrance face 83 that receives light 60 from an optical image generator (deployed in association with the front face 14a), other embodiments are contemplated herein in which the optical coupling-in configuration operates as a coupling reflector. In such embodiments, the face 83 is a reflective face, and the optical coupling-in configuration 80 is deployed in association with the waveguides 10, 20 (or the waveguide 10 and substrate 30) such that a portion of the face 81 adjoins the second region 46/57 and in particular such that a first portion of the face 81 is associated with a portion of the back face 14b that is in the second waveguide region 13, and such that the remaining second portion of the face 81 is associated with a portion of the face 22b of the waveguide 20 (or the face 34b of the substrate 30).
The operating principles of the optical coupling-in configuration in such reflective embodiments are generally similar to as described above with reference to
Lastly, in order to accommodate deployment of the image projector in association with the front face 14a, the optical coupling-in configuration 80 of
The optical coupling-in configurations illustrated in
The configuration of the partially reflective surface 94 is such that, when the image is coupled out of the waveguide 10, a proportion of the intensity of the coupled-out image is reflected at the partially reflective surface 94 prior to entering the second waveguide 20, thereby ensuring that conjugate beam vectors 64a, 64b are generated and fill the aperture in the waveguide 20.
Additional discussion of partially reflective surfaces (beamsplitter surfaces) deployed parallel to major surfaces of waveguides for ensuring filling of the waveguide aperture can be found in the commonly owned PCT patent publication WO2021001841A1.
The embodiments described thus far have pertained to optical aperture multipliers that employ rectangular optical waveguides (optical waveguide 10) having associated therewith an optical coupling-out configuration implemented as a set of mutually parallel partially reflective surfaces (facets) 18 internal to the waveguide 10. However, as alluded to above, other types of coupling-out arrangements that function to couple propagating light out of the rectangular waveguide are contemplated, including optical coupling-out configurations in the form of a partially reflective surface that is associated with, and parallel to, the bottom face of the rectangular waveguide, and that is located at the interface between the two waveguides 10, 20. Examples of implementations of materials or coatings that can be applied at the interface 40 (and which extend along the entirety or a majority portion of the faces 12b, 24a) to form such a partially reflective surface have been discussed above with respect to the material or coating 44. The following paragraphs describe an optical aperture multiplier, according to embodiments of a second aspect of the present invention, having a rectangular optical waveguide that does not include any oblique facets, but instead employs a partially reflective surface associated with, and parallel to, the bottom face of the rectangular waveguide to perform the optical coupling-out functionality.
Bearing the above in mind, attention is now directed to
In
Returning now to
Turning now to
It is noted that embodiments are contemplated herein in which the embodiments described with reference to
As previously discussed, in embodiments in which the optical coupling-out configuration of the optical waveguide 10 is implemented as a set of oblique facets 18, it may preferable to design the facets 18 such that the reflectivity of the facets 18 decreases along the direction of propagation of light through the optical waveguide 10, in order to provide a gradual increase in the intensity of light coupled into the optical waveguide 20. In the same sense, it may be preferable to design the partially reflective surface 96 such that the reflectivity of the partially reflective surface 96 decreases (and by equivalence the transmissivity increases) along the direction of propagation of light through the optical waveguide 10.
In order to ensure that a uniform beam is coupled into the optical waveguide 20 (from the rectangular waveguide 10), the reflective coating that forms the partially reflective surface 96 should preferably be designed such that the reflectivity varies across the length of face 12b (and therefore across the interface 40) in the direction of elongation of the waveguide 10. Here, the reflectivity refers to the reflection of unpolarized light averaged across at least a majority portion of the visible light region of the electromagnetic spectrum, where the “majority portion” preferably at least covers wavelength in the range of 430-660 nanometers (nm), but may also include wavelengths up to 750 nm. The reflective coating should have color neutral reflection and transmission characteristics, such that incident light beams do not undergo any change in color due to reflection at the partially reflective surface 96.
In certain embodiments, the reflective coating is a multilayer coating that is designed such that reflectivity variation across the length of the face 12b (i.e., across the interface 40) is preferably between 50%-80% (with as low absorption as possible) at AOIs in the range of 35°−55°. In one set of non-limiting implementations, the multilayer coating is formed from a metal (e.g., silver) layer and one or more dielectric coating layer, where the variation in reflectivity is dictated by the thickness of metal layer dictates. In another set of non-limiting implementations, the multilayer coating is formed from a metal (e.g., silver) layer and one or more dielectric coating layer, where the variation in reflectivity is dictated by adjusting the thickness of each of the metal layer and the dielectric coating layer(s) by a predetermined factor. In yet another set of non-limiting implementations, the multilayer coating is formed from multiple dielectric coating layers without any metallic layer. When using a dielectric only multilayer coating, the thickness of the borders between adjacent layers should preferably be kept as small as possible, which can be achieved using masking methods. As will be discussed in subsequent sections of the present disclosure, particularly preferred embodiments employ a dielectric only multilayer coating as part of a polarized light injection scheme.
It is noted that using a multilayer coating with a silver layer of thickness in the range of 15-35 nm will typically yield light absorption in the silver layer in a range of around 4%-8%. The number of layers used in the multilayer coating can be relatively small, from between 2-7 layers, providing an advantage in that the reflectivity and transmissivity can be relatively “flat” in the visible light region of the electromagnetic spectrum, resulting in color neutral reflection and transmission of light. It is also noted that using a multilayer coating without any metallic layer (i.e., only dielectric material layers) can provide low absorption, typically less than around 5%. The number of layers required to achieve the desired reflectivity in a dielectric only multilayer coating (by varying the layer thickness) usually does not conserve the flatness of the coating, which can result in color-dependent reflection and transmission.
In other embodiments, the partially reflective surface 96 is formed by coating the face 12b with a dielectric coating. Dielectric coatings have low reflectivity for incident light that is polarized in a first polarization direction (e.g., p-polarized light) and has high reflectivity for incident light that is polarized in a second polarization direction that is the orthogonal to the first polarization direction (e.g., s-polarized light). As light that is coupled into the optical waveguide 10 with initial polarization in the second polarization direction (e.g., s-polarized light) advances through the optical waveguide by four-fold internal reflection, the four-fold internal reflection preserves the polarization direction of the propagating light with regard to the partially reflective surface 96 such that the s-polarized light is transmitted at the partially reflective surface 96 into the waveguide 10. Design of coatings according to particular polarization schemes will later be discussed in detail within the context of the second set of embodiments (
It is generally noted that in order for the image to fill the aperture of the optical waveguide 20, both the image and its conjugate must be present in the waveguide 20 (i.e., both images 64a and 64b). One way to achieve aperture filling of the lower waveguide 20 is by having both the image and its conjugates (i.e., the four conjugate beam vectors 62a, 62b, 62c, 62d) propagate through the waveguide 10, and by having both an image and its conjugate (for example both 62a and 62b) coupled into the lower waveguide 20. However, if the angular orientation of the faces 12a, 12b, 14a, 14b is such that the faces 12a, 12b are not parallel and/or the faces 14a, 14b are not parallel and/or one or both of the faces 12a, 12b is not perpendicular to one or both of the faces 14a, 14b, the image and the conjugated image are shifted angularly in opposite directions upon reflection from a non-perpendicular surface. After several reflections from a non-perpendicular surface, the angular shifts accumulate. Therefore, even a slight manufacturing error leading to a deviation in parallelism or perpendicularity could introduce a significant angular difference between the image and the conjugated image, which can give rise to ghost image and/or reduced optical resolution. As a result, the manufacturing tolerance on parallelism and perpendicularity are extremely strict.
A similar effect can be produced by introducing at least one partially reflective surface that is parallel to the faces 22a, 22b in the interface between the two waveguides 10, 20 (similar to as illustrated in
With continued reference to
First, the optical aperture multiplier in
Another notable difference is that the optical aperture multiplier of the present embodiment has a protection layer 37 located at the upper face 12a, which can provide mechanical protection to the upper side of the optical waveguide 10. For example, the protection layer 37 can protect the upper side (face 12a) of the waveguide 10 against scratches or abrasions that could introduce reflections in unwanted directions leading to degradation in image quality. In addition, the reflectivity of the face 12a and the partially reflective surface 96 may cause unwanted reflections from the external scene into the eye. Therefore, in order to reduce reflections, an opaque cover member 38 (
Another difference is with respect to the second optical waveguide 20, which in the illustrated embodiment has faces 24a, 24b, 26a, 26b that form a more general quadrilateral cross-section. The faces 24a and 26a are preferably orthogonal to each other and are respectively parallel to faces 12b and 16a, and the face 24a defines (together with the face 12b) the interface between the two waveguides 10, 20. The faces 24b and 26b can be orthogonal to each other, or may be at an oblique angle but still close to 90°, and respectively form obtuse and acute angles with the respective faces 26a and 24a. The optical aperture multiplier has an orientation that is diagonal to the orientation of the output image 66 (that is coupled-out by facets 28), which can provide a compact and aesthetically pleasing design of the optical aperture multiplier, and facilitates various deployment configurations in which the optical waveguide 10 is diagonally oriented relative to the eye with the distal end of the waveguide 10 (opposite the proximal end of the waveguide 10) deployed either above or below the eye. In the context of the present document, the proximal end of the waveguide 10 is the end at which the image 60 is injected (coupled) into the waveguide 10.
A coupling-out diffractive optical element 29, e.g., diffractive grating, is deployed in association with one of the faces 22a, and couples light 64a, 64b out of the optical waveguide 20 and toward the eye 2. Although the diffractive element is shown as being associated with the face 22a, the diffractive element can also be deployed in association with the face 22b. In addition, although a single diffractive element 29 is shown in
It is noted that in embodiments in which the optical coupling-out configuration of the optical waveguide 10 is implemented as a set of oblique facets 18, for example as in the embodiments described with reference to
In the illustrated embodiment, the optical waveguide 20 is a thin slab-type waveguide having a pair of parallel faces 22a, 22b, and two additional pairs of faces 24a, 24b, 26a, 26b which are illustrated as pairs of parallel faces. A light redirecting arrangement 120 is associated with a first region 121 of the optical waveguide 20 and functions to redirect (deflect) the light coupled into the optical waveguide 20 toward the facets 28, which are located in a second region 122 of the optical waveguide 20.
The first region 121 preferably spans the entire length of the optical waveguide 20 between the faces 26a, 26b and occupies the upper portion of the optical waveguide 20, typically the upper 10%-25% of the optical waveguide 20, measured from the face 24a in the direction toward the face 24b (illustrated arbitrarily herein as corresponding to the “y” direction). The second region 122 also preferably spans the entire length of the optical waveguide 20 between the faces 26a, 26b. The two regions 121, 122 may be non-overlapping regions, such that the second region 122 occupies a lower portion of the optical waveguide 20 that is not occupied by the first region 121. However, in certain embodiment the two regions 121, 122 may partially overlap (along the “y” direction).
In preferred embodiments, the light redirecting arrangement 120 spans the majority or entirety of the length of the optical waveguide 20 between the faces 26a, 26b. In certain embodiments, the light redirecting arrangement 120 is implemented as a set of mutually parallel partially reflective surfaces (facets) that at least partially traverse the length of the optical waveguide 20 between the faces 26a, 26b (i.e., along the x-axis in the arbitrarily labeled xyz coordinate system) and are inclined obliquely to the faces 12b, 24a (preferably at a steep, yet acute angle). In other embodiments, the light redirecting arrangement can be implemented as one or more diffractive elements associated with one or more of the faces 22a, 22b, 24a, 24b, 26a, 26b of the optical waveguide 20.
In embodiments in which the light redirecting arrangement 120 is implemented as a set of facets 120, the facets 120 have a first orientation that is non-parallel to the orientation of the facets 28 (which are inclined obliquely to the faces 22a, 22b). In the illustrated embodiment, the two sets of the facets 120, 28 are non-overlapping, however other embodiments are possible in which one or more of the facets 28 overlaps with the facets 120 in the projection onto the plane of the faces 22a, 22b (which is the xy plane in the drawings).
The configuration of the light redirecting arrangement 120 and the facets 28 are such that, when the partially reflective surface 96 couples the image propagating through the optical waveguide 10 by four fold internal reflection (images 62a, 62, 62c, 62d) into the optical waveguide 20, the coupled-in image propagates within the first region 121 of the optical waveguide 20 by internal reflection (images 63a, 63b) at the faces 22a, 22b in a first guided direction, with a proportion of intensity of the image reflected (deflected) at the light redirecting arrangement 120 so as to be redirected into the second region 122 of the optical waveguide 20 in a second guided direction, and then propagates within the second region 122 of the optical waveguide 20 by internal reflection (images 64a, 64b) at the faces 22a, 22b, with a proportion of intensity of the image reflected (deflected) at the partially reflective surfaces 28 so as to be directed outwards from one of the parallel faces 22a as a visible image 66, seen by the eye 2 of the viewer. The first guided direction is generally diagonal to the direction of elongation of the waveguide 10 (i.e., diagonal to the faces 12b, 24a). The second guided direction is different from the first guided direction, and is preferably perpendicular or close to perpendicular to the direction of elongation of the waveguide 10 (and faces 12b, 24a), and preferably parallel or nearly parallel to the faces 26a, 26b.
A coupling-out diffractive optical element 29, e.g., diffractive grating, is deployed in association with a portion of one of the faces 22a that is in the second region 122, and couples light 64a, 64b out of the optical waveguide 20 and toward the eye 2. Although the diffractive element is shown as being associated with the face 22a, the diffractive element can also be deployed in association with a portion of the face 22b that is in the second region 122. In addition, although a single diffractive element 29 is shown in
In all of the disclosed embodiments, the light beam 60 corresponds to light from a collimated image that is generated by an optical image generator. Although not illustrated in the accompanying drawings, the optical image generator (also referred to as an “image projector”) generally includes at least one light source, typically a polarized source deployed to illuminate a spatial light modulator, such as a liquid crystal on silicon (LCoS) chip. The spatial light modulator modulates the projected intensity of each pixel of the image, thereby generating an image.
Alternatively, the image projector may include a scanning arrangement, typically implemented using a fast-scanning mirror, which scan illumination from a laser light source across an image plane of the projector while the intensity of the beam is varied synchronously with the scanning motion on a pixel-by-pixel basis, thereby projecting a desired intensity for each pixel. In both cases, collimating optics are provided to generate an output projected image (i.e., image light 60) which is collimated to infinity. Some or all of the above components of the image projector are typically arranged on surfaces of one or more polarizing beamsplitter (PBS) cubes or other prism arrangement, as is well known in the art. Thus, the collimated light 60 generated by the image projector may typically be polarized, and may have an initial polarization relative to one of the faces of the waveguide 10 upon injection into the optical waveguide 10. Optical image generators have been described in various publications by Lumus Ltd (Israel), including, for example, U.S. Pat. No. 8,643,948, US Patent Application Publication No. 2019/0391408, and US Patent Application Publication No. 2021/0072553.
The polarization scheme employed by the optical aperture multiplier in certain embodiments in which light is coupled into the optical waveguide 20 by a partially reflective surface (e.g., surface 96) associated with the face 12b instead of oblique facets deployed within the waveguide 10 is particularly relevant, and should be designed to ensure that the injected light propagates through both the 2D and 1D waveguide without degradation in image quality.
In embodiments in the which the partially reflective surface 96 is formed using a multiyear coating that has a metallic layer, there is some flexibility in terms of the polarization of the image light 60 that is injected into the waveguide 10. In particular, at the range of operating incident angles to be coupled out by the partially reflective surface 96, metallic coatings generally provide suitable partial reflectivity (and therefore partial transmissivity) for p-polarized light, and high reflectivity for s-polarized light. Thus, the partially reflective surface 96 (when formed using a metallic layer) can efficiently couple p-polarized components of propagating light out of the waveguide 10 and preserve s-polarized components within the waveguide 10. Accordingly, any suitable polarization scheme can be used to produce the light beam 60 that is to be injected into the waveguide 10.
In one example, the light beam 60 is unpolarized (thus having s-polarized and p-polarized components) with regard to the face 12b (i.e., the surface 96), such that a proportion of the intensity of the p-polarized component is transmitted out of the waveguide 10 by the partially reflective surface 96, and such that the s-polarized component is reflected by the surface 96. In certain non-limiting embodiments, the optical image generator outputs light beam 60 as an unpolarized beam by employing a particular configuration of light sources. In particular, the optical image generator can combine orthogonally polarized laser sources to produce an unpolarized image beam. In another embodiment, the optical image generator outputs a polarized image beam, but a depolarizer is deployed in the optical path between the optical image generator and the input aperture of the waveguide 10, for example either before the optical coupling-in configuration or at the output of the optical coupling-in configuration. Examples of depolarizer deployment configurations are described in detail in U.S. Pat. No. 10,133,070.
In another example, the light beam 60 can be circularly polarized with regard to the face 12b, for example by deploying a linear polarized filter and a quarter-waveplate at the output of the optical image generator (or input to the optical coupling-in configuration), or alternatively at the output of the optical coupling-in configuration.
In yet another example, the light beam 60 can be p-polarized with regard to the face 12b. This can be achieved by either employing an optical image generator that outputs p-polarized light. However, in typical configurations the optical image generator outputs s-polarized light, and therefore a waveplate can be deployed at the output of the optical image generator (or input to the optical coupling-in configuration), or alternatively at the output of the optical coupling-in configuration, to rotate the polarization of the output light from s-polarized to p-polarized.
In embodiments in the which the partially reflective surface 96 is formed using one or more dielectric coating layers, management of the polarization direction of the injected beam 60 with regard to the face 12b (partially reflective surface 96) is critical in order to achieve reasonable light efficiency. In such embodiments, the optical image generator is configured to produce polarized image illumination that is s-polarized with regard to the face 12b. The optical image generator described in U.S. Pat. No. 8,643,948 is one example of an optical image generator that produces s-polarized image light.
In certain embodiments, in order to accommodate the reflectivity of the facets 28 to ensure that the facets 28 sufficiently reflect the propagating light out of the 1D waveguide, a waveplate (such as a halfwave plate) can be deployed at the interface between the two waveguides 10 and 20. Referring again at
As should be apparent, the waveplate 130 can be deployed in a similar location between the partially reflective surface 96 and the upper face 24a of the waveguide 20 in the embodiments illustrated in
The following paragraphs describe some of the design aspects of the dielectric coating that can be used to form the partially reflective surface 96, with reference to
By way of one example, if the reflectivity provided by the coating such that the beam at the far end exits the waveguide 20 at the desired angle is denoted by R, and the number of reflections within the waveguide 10 is denoted by N, and the transmittance between two reflections is denoted by T, then the power output of the beam corresponding to injected beam 60F at the far side of the waveguide 20 can be expressed as:
P=(1−R)(R*T)N.
As should be apparent, the power P is a multivariable function, and can be maximized in various ways, including, for example, by fixing T and N, and then maximizing P and identifying the value of R that maximizes P. For example, if T=0.98 and N=8, then P achieves a maximum value Pmax of approximately 0.0367 when R≈0.88. In general, the reflectivity of the coating for the light corresponding to 60N at the entrance to the waveguide 10 should be 1−Pmax, which in the present example in which Pmax=0.0367 yields a reflectivity of approximately 0.9633 (96.33%).
Although embodiments according to the second aspect have thus far been described within the context of the waveguides 10, 20 being optically coupled at the faces 12b, 24a, other embodiments are possible in which the optical waveguide 10 is deployed such that the optical coupling is between the face 12b and a portion of one of the parallel faces 22a, 22b. In such embodiments the face 22a (or 22b) acts as the input coupling surface to the waveguide 20. A simplified isometric representation of such an embodiment is illustrated in
The following paragraphs describe various methods for fabricating optical aperture multipliers according to embodiments of the present invention, in particular some of the optical aperture multipliers described with reference to
As shown in
Techniques suitable for fabrication of each LOE 20 are generally known, and may be found, for example, in commonly owned prior U.S. Pat. No. 8,432,614, as described there with reference to
The plurality of LOEs 20 is aligned and then arranged in a stack and bonded together such that the cover plates 39a, 39b of adjacent LOEs are joined together.
As illustrated in
In other embodiments, a metallic coating is applied so as to extend along the entire width of the face 312a (in the “z” direction) and along the majority (but not the entirety) of the length of the face 312a (in the “x” direction). Such embodiments are particularly suitable when the final waveguide structure is to be used with a “top-down” optical coupling-in configuration (such as the optical coupling-in configuration of
In
With reference to the arbitrarily labeled xyz coordinate system used in the drawings, the alignment of the coated transparent plate 300 and the bonded stack 200 (in embodiments in which each of the transparent plate 300 and the bonded stack 200 have three pairs of parallel faces) can best be understood as follows: each of the faces 312a, 312b, 224a, 224b is parallel to the xz plane, each of the faces 214a, 222a is parallel to the xy plane and preferably are coplanar, each of the faces 314b, 222b is parallel to the xy plane and preferably are coplanar, each of the faces 316a, 226a is parallel to the yz plane and preferably are coplanar, and each of the faces 316b, 226b is parallel to the yz plane and preferably are coplanar.
The bonded stack 200 is optically coupled with the coated transparent plate 300, thereby forming an optical block 280, as illustrated in
Optionally, the face 312a may be coated with a reflective coating, such as a metallic coating, in order to ensure that the upper and lower faces 312a, 312b reflect propagating light at the same angles of incidence. The coating can be applied to the face 312a before or after optically coupling of the coated transparent plate 300 with the bonded stack 200.
As shown in
The cutting planes 245 are parallel to the parallel faces 22a, 22b of consecutive LOEs 20 of the bonded stack 200 and parallel to the faces 314a, 314b of the coated transparent plate 300. The cutting planes 245 are thus orthogonal to the faces 312a, 312b of the transparent plate 300.
Each sliced-out optical aperture multiplier has a rectangular optical waveguide 10 (2D optical waveguide) optically coupled with an LOE 20 (1D optical waveguide) at interface 40, and has a partially reflective surface at the interface 40 that is associated with the coupling surface (face 12b in
In the above-described fabrication methods, the cutting or slicing of the various optical structures described herein can be performed by any suitable cutting apparatus/device/tool, as should be understood by those of ordinary skill in the art. In certain embodiments, some or all of the surfaces/faces of the optical structures that are produced as of these cutting/slicing steps can be polished. The polishing of the faces and surfaces of the various optical structures described herein can be performed by any suitable polishing apparatus/device/tool, as should be understood by those of ordinary skill in the art.
The descriptions of the various embodiments of the present disclosure have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
As used herein, the singular form, “a”, “an” and “the” include plural references unless the context clearly dictates otherwise.
The word “exemplary” is used herein to mean “serving as an example, instance or illustration”. Any embodiment described as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments and/or to exclude the incorporation of features from other embodiments.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
To the extent that the appended claims have been drafted without multiple dependencies, this has been done only to accommodate formal requirements in jurisdictions which do not allow such multiple dependencies. It should be noted that all possible combinations of features which would be implied by rendering the claims multiply dependent are explicitly envisaged and should be considered part of the invention.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
This application claims priority from U.S. Provisional Patent Application No. 63/153,433, filed Feb. 25, 2021, and U.S. Provisional Patent Application No. 63/297,299, filed Jan. 7, 2022, the disclosures of which are incorporated by reference in their entireties herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2022/050216 | 2/24/2022 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/180634 | 9/1/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2748659 | Geffcken et al. | Jun 1956 | A |
2795069 | Hardesty | Jun 1957 | A |
2886911 | Hardesty | May 1959 | A |
3491245 | Hardesty | Jan 1970 | A |
3626394 | Nelson et al. | Dec 1971 | A |
3667621 | Barlow | Jun 1972 | A |
3677621 | Smith | Jul 1972 | A |
3737212 | Antonson et al. | Jun 1973 | A |
3802763 | Cook et al. | Apr 1974 | A |
3829197 | Thelen | Aug 1974 | A |
3857109 | Pilloff | Dec 1974 | A |
3873209 | Schinke et al. | Mar 1975 | A |
3940204 | Withrington | Feb 1976 | A |
4084883 | Eastman et al. | Apr 1978 | A |
4191446 | Arditty et al. | Mar 1980 | A |
4309070 | St Leger Searle | Jan 1982 | A |
4331387 | Wentz | May 1982 | A |
4516828 | Steele | May 1985 | A |
4613216 | Herbec et al. | Sep 1986 | A |
4711512 | Upatnieks | Dec 1987 | A |
4715684 | Gagnon | Dec 1987 | A |
4775217 | Ellis | Oct 1988 | A |
4798448 | Van Raalte | Jan 1989 | A |
4805988 | Dones | Feb 1989 | A |
4932743 | Isobe et al. | Jun 1990 | A |
4978952 | Irwin | Dec 1990 | A |
5005320 | Furmanak | Apr 1991 | A |
5033828 | Haruta | Jul 1991 | A |
5076664 | Migozzi | Dec 1991 | A |
5096520 | Faris | Mar 1992 | A |
5157526 | Kondo et al. | Oct 1992 | A |
5231642 | Scifres et al. | Jul 1993 | A |
5301067 | Bleier et al. | Apr 1994 | A |
5353134 | Michel et al. | Oct 1994 | A |
5367399 | Kramer | Nov 1994 | A |
5369415 | Richard et al. | Nov 1994 | A |
5430505 | Katz | Jul 1995 | A |
5453877 | Gerbe et al. | Sep 1995 | A |
5543877 | Takashi et al. | Aug 1996 | A |
5555329 | Kuper et al. | Sep 1996 | A |
5619601 | Akashi et al. | Apr 1997 | A |
5650873 | Gal et al. | Jul 1997 | A |
5680209 | Meinrad | Oct 1997 | A |
5712694 | Taira et al. | Jan 1998 | A |
5724163 | David | Mar 1998 | A |
5745199 | Suzuki et al. | Apr 1998 | A |
5751480 | Kitagishi | May 1998 | A |
5764412 | Suzuki et al. | Jun 1998 | A |
5829854 | Jones | Nov 1998 | A |
5872663 | Lee et al. | Feb 1999 | A |
5883684 | Millikan et al. | Mar 1999 | A |
5896232 | Budd et al. | Apr 1999 | A |
5919601 | Nguyen et al. | Jul 1999 | A |
5966223 | Amitai et al. | Oct 1999 | A |
5982536 | Swan | Nov 1999 | A |
6021239 | Minami et al. | Feb 2000 | A |
6052500 | Takano et al. | Apr 2000 | A |
6091548 | Chen | Jul 2000 | A |
6144347 | Mizoguchi et al. | Nov 2000 | A |
6154321 | Melville et al. | Nov 2000 | A |
6222676 | Togino et al. | Apr 2001 | B1 |
6231992 | Niebauer et al. | May 2001 | B1 |
6239092 | Papasso et al. | May 2001 | B1 |
6322256 | Inada et al. | Nov 2001 | B1 |
6324330 | Stites | Nov 2001 | B1 |
6349001 | Spitzer | Feb 2002 | B1 |
6362861 | Hertz et al. | Mar 2002 | B1 |
6384982 | Spitzer | May 2002 | B1 |
6388814 | Tanaka | May 2002 | B2 |
6394607 | Hashizume et al. | May 2002 | B1 |
6404550 | Yajima | Jun 2002 | B1 |
6404947 | Matsuda | Jun 2002 | B1 |
6490104 | Gleckman et al. | Dec 2002 | B1 |
6509982 | Steiner | Jan 2003 | B2 |
6542307 | Gleckman | Apr 2003 | B2 |
6556282 | Jamieson et al. | Apr 2003 | B2 |
6577411 | David | Jun 2003 | B1 |
6580529 | Amitai et al. | Jun 2003 | B1 |
6671100 | McRuer | Dec 2003 | B1 |
6690513 | Hulse et al. | Feb 2004 | B2 |
6710902 | Takeyama | Mar 2004 | B2 |
6775432 | Basu | Aug 2004 | B2 |
6791760 | Janeczko et al. | Sep 2004 | B2 |
6798579 | Robinson et al. | Sep 2004 | B2 |
6829095 | Amitai | Dec 2004 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6942925 | Lazarev et al. | Sep 2005 | B1 |
7016113 | Choi et al. | Mar 2006 | B2 |
7021777 | Amitai | Apr 2006 | B2 |
7088664 | Kim et al. | Aug 2006 | B2 |
7175304 | Wadia et al. | Feb 2007 | B2 |
7205960 | David | Apr 2007 | B2 |
7355795 | Yamazaki et al. | Apr 2008 | B1 |
7391573 | Amitai | Jun 2008 | B2 |
7418170 | Mukawa et al. | Aug 2008 | B2 |
7430355 | Heikenfeld et al. | Sep 2008 | B2 |
7448170 | Skendzic et al. | Nov 2008 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7576916 | Amitai | Aug 2009 | B2 |
7577326 | Amitai | Aug 2009 | B2 |
7643214 | Amitai | Jan 2010 | B2 |
7672055 | Amitai | Mar 2010 | B2 |
7724443 | Amitai | May 2010 | B2 |
7751122 | Amitai | Jul 2010 | B2 |
7778508 | Hirayama | Aug 2010 | B2 |
7949214 | Dejong | May 2011 | B2 |
7995275 | Maeda et al. | Aug 2011 | B2 |
8000020 | Amitai | Aug 2011 | B2 |
8035872 | Ouchi | Oct 2011 | B2 |
8098439 | Amitai et al. | Jan 2012 | B2 |
8187481 | Hobbs | May 2012 | B1 |
8405573 | Lapidot et al. | Mar 2013 | B2 |
8432614 | Amitai | Apr 2013 | B2 |
8548290 | Travers et al. | Oct 2013 | B2 |
8643948 | Amitai et al. | Feb 2014 | B2 |
8655178 | Capron et al. | Feb 2014 | B2 |
8665178 | Wang | Mar 2014 | B1 |
8666208 | Amirparviz et al. | Mar 2014 | B1 |
8736963 | Robbins et al. | May 2014 | B2 |
8743464 | Amirparviz | Jun 2014 | B1 |
8913865 | Bennett | Dec 2014 | B1 |
9025253 | Hadad et al. | May 2015 | B2 |
9551880 | Amitai | Jan 2017 | B2 |
9625723 | Lou et al. | Apr 2017 | B2 |
9791703 | Vallius et al. | Oct 2017 | B1 |
9805633 | Zheng | Oct 2017 | B2 |
9933684 | Brown et al. | Apr 2018 | B2 |
10133070 | Danziger | Nov 2018 | B2 |
10222535 | Remhof et al. | Mar 2019 | B2 |
10302835 | Danziger | May 2019 | B2 |
10437031 | Danziger et al. | Oct 2019 | B2 |
10437066 | Dobschal | Oct 2019 | B2 |
10437068 | Weng et al. | Oct 2019 | B2 |
10480725 | Streppel | Nov 2019 | B2 |
10480772 | Forest | Nov 2019 | B2 |
10480775 | Streppel | Nov 2019 | B2 |
10481319 | Danziger et al. | Nov 2019 | B2 |
10678055 | Edwin et al. | Jun 2020 | B2 |
10725291 | Chi et al. | Jul 2020 | B2 |
10739512 | Eisenfeld et al. | Aug 2020 | B2 |
10962787 | Lou et al. | Mar 2021 | B1 |
10983264 | Danziger et al. | Apr 2021 | B2 |
11009704 | Ayres et al. | May 2021 | B2 |
11187902 | Urness et al. | Nov 2021 | B2 |
11378391 | Do et al. | Jul 2022 | B2 |
11561335 | Danziger et al. | Jan 2023 | B2 |
20010000124 | Kollin et al. | Apr 2001 | A1 |
20020015233 | Park | Feb 2002 | A1 |
20020191297 | Gleckman et al. | Dec 2002 | A1 |
20030007157 | Hulse et al. | Jan 2003 | A1 |
20030020006 | Janeczko et al. | Jan 2003 | A1 |
20030063042 | Friesem et al. | Apr 2003 | A1 |
20030090439 | Spitzer et al. | May 2003 | A1 |
20030165017 | Amitai et al. | Sep 2003 | A1 |
20030169504 | Kaminski et al. | Sep 2003 | A1 |
20030197938 | Schmidt et al. | Oct 2003 | A1 |
20030218718 | Moliton et al. | Nov 2003 | A1 |
20040085649 | Repetto et al. | May 2004 | A1 |
20040137189 | Tellini et al. | Jul 2004 | A1 |
20040233534 | Nakanishi et al. | Nov 2004 | A1 |
20050018308 | Cassarly et al. | Jan 2005 | A1 |
20050024849 | Parker et al. | Feb 2005 | A1 |
20050008356 | Yamazaki et al. | Apr 2005 | A1 |
20050084210 | Cha | Apr 2005 | A1 |
20050174641 | Greenberg | Aug 2005 | A1 |
20050174658 | Long et al. | Aug 2005 | A1 |
20050180687 | Amitai | Aug 2005 | A1 |
20050265044 | Chen et al. | Dec 2005 | A1 |
20060126182 | Levola | Jun 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060268421 | Shimizu et al. | Nov 2006 | A1 |
20070070859 | Hirayama | Mar 2007 | A1 |
20070086712 | Shani | Apr 2007 | A1 |
20070091445 | Amitai | Apr 2007 | A1 |
20070097513 | Amitai | May 2007 | A1 |
20070171329 | Freeman et al. | Jul 2007 | A1 |
20070015967 | Freeman et al. | Dec 2007 | A1 |
20080094586 | Hirayama | Apr 2008 | A1 |
20080151375 | Lin | Jun 2008 | A1 |
20080151379 | Amitai | Jun 2008 | A1 |
20080278812 | Amitai | Nov 2008 | A1 |
20090034069 | Hsu | Feb 2009 | A1 |
20090012241 | Amitai | May 2009 | A1 |
20090122414 | Amitai | May 2009 | A1 |
20090190222 | Simmonds et al. | Jul 2009 | A1 |
20100067110 | Amitai et al. | Mar 2010 | A1 |
20100111472 | DeJong | May 2010 | A1 |
20100201953 | Freeman | Aug 2010 | A1 |
20100202128 | Saccomanno | Aug 2010 | A1 |
20100214635 | Sasaki et al. | Aug 2010 | A1 |
20100278480 | Vasylyev et al. | Nov 2010 | A1 |
20100291489 | Moskovits et al. | Nov 2010 | A1 |
20110096566 | Tsai et al. | Apr 2011 | A1 |
20110109880 | Nummela | May 2011 | A1 |
20110194810 | Chen et al. | Aug 2011 | A1 |
20120039576 | Dangel et al. | Feb 2012 | A1 |
20120147361 | Mochizuki et al. | Jun 2012 | A1 |
20120206817 | Totani | Aug 2012 | A1 |
20130021581 | Takahashi et al. | Jan 2013 | A1 |
20130135749 | Akutsu et al. | May 2013 | A1 |
20130208362 | Bohn et al. | Aug 2013 | A1 |
20130321432 | Burns et al. | Dec 2013 | A1 |
20130334504 | Thompson et al. | Dec 2013 | A1 |
20130335975 | Park | Dec 2013 | A1 |
20140003762 | Macnamara | Jan 2014 | A1 |
20140019801 | Sutton et al. | Jan 2014 | A1 |
20140043688 | Schrader et al. | Feb 2014 | A1 |
20140185142 | Gupta et al. | Jul 2014 | A1 |
20140226215 | Komatsu et al. | Aug 2014 | A1 |
20150016777 | Abovitz et al. | Jan 2015 | A1 |
20150081313 | Boross et al. | Mar 2015 | A1 |
20150138646 | Tatsugi | May 2015 | A1 |
20150160529 | Popovich et al. | Jun 2015 | A1 |
20150182348 | Siegal et al. | Jul 2015 | A1 |
20150219834 | Nichol et al. | Aug 2015 | A1 |
20150289762 | Popovich et al. | Oct 2015 | A1 |
20150338655 | Sawada et al. | Nov 2015 | A1 |
20160007419 | Lee et al. | Jan 2016 | A1 |
20160116743 | Amitai | Apr 2016 | A1 |
20160170214 | Amitai | Jun 2016 | A1 |
20160234485 | Robbins et al. | Aug 2016 | A1 |
20160259167 | Takagi et al. | Sep 2016 | A1 |
20160341964 | Amitai | Nov 2016 | A1 |
20170075119 | Schultz | Mar 2017 | A1 |
20170242249 | Wall | Aug 2017 | A1 |
20170285346 | Pan | Oct 2017 | A1 |
20170293149 | Tatsugi | Oct 2017 | A1 |
20170315358 | Masuda | Nov 2017 | A1 |
20170343822 | Border et al. | Nov 2017 | A1 |
20170353714 | Poulad et al. | Dec 2017 | A1 |
20170371160 | Schultz | Dec 2017 | A1 |
20180052277 | Schowengerdt et al. | Feb 2018 | A1 |
20180210202 | Danziger | Jul 2018 | A1 |
20180246333 | Cheng et al. | Aug 2018 | A1 |
20180262725 | Fan | Sep 2018 | A1 |
20180275409 | Gao et al. | Sep 2018 | A1 |
20180284443 | Matsuki | Oct 2018 | A1 |
20180284448 | Matsuki | Oct 2018 | A1 |
20180321515 | Cheng et al. | Nov 2018 | A1 |
20190064518 | Danziger | Feb 2019 | A1 |
20190212487 | Danziger et al. | Jul 2019 | A1 |
20190293838 | Haba et al. | Sep 2019 | A1 |
20200081246 | Olkkonen et al. | Mar 2020 | A1 |
20200110211 | Danziger et al. | Apr 2020 | A1 |
20200192089 | Haddick et al. | Jun 2020 | A1 |
20200209667 | Sharlin | Jul 2020 | A1 |
20200278554 | Schultz et al. | Sep 2020 | A1 |
20200284967 | Schowengerdt et al. | Sep 2020 | A1 |
20200292819 | Danziger et al. | Sep 2020 | A1 |
20200310024 | Danziger et al. | Oct 2020 | A1 |
20210033774 | Tanaka | Feb 2021 | A1 |
20210101245 | Han et al. | Apr 2021 | A1 |
20210109278 | Peroz et al. | Apr 2021 | A1 |
20220004007 | Bhakta et al. | Jan 2022 | A1 |
20220030205 | Danziger | Jan 2022 | A1 |
20220066215 | Nakamura et al. | Mar 2022 | A1 |
20220082837 | Cheng et al. | Mar 2022 | A1 |
20220107499 | Amitai | Apr 2022 | A1 |
20220155629 | Sharlin | May 2022 | A1 |
20220342216 | Danziger et al. | Oct 2022 | A1 |
20220357497 | Ronen et al. | Nov 2022 | A1 |
20230019309 | Chriki et al. | Jan 2023 | A1 |
Number | Date | Country |
---|---|---|
101542346 | Sep 2009 | CN |
205787362 | Dec 2016 | CN |
107238928 | Oct 2017 | CN |
107941469 | Apr 2018 | CN |
1422172 | Nov 1970 | DE |
19725262 | Dec 1998 | DE |
102013106392 | Dec 2014 | DE |
0365406 | Apr 1990 | EP |
0380035 | Aug 1990 | EP |
0566004 | Oct 1993 | EP |
0399865 | Apr 1994 | EP |
0543718 | Jun 1996 | EP |
1158336 | Nov 2001 | EP |
1180711 | Feb 2002 | EP |
1326102 | Jul 2003 | EP |
1385023 | Jan 2004 | EP |
1485747 | Dec 2004 | EP |
1562066 | Aug 2005 | EP |
0770818 | Apr 2007 | EP |
1779159 | May 2007 | EP |
2530510 | Dec 2012 | EP |
2496905 | Jun 1982 | FR |
2638242 | Apr 1990 | FR |
2721872 | Jan 1996 | FR |
2153546 | Aug 1985 | GB |
2220081 | Dec 1989 | GB |
2272980 | Jun 1994 | GB |
2278222 | Nov 1994 | GB |
2278888 | Dec 1994 | GB |
H0641208 | Oct 1994 | JP |
1996313843 | Nov 1996 | JP |
H09304036 | Nov 1997 | JP |
H11173825 | Jul 1999 | JP |
2002539498 | Nov 2002 | JP |
2003140081 | May 2003 | JP |
2003536102 | Dec 2003 | JP |
2004527801 | Sep 2004 | JP |
2005084522 | Mar 2005 | JP |
2006201637 | Aug 2006 | JP |
4394919 | Jan 2010 | JP |
2011-028141 | Feb 2011 | JP |
2012-037761 | Feb 2012 | JP |
2012058404 | Apr 2014 | JP |
201809798 | Mar 2018 | TW |
9510106 | Apr 1995 | WO |
9815868 | Apr 1998 | WO |
9952002 | Oct 1999 | WO |
0004407 | Jan 2000 | WO |
0063738 | Oct 2000 | WO |
0127685 | Apr 2001 | WO |
0195025 | Dec 2001 | WO |
0195027 | Dec 2001 | WO |
02082168 | Oct 2002 | WO |
03058320 | Jul 2003 | WO |
03081320 | Oct 2003 | WO |
2004109349 | Dec 2004 | WO |
2005024485 | Mar 2005 | WO |
2005024491 | Mar 2005 | WO |
2005024969 | Mar 2005 | WO |
2005093493 | Oct 2005 | WO |
2005124427 | Dec 2005 | WO |
2006013565 | Feb 2006 | WO |
2006085308 | Aug 2006 | WO |
2006085309 | Aug 2006 | WO |
2006085310 | Aug 2006 | WO |
2006087709 | Aug 2006 | WO |
2006098097 | Sep 2006 | WO |
2006098809 | Sep 2006 | WO |
2007054928 | May 2007 | WO |
2007093983 | Aug 2007 | WO |
2008023367 | Feb 2008 | WO |
2008129539 | Oct 2008 | WO |
2008149339 | Dec 2008 | WO |
2009009268 | Jan 2009 | WO |
2009074638 | Jun 2009 | WO |
2011130720 | Oct 2011 | WO |
2012107152 | Aug 2012 | WO |
2013065656 | May 2013 | WO |
2013175465 | Nov 2013 | WO |
2015081313 | Jun 2015 | WO |
2016103251 | Jun 2016 | WO |
2016132347 | Aug 2016 | WO |
2015012280 | Mar 2017 | WO |
2017106873 | Jun 2017 | WO |
2017199232 | Nov 2017 | WO |
2019131277 | Jul 2019 | WO |
2021105982 | Jun 2021 | WO |
2021152602 | Aug 2021 | WO |
2021171289 | Sep 2021 | WO |
202191889 | Sep 2021 | WO |
2021191889 | Sep 2021 | WO |
2021220267 | Nov 2021 | WO |
2021220267 | Nov 2021 | WO |
2021229563 | Nov 2021 | WO |
2021245664 | Dec 2021 | WO |
Entry |
---|
Mukawa et al. A full-color eyewear display using planar waveguides with reflection volume holograms. Journal of The Society for Information Display—J Soc Inf Disp. Mar. 17, 2009. 10.1889/JSID17.3.185-187 Mar. 31, 2009 (Mar. 31, 2009) pp. 285-287, 1-27. |
INF-GEO4310 2010 Solutions, Geometrical Optics, Part 1, Fritz Albregtsen Dec. 31, 2010 available at https://www.uio.no/studier/emner/matnat/ifi/INF-GEO4310/h10/undervisningsmateriale/solution-geometric-imaging-01.pdf Dec. 31, 2010 (Dec. 31, 2010). |
International Commission on Non-Ionizing Radiation Protection “ICNIRP Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (Up to 300 Ghz)” Published In: Health Physics 74 (4):494-522; 1998. |
Da-Yong et al., “A Continuous Membrance Micro Deformable Mirror Based on Anodic Bonding of SOI to Glass Water”, Microsystem Technologies, Micro and Nanosystems Information Storage and Processing Systems, vol. 16, No. 10, May 20, 2010 pp. 1765-1769. |
Number | Date | Country | |
---|---|---|---|
20230228932 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
63297299 | Jan 2022 | US | |
63153433 | Feb 2021 | US |