This application is the national phase entry of International Application No. PCT/TR2021/050775, filed on Aug. 5, 2021, the entire contents of which are incorporated herein by reference.
The present invention relates to an optical device, more specifically to an optical assembly for producing light having a collimated beam.
The emergence of a high-power requirement in the lighting industry fuels advancements in illumination technologies. Lighting devices having a range of emission behaviors, such as directed, ornamental, linear are needed in the illumination market.
LEDs are the most advantageous lighting solution when compared to other items since they give dependability, efficiency, extended life, and good color quality.
A secondary optics is required to regulate virtually Lambertian light emission from a sole LED in order to use it for desired illumination objectives. MR16 lamps are designed to create concentrated beams to produce spotlights. An MR16 LED lamp with multifaceted reflector (MR) internal reflection (TIR) lens collimates light from the LED and produces a concentrated beam of light. Traditional MR16 lenses of the market come in a height of 6 mm or higher. Constant heat creation from multiple high-power LED chips, on the other hand, provokes excessive thermal loads that must be dissipated using an appropriate cooling system.
Enhanced optical and thermal control is necessary to achieve commercial successes in the package design of lighting products, specifically LEDs. Lenses are generally made up of UV stabilized clear polycarbonate material with low thermal conductivity of 0.19 to 0.22 W/m-K and the thermal effect of MR16 lens thickness is not well covered yet in the literature.
A new compact lens with a better optical and heat removal capabilities can extend current limits of light collimation devices.
A primary object of the present invention is to overcome the above-mentioned shortcomings of the prior art.
Improvements resulting from present invention are examined in by understanding the role of secondary optics in the opto-thermal characterization of LED packages.
A further object of the present invention is to propose a lamp which is also easy to constitute with low cost, which is easy to operate, which has a long service life, and easy to maintain by having a simple structure.
Still a further object of the invention is to provide a lamp and an optical assembly having maximized peak intensity and better thermal performance.
Other objects of the present invention will become apparent from accompanying drawings, brief descriptions of which follow in the next section as well as appended claims.
The present invention proposes a lamp having an optical assembly that achieves improved light quality, extraction efficiency, and more uniform lateral beam angle.
Said lamp generally comprises at least one light source placed on a casing, a retaining plate having at least one opening for accommodating an optical assembly wherein said optical assembly includes an upper portion having a convex shaped lens and a bottom portion having an upper wall configured as an concave shaped lens. Said bottom portion includes an aperture being located on the top of the light source. Moreover, said optical assembly further comprises an inverted dome shaped shell side profile defined by lateral walls and a refractive wall and further includes a domed portion having the convex shaped lens which is extending outwardly from the lamp.
In a possible embodiment, the optical assembly has a height (H) between a top surface of the upper portion and a base of the bottom portion wherein said height is not lower than 2.8 mm and not higher than 4 mm. Thus, a lens with a volume that is 25% smaller than commercially available lenses can be produced, resulting in a cost advantage.
Another possible embodiment, the optical assembly is arranged for having a height between a top surface of the upper portion and a base of the bottom portion wherein said height is 3 mm. Since the optical assembly (e.g. lens) has a 50% thinner structure compared to available lens designs, more compact packaging designs, high lumen and better light quality controlled products can be attained.
In a possible embodiment, the concave and convex shaped lens are configured as conic lenses. Said conic lenses present solutions to optical issues that engender light rays to focus at numerous locations in the formation of an image and cause a blur.
In a possible embodiment, a curvature radius ratio (r1/r2) between the curvature radius (r1) of the convex-shaped lens and the curvature radius (r2) of the concave shaped lens is a value in a range of 1.7 to 1.9.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings which are given solely for the purpose of exemplifying embodiments according to the present invention.
The list of reference numerals and letters used in the appended drawings are as follows;
The invention proposes a lamp (1) and an optical assembly (10) wherein the optical and thermal control are two main factors in the package design process of said invention.
As illustrated in
As shown in
Referring to
In another possible embodiment the refractive wall (114) is arranged as Bezier shape which has a plurality of continuous Bezier curve segments each defined by Bezier curve.
In an optional embodiment, the light source (12) comprises one or more LEDs, preferably three LEDs as illustrated in
Referring to
As can be seen from
A ray-tracing example shows that the optical assembly (10) (i.e. lens) successfully collimates rays in the desired direction resulting in parallel and tidy ray emission in the perpendicular direction. On the contrary, in absence of a proper lens, rays propagate in a random direction in a wide angle.
In an exemplary embodiment of the invention, the lamp (1) includes an MR lens array, a metal core printed circuit board (MCPCB) substrate, a physical frame with heatsink, and a driver circuit. Said embodiment is configured as an MR16 LED lamp (1).
Traditional MR16 lenses of the market come in height of 6 mm or higher. Considering lenses are often composed of UV-stabilized clear polycarbonate with a low thermal conductivity of 0.19 to 0.22 W/m-K, developing a thinner lens can diminish the thermal resistance introduced by MR lenses in accordance with an exemplary embodiment.
With reference to
In a possible embodiment of the invention, the height (H1) of the optical assembly (10) (i.e. lens) is 3 mm. Said optical assembly (10) presents a similar optical behavior while its volume is 25% smaller than commercially available lenses.
In another possible embodiment, referring to
Using thinner lenses that have a size reduction of more than 25% can reduce the lens and chip temperature, which can result in improved light quality and lifetime of both lens and light source. Having a thinner lens can diminish the thermal resistance introduced by MR lenses.
Two exemplary embodiments of the invention including one LED and three LEDs are illustrated in
The present invention is the thinnest light collimation lens configuration available, offering 50% slimmer design, and 25% less material usage, giving desired optical results similar to available commercial lenses. Noteworthy light collimation in 15° and better thermal performance is achieved by the optical assembly (10).
Exemplary Simulations for Proof of Concept
In the scope of the invention, the effect of lens thickness and height (H1) of optical assembly (10) is modeled and optimized in Monte-Carlo ray-tracing simulations performed. Optical results of simulations are compared to experimental data gathered from a spectroradiometer and a goniophotometer.
So as to find out the effect of using a thinner lens on the thermal performance of MR16 packaging, the conduction equation is solved in three-dimensional steady-state FEM simulations.
CAD models of the MR16 with the invented optical assembly (10) and conventional lens are created and thermal comparison is performed to acquire a thermal map on effect of second optics in thermal management of LED packaging. The detailed CAD design of the optical and conventional lens packaging is drawn up whilst for both cases, the same heat sink is considered. Exposed surfaces including the top aluminum cap and the top surface of the lens are adjusted to have convective heat transfer coefficient of the hot surface facing downward. Since the heat sink is located in a recess in the surrounding wall or surface, the heat sink and surfaces are configured to convective heat transfer boundary conditions with a low heat transfer coefficient of 3 W/m2-K.
Several advantages of the invention compared to the available ones can be listed as follows:
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/TR2021/050775 | 8/5/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2023/014308 | 2/9/2023 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7473013 | Shimada | Jan 2009 | B2 |
8371710 | Gupta | Feb 2013 | B2 |
20090231846 | Nakajima | Sep 2009 | A1 |
20150070900 | Fleming | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
107076388 | Aug 2017 | CN |
2018067535 | Apr 2018 | JP |