Optical assembly for a light sensor, light sensor assembly using the optical assembly, and vehicle rearview assembly using the light sensor assembly

Information

  • Patent Grant
  • 9224889
  • Patent Number
    9,224,889
  • Date Filed
    Friday, August 3, 2012
    12 years ago
  • Date Issued
    Tuesday, December 29, 2015
    9 years ago
Abstract
An optical assembly is provided wherein the optical assembly includes a first optical element and a second optical element. The first optical element is configured to receive light and alter a transmission path of the light through the first optical element in a first direction and a second direction. The second optical element is configured to receive the light from the first optical element, and alter a transmission path of the light through the second optical element in the first and second directions. The light is passed through the second optical element, such that a sensor receives light from a field of view that is approximately 30 degrees to 60 degrees offset from a field of view of the sensor.
Description
FIELD OF THE INVENTION

The present invention generally relates to an optical assembly for a light sensor, and more particularly, an optical assembly for a light sensor in an auto-dimming rearview assembly.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, an optical assembly includes a first optical element configured to receive light and alter a transmission path of the light through the first optical element in a first direction and a second direction, and a second optical element in optical communication with the first optical element, the second optical element configured to receive the light from the first optical element, and alter a transmission path of the light through the second optical element in the first and second directions, wherein the light is passed through the second optical element, such that a sensor receives light from a field of view that is approximately 30 degrees to 60 degrees offset from a field of view of the sensor.


According to another embodiment, a light sensor assembly is provided that comprises: a light sensor; a first optical element configured to receive light and alter a transmission path of the light through the first optical element in a first direction and a second direction; and a second optical element in optical communication with the first optical element, the second optical element configured to receive the light from the first optical element, and alter a transmission path of the light through the second optical element in the first and second directions, wherein the light is passed through the second optical element such that the light sensor receives light from a field of view that is approximately 30 degrees to 60 degrees offset from a field of view of the light sensor.


According to another embodiment, a rearview assembly for a vehicle is provided that comprises: a housing configured for mounting to the vehicle; a rearview element disposed in the housing that presents images of a scene rearward of the vehicle; a light sensor assembly disposed in the housing; and a controller for receiving the electrical signal of the light sensor and for adjusting a brightness of the images presented by the rearview element. The light sensor comprises: a light sensor for outputting an electrical signal representing intensity of light impinging upon a light receiving surface of the light sensor; a first optical element configured to receive light and alter a transmission path of the light through the first optical element in a first direction and a second direction; and a second optical element in optical communication with the first optical element, the second optical element configured to receive the light from the first optical element, and alter a transmission path of the light through the second optical element in the first and second directions, wherein the light is passed through the second optical element such that the light sensor receives light from a field of view that is approximately 30 degrees to 60 degrees horizontally offset from a field of view of the light sensor.


These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a perspective view of a rearview assembly having an optical assembly, in accordance with one embodiment of the present invention;



FIG. 2A is a perspective view of a rearview assembly having an optical assembly, in accordance with one embodiment of the present invention;



FIG. 2B is a perspective view of the optical assembly in the rearview assembly of FIG. 2A;



FIG. 3 is a partial rear perspective view of the optical assembly in the rearview assembly of FIG. 2A;



FIG. 4 is an environmental view of an optical assembly, in accordance with one embodiment of the present invention;



FIG. 5 is a perspective view of an optical assembly, in accordance with one embodiment of the present invention;



FIG. 6 is a perspective view of a light sensor device that may be used with the embodiments of the present invention;



FIG. 7 is a cross-sectional view of the light sensor device shown in FIG. 6;



FIG. 8A is a perspective view of a second optical element of an optical assembly, in accordance with one embodiment of the present invention;



FIG. 8B is a rear perspective view of the second optical element of FIG. 8A;



FIG. 9 is a diagram illustrating light propagation through a second optical element of an optical assembly, in accordance with one embodiment of the present invention;



FIG. 10 is a diagram illustrating light propagation through a second optical element of an optical assembly, in accordance with one embodiment of the present invention;



FIG. 11A is a perspective view of a first optical element of an optical assembly, in accordance with one embodiment of the present invention;



FIG. 11B is a rear view of the first optical element of FIG. 11A;



FIG. 11C is a front view of the first optical element of FIG. 11A;



FIG. 12 is a chart illustrating a field of view of a light sensor having a prior art optical assembly;



FIG. 13 is chart illustrating a field of view of a light sensor having an optical assembly, in accordance with one embodiment of the present invention;



FIG. 14 is a perspective view of a rearview assembly having an optical assembly, in accordance with one embodiment of the present invention;



FIG. 15 is a perspective view of an optical assembly, in accordance with another one embodiment of the present invention;



FIG. 16 is a front perspective view of a first optical element of the optical assembly shown in FIG. 15;



FIG. 17 is a rear perspective view of the first optical element shown in FIG. 16;



FIG. 18 is a front perspective view of a second optical element of the optical assembly shown in FIG. 15;



FIG. 19 is a rear perspective view of the second optical element shown in FIG. 16; and



FIG. 20 is a block diagram of a rearview assembly, in accordance with one embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present illustrated embodiments reside primarily in combinations of method steps and apparatus components related to an optical assembly for a light sensor. Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Further, like numerals in the description and drawings represent like elements.


In this document, relational terms, such as first and second, top and bottom, and the like, are used solely to distinguish one entity or action from another entity or action, without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements, but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.


In reference to FIGS. 1-3, a rearview assembly is generally shown at reference identifier 100. The rearview assembly 100 includes a light sensor assembly 101 including an optical assembly generally indicated at reference identifier 102 and a light sensor 108. As illustrated in FIGS. 4, 5, 9, and 10, the optical assembly 102 includes a first optical element 104 that can be configured to receive light and alter a transmission path of the light through the first optical element 104 in a first direction and a second direction. The optical assembly 102 can also include a second optical element 106 in optical communication with the first optical element 104, wherein the second optical element 106 can be configured to receive light from the first optical element 104 and alter a transmission path of the light through the second optical element 106 in the first and second directions. Thus, the light passed through the second optical element 106 can be received by the light sensor 108, such that the light sensor 108 receives light from a field of view that is approximately 30 degrees to 60 degrees offset from a field of view of the light sensor 108. When used in a rearview assembly, the received field of view may be approximately 30 to 60 degrees horizontally offset, particularly horizontally offset away from the middle of the mirror housing or mount. The optical elements may further be configured such that the light sensor 108 receives light from a field of view that is approximately 40 degrees to 50 degrees offset from a field of view of the light sensor 108. The optical elements may further be configured such that the light sensor 108 receives light from a field of view that is approximately 45 degrees offset from a field of view of the light sensor 108.


For purposes of explanation and not limitation, in operation, the optical assembly 102 is configured to be used with the rearview assembly 100 when a secondary vehicle component is placed between the rearview assembly 100 and a windshield of the vehicle. Typically, when the secondary vehicle component blocks a field of view of the light sensor 108 that does not include the optical assembly 102, the light sensor 108 does not adequately monitor ambient light. The optical assembly 102 allows the light sensor 108 to be positioned substantially planarly on a circuit board 110 (FIG. 4), while receiving light offset from a forward field of view of the light sensor 108, such that any blockage of light caused by the secondary vehicle component has a reduced effect on the light sensor 108 sensing ambient light. The secondary vehicle component can be, but is not limited to, a rain sensor, an imager, a radar system, a sensor cover, a compass, a GPS module, the like, or a combination thereof.


With respect to FIGS. 4 and 8A-11C, according to a first embodiment, the optical assembly 102 can be configured to connect to the circuit board 110, such that the optical assembly 102 is in optical communication with the light sensor 108, which is also mounted to the circuit board 110. Typically, the first optical element 104 includes a first or front surface optical structure 112 and a second or rear surface optical structure 114. The first surface optical structure 112 can be configured to direct light in an approximately vertical direction, and the second surface optical structure 114 can be configured to concentrate light in an approximately horizontal direction (or an approximately orthogonal direction as the first surface optical structure 112).


According to an embodiment illustrated in FIGS. 4, 5, and 11A-11C, the first optical element 104 can be configured to alter the transmission path of the light through the first optical element 104 in an approximately vertical direction (first surface optical structure 112) and an approximately horizontal direction (second surface optical structure 114). The second surface optical structure 114 can be configured to receive light that is within an approximately −10 degrees to 90 degrees horizontal field of view with respect to a 0 degree optical axis extending approximately perpendicular to the circuit board 110 through the light sensor 108, and more particularly, light can be received from an approximately −2.5 degrees to 82.5 degrees horizontal field of view. The rear surface 114 can be configured to direct received light to be within an approximately 40 degrees horizontal illumination pattern, and more particularly, within an approximately 34.5 degrees horizontal illumination pattern. Typically, the first and second surface optical structures 112, 114 have textured surfaces, or other type of optical property, such that the front and rear surfaces 112, 114 can receive and pass light within desired horizontal fields of view and illumination patterns, respectively.


According to an embodiment illustrated in FIGS. 5, 8A, 8B, 9, and 10, the second optical element 106 can be configured to alter the transmission path of the light through the second optical element 106 in an approximately horizontal direction and in an approximately vertical direction. The second optical element 106 can include a first or front surface optical structure 116 and a second or rear surface optical structure 118. The first surface optical structure 116 can be configured to alter a transmission path of the light in an approximately horizontal direction, and the second surface optical structure 118 can be configured to alter a transmission path of the light in an approximately vertical direction (or an approximately orthogonal direction as the first surface optical structure 116), such that a field of view size (or an illumination pattern size) of light transmitted from the first optical element 104 to the second optical element 106 is approximately equal to the field of view size (or the illumination pattern size) of light transmitted from the second optical element 106 to the light sensor 108; however, the transmission angle of light transmitted between the first optical element 104 and the second optical element 106 is different than the transmission angle of light transmitted between the second optical element 106 and the light sensor 108.


The second surface optical structure 118 can be configured to receive light that is within an approximately −50 degrees to 20 degrees horizontal field of view with respect to a 0 degree optical axis extending approximately perpendicular to the circuit board 110 through the light sensor 108, and more particularly, light can be received from an approximately −40 degrees to 10 degrees vertical field of view. The rear surface 118 can be configured to direct received light to be within an approximately 10 degrees vertical illumination pattern, and more particularly, an approximately 3 degree vertical illumination pattern. Typically, front and rear surfaces 116, 118 have textured surfaces, or other type of optical property, such that the front and rear surfaces 116, 118 can receive and pass light within desired vertical fields of view and illumination patterns, respectively.


Thus, the first optical element 104 is configured to receive light that is offset from a field of view of the light sensor 108, and directs the light onto the second optical element 106. The second optical element 106 is configured to receive light from the first optical element 104, and redirects the light onto the light sensor 108. Typically, each of the first and second optical elements 104 and 106 directs the light in first and second directions that are approximately orthogonal to one another (e.g., an approximately horizontal direction and an approximately vertical direction). It should be appreciated by those skilled in the art that the second optical element 106 can be configured to have optical properties that further concentrate the light being transmitted there-through.


In regards to FIGS. 12 and 13, the field of view of the light sensor 108, with a prior art optical assembly, is illustrated in FIG. 12. Such a field of view of the sensor 108 with the prior art optical assembly is adequate to sense light to control the auto-dimming rearview assembly 100 when there are no obstructions between the rearview assembly 100 and the vehicle windshield.


As illustrated in FIG. 13, the light sensor 108, when detecting light that has propagated through the optical assembly 102, and as compared to the fields of view illustrated in FIG. 12, the field of view is offset from an origin of an x,y axis. Thus, the optical assembly 102 and the light sensor 108 can have an approximately −20 degrees to 85 degrees horizontal field of view and an approximately −50 degrees to 35 degrees vertical field of view. More particularly, the optical assembly 102 and light sensor 108 can have an approximately 0 degree to 77.5 degrees horizontal field of view and an approximately −30 degrees to 10 degrees vertical field of view when the optical assembly 102 is configured to have flat cone angles, and an approximately −10 degrees to 85 degrees horizontal field of view and −40 degrees to 20 degrees vertical field of view then the optical assembly 102 is configured to have approximately 50 percent cone angles.


Thus, the light sensor 108 detecting light from a field of view as illustrated in FIG. 12 is adequate when there are no obstructions (e.g., the secondary vehicle component) between the rearview assembly 100 and the vehicle windshield. When there is an obstruction between the rearview assembly 100 and the vehicle windshield, the optical assembly 102 can offset the field of view for receiving light so that obstruction does not adversely affect the amount of light detected by the light sensor 108, such that auto-dimming of the rearview assembly 100 can be adequately controlled. Additionally, the light sensor 108 being located towards an outer edge of the circuit board 110, such that the light sensor 108 and optical assembly 102 are not located directly behind the secondary vehicle component, can further enhance the amount of light received by the light sensor 108.


The optical assembly 102 can attenuate the light that is propagating there-through, such that the intensity of the light received by the first surface 112 is greater than the intensity of the light received by the light sensor 108, according to one embodiment. The optical assembly 102 can be configured to reduce the attenuation of the light propagating there-through. Also, the optical assembly 102 may include a diffusant to diffuse the received light.


As to the rearview assembly 100, as illustrated in FIGS. 1, 2A, and 2B, the rearview assembly can include a housing 120 that defines an aperture 122, wherein the optical assembly 102 is configured to receive light through the aperture 122. The housing 120 can be configured to control the field of view of the optical assembly 102 and light sensor 108 by having one or more concave surfaces 124, as illustrated in FIG. 1. FIGS. 2A and 2B illustrate an alternative embodiment of the housing 120 and concave surface 124.


According to an alternate embodiment, the first and second surface optical structures 112, 114 and 116, 118, respectively, can be switched, such that the first surface optical structure 112 alters the light in an approximately horizontal direction, the second surface optical structure 114 alters the light in an approximately vertical direction, the first surface optical structure 116 alters the light in an approximately horizontal direction, and the second surface optical structure 118 alters the light in an approximately vertical direction. Such optical structures 112, 114, 116, and 118 may comprise a microgroove lens, a diffraction grating, or the like.


Additionally or alternatively, the optical assembly 102 and the light sensor 108 can be located on the right side of the rearview assembly 100, such that the first and second optical elements 104, 106 can be mirrored or rotated, respectively.


The rearview assembly 100, as described herein, can include an electro-optic mirror element, wherein a reflectance of a mirror element changes based upon light detected by the light sensor 108, and/or a display device that changes intensities based upon the light detected by the light sensor 108. Examples of rearview assemblies and/or light sensors are described in U.S. Pat. No. 6,870,656, entitled “ELECTROCHROMIC REARVIEW MIRROR ELEMENT INCORPORATING A THIRD SURFACE REFLECTOR”; U.S. Pat. No. 6,313,457, entitled “MOISTURE DETECTING SYSTEM USING SEMICONDUCTOR LIGHT SENSOR WITH INTEGRAL CHARGE COLLECTION”; U.S. Pat. No. 6,359,274, entitled, “PHOTODIODE LIGHT SENSOR”; U.S. Pat. No. 6,504,142, entitled “PHOTODIODE LIGHT SENSOR”; U.S. Pat. No. 6,402,328, entitled “AUTOMATIC DIMMING MIRROR USING SEMICONDUCTOR LIGHT SENSOR WITH INTEGRAL CHARGE COLLECTION”; U.S. Pat. No. 6,379,013, entitled “VEHICLE EQUIPMENT CONTROL WITH SEMICONDUCTOR LIGHT SENSORS”; U.S. Pat. No. 6,679,608, entitled “SENSOR DEVICE HAVING AN INTEGRAL ANAMORPHIC LENS”; U.S. Pat. No. 6,831,268, entitled “SENSOR CONFIGURATION FOR SUBSTANTIAL SPACING FROM A SMALL APERTURE”; U.S. Pat. No. 7,543,946, entitled “DIMMABLE REARVIEW ASSEMBLY HAVING A GLARE SENSOR”; and U.S. Pat. No. 6,742,904, entitled “VEHICLE EQUIPMENT CONTROL WITH SEMICONDUCTOR LIGHT SENSORS,” which are hereby incorporated herein by reference in their entireties.


An example of a light sensor 108 that may be used with the embodiments of the present invention is shown in FIGS. 6 and 7. The light sensor 108 includes a support structure, such as a printed circuit board or a lead frame 60; an integrated sensing circuit 15 having an active sensing area 57 mounted on the support substrate for sensing optical radiation, preferably visible light; and an encapsulant 62 encapsulating the sensing circuit on the support structure. In general, the encapsulant 62 defines a lens structure 20 including an integral refracting lens portion 61 preferably having an elliptical refracting surface for focusing incident optical radiation onto active surface 57 of sensing circuit 15. Lens structure 20 further includes an optical radiation collector portion 53 surrounding the lens portion 61 for collecting and redirecting optical radiation that is not incident on lens portion 61 onto the active surface 57 of sensing circuit 15. The optical radiation collecting portion 53 includes a parabolic reflecting surface 54 that redirects incident optical radiation towards sensing circuit 15 by total internal reflection. Optical radiation collecting portion 53 also includes an annular optical radiation receiving surface 51 that lies in a plane perpendicular to the major axis of elliptical lens portion 61 and is disposed around elliptical lens portion 61. The encapsulant is preferably formed of a clear polymer. Additional details of this light sensor may be found in U.S. Pat. No. 6,831,268, entitled “SENSOR CONFIGURATION FOR SUBSTANTIAL SPACING FROM A SMALL APERTURE,” the entire disclosure of which is incorporated herein by reference.


Thus, light sensor 108 may have its own integral optics that are provided in addition to the two optical elements 104 and 106 of optical assembly 102. It will be appreciated, however, that other light sensors may be used, which may or may not have their own integral optics.


According to one embodiment shown in FIG. 14, a plurality of light sensor assemblies 101A and 101B can be included in the rearview assembly 100. Additionally, one or more of the plurality of light sensors 108 can be optically connected with one or more optical assemblies 102, respectively, to form ambient light sensor assemblies 101A and 101B. An example of a rearview assembly having at least two ambient light sensors is described in U.S. Pat. No. 8,620,523, filed on Jun. 12, 2012 and entitled, “REARVIEW ASSEMBLY WITH MULTIPLE AMBIENT LIGHT SENSORS,” the entire disclosure of which is hereby incorporated herein by reference. Although the optical assembly 102 is designed to alleviate the problem associated with obstruction of the field of view of an ambient light sensor provided in a rearview assembly 100, providing first light sensor assembly 101A and second light sensor assembly 101B on the opposite sides of mirror mounting structure 130 further mitigates the problem caused by obstruction of the field of view of a single ambient light sensor assembly by components mounted to or near the mirror mounting structure. More specifically, this problem can be further addressed by spacing the light sensor assemblies 101A and 101B at least about 10 cm apart and processing the output signals from the two sensor subassemblies so as to use the output of the light sensor with the least obstructed field of view (i.e., that with the output signal representing the greater amount of received light).



FIGS. 15-19 show an alternate construction of optical assembly 102c. As shown, assembly 102c differs from the optical assembly 102 shown in FIGS. 4 and 8A-11C in that the second optical element 106c is attached to first optical element 104c instead of to circuit board 110 such that both optical elements may be mounted to rearview housing 120 rather than one mounted to housing 120 and the other mounted to circuit board 110 as in the first embodiment. Such an attachment of the two optical elements 104c and 106c may be by any means. As shown it is by means of a heat stake. This alternative construction provides the benefit that the relative physical positioning of the two optical elements remains constant from part to part.


As illustrated in FIGS. 15-17, first optical element 104c includes first surface optical structure 112 and second surface optical structure 114 as in the first embodiment. First optical element 104c differs in that it includes a first heat stake post 156 and a second heat stake post 160, and in that resilient legs 152 and 154 are configured slightly differently. Resilient legs 152 and 154 are configured for snapping into aperture 122 of rearview housing 120. First optical element 104c further includes shoulders 158a and 158b on opposing sides of first heat stake post 156 and a shoulder 162 adjacent second heat stake post 160.


As illustrated in FIGS. 15, 18, and 19, second optical element 106c includes first surface optical structure 116 and second surface optical structure 118 as in the first embodiment. Second optical element 106c differs in that it includes a first heat stake aperture 164 and a second heat stake aperture 166 adapted to receive first heat stake post 156 and second heat stake post 160, respectively, of first optical element 104c. Second optical element 106c further differs from second optical element 106 of the first embodiment in that it does not include resilient legs that otherwise are used to snap to circuit board 110. Instead, as mentioned above, second optical element 106c is secured to first optical element 104c, which in turn is mounted to housing 120. Shoulders 158a, 158b, and 162 are provided on first optical element 104c to provide a stop for stopping the insertion of heat stake posts 156 and 160 at a specific position as shown in FIG. 15 so that the first and second optical elements will have the desired positional relationship when the front surfaces of second optical element 106c come into contact with shoulders 158a, 158b, and 162. Heat may then be applied to the ends of heat stake posts 156 and 160 to melt them and thereby secure second optical element 106c in the desired position.



FIG. 20 shows an example of an electrical circuit for use in a rearview assembly. The rearview assembly may include a rearview element, which may comprise a reflective element 200 and/or a display 202, a forward-facing ambient light sensor assembly 101A, a rearward-facing glare light sensor assembly 204, and a controller 206. Reflective element 200 may be an electro-optic element, such as an electrochromic element, having a reflectivity that may be changed in response to an electrical signal. Controller 206 may control the reflectivity of the reflective element 200 in response to output signals from ambient light sensor assembly 101A and glare light sensor assembly 204. In this way, controller 206 may adjust a brightness of the images presented by reflection from the reflective element. Controller 206 may also adjust a brightness of the images presented by the display 202 in response to output signals from ambient light sensor assembly 101 and glare light sensor assembly 204. The rearview assembly may further include an optional second forward-facing ambient light sensor assembly 1016. Controller 206 may process the output signals from the two ambient light sensor assemblies 101A and 1016 so as to use the output of the light sensor with the least obstructed field of view (i.e., that with the output signal representing the greater amount of received light).


It should be appreciated by those skilled in the art that any dimensions and shapes referenced in the figures are approximations and are for purposes of explanation and not limitation, such that, the components can have larger or smaller dimensions and/or alternative shapes.


Advantageously, the optical assembly 102 and the sensor 108 can be used to detect ambient light by having an offset field of view, such that an obstruction in front of the sensor 108 does not adversely affect the light detection of the sensor 108. Thus, an auto-dimming mirror element of a rearview assembly 100 can adequately be controlled by the amount of light detected by the sensor 108. It should be appreciated by those skilled in the art that the optical assembly 102, the sensor 108, and/or the rearview assembly 100 can have additional or alternative advantages. It should further be appreciated by those skilled in the art that the components described herein can be combined in alternative combinations, not explicitly described herein.


Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.

Claims
  • 1. An optical assembly comprising: a first optical element configured to receive light and alter a transmission path of the light through said first optical element in a first direction and a second direction; anda second optical element in optical communication with said first optical element, said second optical element configured to receive the light from said first optical element, and alter a transmission path of the light through said second optical element in said first and second directions, wherein the light is passed through said first and second optical elements such that a light sensor receives light from a field of view that is approximately 30 degrees to 60 degrees offset from a field of view of the light sensor.
  • 2. The optical assembly of claim 1, wherein the first direction is a substantially horizontal direction, such that said first optical element is configured to alter the transmission path of the light through said first optical element in the substantially horizontal direction.
  • 3. The optical assembly of claim 1, wherein the second direction is a substantially vertical direction, such that said second optical element is configured to alter the transmission path of the light through said first optical element in the substantially vertical direction.
  • 4. The optical assembly of claim 1, wherein the light is passed through said second optical element such that the light sensor receives light from a field of view that is approximately 30 degrees to 60 degrees horizontally offset from a field of view of the light sensor.
  • 5. The optical assembly of claim 1, wherein the light sensor receives light from a field of view that is approximately 40 degrees to 50 degrees offset from a field of view of the light sensor.
  • 6. The optical assembly of claim 1, wherein the light sensor receives light from a field of view that is approximately 45 degrees offset from a field of view of the light sensor.
  • 7. The optical assembly of claim 1, wherein said first and second optical elements are configured for mounting in an auto-dimming rearview assembly.
  • 8. A light sensor assembly comprising: a light sensor;a first optical element configured to receive light and alter a transmission path of the light through said first optical element in a first direction and a second direction; anda second optical element in optical communication with said first optical element, said second optical element configured to receive the light from said first optical element, and alter a transmission path of the light through said second optical element in the first and second directions, wherein the light is passed through said first and second optical elements such that said light sensor receives light from a field of view that is approximately 30 degrees to 60 degrees offset from a field of view of said light sensor.
  • 9. The light sensor assembly of claim 8, wherein the first direction is a substantially horizontal direction, such that said first optical element is configured to alter the transmission path of the light through said first optical element in the substantially horizontal direction.
  • 10. The light sensor assembly of claim 8, wherein the second direction is a substantially vertical direction, such that said second optical element is configured to alter the transmission path of the light through said first optical element in the substantially vertical direction.
  • 11. The light sensor assembly of claim 8, wherein the light is passed through said second optical element such that said light sensor receives light from a field of view that is approximately 30 degrees to 60 degrees horizontally offset from a field of view of said light sensor.
  • 12. The light sensor assembly of claim 8, wherein the light sensor receives light from a field of view that is approximately 40 degrees to 50 degrees offset from a field of view of the light sensor.
  • 13. The light sensor assembly of claim 8, wherein said light sensor is an ambient light sensor.
  • 14. The light sensor assembly of claim 8, wherein said light sensor comprises: a support structure;a sensing element mounted on said support substrate for sensing light and generating an electrical output signal in response thereto; andan encapsulant encapsulating said sensing element on said support structure, said encapsulant being configured to define a lens portion for focusing incident light onto an active surface of said sensing element, and an optical radiation collector portion surrounding the lens portion for collecting and redirecting light that is not incident on the lens portion onto the active surface of said sensing element.
  • 15. A rearview assembly for a vehicle comprising: a housing configured for mounting to the vehicle;a rearview element disposed in said housing that presents images of a scene rearward of the vehicle;a light sensor assembly disposed in said housing, said light sensor comprising:a light sensor for outputting an electrical signal representing intensity of light impinging upon a light receiving surface of the light sensor;a first optical element configured to receive light and alter a transmission path of the light through said first optical element in a first direction and a second direction; anda second optical element in optical communication with said first optical element, said second optical element configured to receive the light from said first optical element and alter a transmission path of the light through said second optical element in the first and second directions, wherein the light is passed through said second optical element such that said light sensor receives light from a field of view that is approximately 30 degrees to 60 degrees horizontally offset from a field of view of said light sensor; anda controller for receiving the electrical signal of said light sensor and for adjusting a brightness of the images presented by said rearview element.
  • 16. The rearview assembly of claim 15, wherein said rearview element includes a display positioned in said housing, wherein the controller adjusts the brightness of the images presented by said rearview element by adjusting the brightness of said display.
  • 17. The rearview assembly of claim 15, wherein said rearview element includes an electro-optic mirror element having a reflectance that is adjustable, wherein the controller adjusts the brightness of the images presented by said rearview element by adjusting the reflectance of said electro-optic mirror element.
  • 18. The rearview assembly of claim 15, wherein said rearview element includes a display positioned in said housing, wherein the controller adjusts the brightness of the images presented by said rearview element by further adjusting the brightness of said display.
  • 19. The rearview assembly of claim 15 and further comprising a second light sensor assembly, wherein both said first and second light sensor assemblies are generally facing forward with respect to a forward driving orientation of the vehicle and configured to detect ambient light, wherein said second light sensor assembly is spaced apart at least about 10 cm from said first light sensor assembly.
  • 20. The rearview assembly of claim 15, wherein said light sensor comprises: a support structure;a sensing element mounted on said support substrate for sensing light and generating an electrical output signal in response thereto; andan encapsulant encapsulating said sensing element on said support structure, said encapsulant being configured to define a lens portion for focusing incident light onto an active surface of said sensing element, and an optical radiation collector portion surrounding the lens portion for collecting and redirecting light that is not incident on the lens portion onto the active surface of said sensing element.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 61/515,389 filed on Aug. 5, 2011, by Richard T. Fish et al. and entitled “OPTICAL ASSEMBLY FOR LIGHT SENSOR,” the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (172)
Number Name Date Kind
2632040 Rabinow Mar 1953 A
2762930 Onksen, Jr. et al. Sep 1956 A
2827594 Rabinow Mar 1958 A
3260849 Polye Jul 1966 A
3601614 Platzer, Jr. Aug 1971 A
3680951 Jordan et al. Aug 1972 A
3711722 Kavanagh Jan 1973 A
3746430 Brean et al. Jul 1973 A
3749477 Willoughby et al. Jul 1973 A
3828220 Moore et al. Aug 1974 A
3866067 Amelio Feb 1975 A
3914309 Swensen Oct 1975 A
4023368 Kelly May 1977 A
4140142 Dormidontov et al. Feb 1979 A
4161653 Bedini et al. Jul 1979 A
4208668 Krimmel Jun 1980 A
4225782 Kuppenheimer et al. Sep 1980 A
4293877 Tsunekawa et al. Oct 1981 A
4315159 Niwa et al. Feb 1982 A
4355271 Noack Oct 1982 A
4443057 Bauer et al. Apr 1984 A
4465370 Yuasa et al. Aug 1984 A
4469417 Masunaga et al. Sep 1984 A
4475036 Bauer et al. Oct 1984 A
4547676 Suzuki et al. Oct 1985 A
4580875 Bechtel et al. Apr 1986 A
4603946 Kato et al. Aug 1986 A
4620141 McCumber et al. Oct 1986 A
4632509 Ohmi et al. Dec 1986 A
4652745 Zanardelli Mar 1987 A
4669826 Itoh et al. Jun 1987 A
4678938 Nakamura Jul 1987 A
4684222 Borrelli et al. Aug 1987 A
4690508 Jacob Sep 1987 A
4692798 Seko et al. Sep 1987 A
4697883 Suzuki et al. Oct 1987 A
4701022 Jacob Oct 1987 A
4770514 Silverglate Sep 1988 A
4793690 Gahan et al. Dec 1988 A
4798956 Hochstein Jan 1989 A
4799768 Gahan Jan 1989 A
4819071 Nakamura Apr 1989 A
4859867 Larson et al. Aug 1989 A
4862037 Farber et al. Aug 1989 A
4867561 Fujii et al. Sep 1989 A
4871917 O'Farrell et al. Oct 1989 A
4886960 Molyneux et al. Dec 1989 A
4891559 Matsumoto et al. Jan 1990 A
4902108 Byker Feb 1990 A
4916307 Nishibe et al. Apr 1990 A
4916374 Schierbeek et al. Apr 1990 A
4917477 Bechtel et al. Apr 1990 A
4930742 Schofield et al. Jun 1990 A
4956591 Schierbeek et al. Sep 1990 A
4960996 Hochstein Oct 1990 A
4967319 Seko Oct 1990 A
4973844 O'Farrell et al. Nov 1990 A
4987354 Steinmann Jan 1991 A
5036437 Macks Jul 1991 A
5105207 Nelson Apr 1992 A
5124549 Michaels et al. Jun 1992 A
5140455 Varaprasad et al. Aug 1992 A
5160971 Koshizawa Nov 1992 A
5172206 Iizuka Dec 1992 A
5204778 Bechtel Apr 1993 A
5214274 Yang May 1993 A
5214275 Freeman et al. May 1993 A
5220317 Lynam et al. Jun 1993 A
5235178 Hegyi Aug 1993 A
5243215 Enomoto et al. Sep 1993 A
5276389 Levers Jan 1994 A
5306992 Droge Apr 1994 A
5313072 Vachss May 1994 A
5329206 Slotkowski et al. Jul 1994 A
5336980 Levers Aug 1994 A
5338691 Enomoto et al. Aug 1994 A
5343330 Hoffman et al. Aug 1994 A
5386111 Zimmerman Jan 1995 A
5386128 Fossum et al. Jan 1995 A
5400072 Izumi et al. Mar 1995 A
5410455 Hashimoto Apr 1995 A
5416313 Larson et al. May 1995 A
5416318 Hegyi May 1995 A
5426294 Kobayashi et al. Jun 1995 A
5434407 Bauer et al. Jul 1995 A
5451822 Bechtel et al. Sep 1995 A
5471515 Fossum Nov 1995 A
5483346 Butzer Jan 1996 A
5488416 Kyuma Jan 1996 A
5498866 Bendicks et al. Mar 1996 A
5508592 Lapatovich et al. Apr 1996 A
5526190 Hubble, III et al. Jun 1996 A
5537003 Bechtel et al. Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5561773 Kalish et al. Oct 1996 A
5581240 Egger Dec 1996 A
5598146 Schroder Jan 1997 A
5602384 Nunogaki et al. Feb 1997 A
5614788 Mullins et al. Mar 1997 A
5625210 Lee et al. Apr 1997 A
5644418 Woodward Jul 1997 A
5650643 Konuma Jul 1997 A
5659294 Schroder Aug 1997 A
5659423 Schierbeek et al. Aug 1997 A
5660454 Mori et al. Aug 1997 A
5661303 Teder Aug 1997 A
5663542 Kohr et al. Sep 1997 A
5666028 Bechtel et al. Sep 1997 A
5666037 Reime Sep 1997 A
5675438 Nagao et al. Oct 1997 A
5703568 Hegyi Dec 1997 A
5712685 Dumas Jan 1998 A
5715093 Schierbeek et al. Feb 1998 A
5724187 Varaprasad et al. Mar 1998 A
RE35762 Zimmerman Apr 1998 E
5743946 Aoki et al. Apr 1998 A
5760962 Schofield et al. Jun 1998 A
5789737 Street Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5796106 Noack Aug 1998 A
5808350 Jack et al. Sep 1998 A
5811793 Pientka Sep 1998 A
5818600 Bendicks et al. Oct 1998 A
5821863 Schroder et al. Oct 1998 A
5837994 Stam et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5841159 Lee et al. Nov 1998 A
5841177 Komoto et al. Nov 1998 A
5844682 Kiyomoto et al. Dec 1998 A
5869883 Mehringer et al. Feb 1999 A
5872437 Pientka et al. Feb 1999 A
5877897 Schofield et al. Mar 1999 A
5883605 Knapp Mar 1999 A
5904493 Lee et al. May 1999 A
5923027 Stam et al. Jul 1999 A
5942853 Piscart Aug 1999 A
5990469 Bechtel et al. Nov 1999 A
6008486 Stam et al. Dec 1999 A
6027955 Lee et al. Feb 2000 A
6037824 Takahashi Mar 2000 A
6069378 Toyoda et al. May 2000 A
6097023 Schofield et al. Aug 2000 A
6114688 Tanaka et al. Sep 2000 A
6169295 Koo Jan 2001 B1
6196688 Caskey et al. Mar 2001 B1
6313457 Bauer et al. Nov 2001 B1
6320182 Hubble, III et al. Nov 2001 B1
6323487 Wu Nov 2001 B1
6359274 Nixon et al. Mar 2002 B1
6376824 Michenfelder et al. Apr 2002 B1
6379013 Bechtel et al. Apr 2002 B1
6389687 Glenn et al. May 2002 B1
6396040 Hill May 2002 B1
6441886 Suzuki et al. Aug 2002 B2
6504142 Nixon et al. Jan 2003 B2
6521916 Roberts et al. Feb 2003 B2
6547404 Schierbeek Apr 2003 B2
6548808 Ozawa Apr 2003 B2
6618181 Bauer et al. Sep 2003 B2
6679608 Bechtel et al. Jan 2004 B2
6831268 Bechtel et al. Dec 2004 B2
6918674 Drummond et al. Jul 2005 B2
6947077 Krymski Sep 2005 B1
7342707 Roberts et al. Mar 2008 B2
7361875 Bechtel et al. Apr 2008 B2
7524092 Rodriguez Barros et al. Apr 2009 B2
7543946 Ockerse et al. Jun 2009 B2
7855755 Weller et al. Dec 2010 B2
8339526 Minikey, Jr. et al. Dec 2012 B2
20030127583 Bechtel et al. Jul 2003 A1
20050024729 Ockerse et al. Feb 2005 A1
20080179402 Barkan et al. Jul 2008 A1
Foreign Referenced Citations (26)
Number Date Country
2946561 May 1981 DE
19526249 Feb 1996 DE
000653 Feb 1979 EP
0677731 Nov 2002 EP
2641237 Jul 1990 FR
2726144 Apr 1996 FR
2056059 Mar 1981 GB
2169861 Jul 1986 GB
2342502 Apr 2000 GB
5036790 Nov 1975 JP
59199347 Nov 1984 JP
61291241 Dec 1986 JP
0174413 Mar 1989 JP
H1237232 Sep 1989 JP
05340816 Dec 1993 JP
08107235 Apr 1996 JP
8166221 Jun 1996 JP
9126998 May 1997 JP
09331075 Dec 1997 JP
11087785 Mar 1999 JP
2971750 Aug 1999 JP
2000031582 Jan 2000 JP
2000133821 May 2000 JP
2001077424 Mar 2001 JP
2002134794 May 2002 JP
WO8605147 Sep 1986 WO
Non-Patent Literature Citations (5)
Entry
Patent Cooperation Treaty, International Searching Authority, International Search Report, Written Opinion of the International Searching Authority and Notification of Transmittal, Nov. 29, 2012, 6 Pages.
Tohru Shimizu et al., “SAE Paper No. 980322, pp. 113-117.”
Christopher M. Kormanyos, “SAE Paper No. 980003, pp. 13-18.”
Franz-Josef Kalze, “SAE Paper No. 980005, pp. 23-26.”
J.P. Lowenau et al., “SAE Paper No. 980007, pp. 33-38.”
Related Publications (1)
Number Date Country
20130032704 A1 Feb 2013 US
Provisional Applications (1)
Number Date Country
61515389 Aug 2011 US