This invention relates to optical devices. More specifically, embodiments of the present invention relate to a folded optical system with compact free form reflectors, which collimate a multi-cavity LED light engine to a narrow beam.
Applications for high intensity, high efficiency narrow beams are prevalent through the lighting industry. Certain industries, for instance the entertainment, architectural or theater industries, have applications for specialized lighting which can benefit from an apparatus or system which is able to collimate and control the direction at which the light is projected. In addition, there is a need to “throw” or project a selected color for a relatively long distance while maintaining an acceptable level of illumination and color uniformity. A long throw distance requires a narrow beam at a high intensity, while minimizing the intensity dispersion.
A directed light beam is light emitted in a preferred direction, and can be characterized by beam angle and dispersion. Beam width refers to the full-beam dispersion angle at which the off-axis luminous intensity of the light is one-half of the maximum on-axis luminous intensity (measured in candela), and field width refers to the full-angle at which the off-axis luminous intensity of the light has fallen to 10% of the on-axis luminous intensity. Dispersion is a measure of the distribution of the luminous intensity over the beam angle. The throw distance is increased when the emitted light is concentrated into a small beam angle with a small dispersion.
Conventional LED arrays produce light emissions having a relatively wide Lambertian beam angle of, e.g., 120°. The conventional LED arrays can be coupled with primary optics, thereby capable of forming, for example, an LED light engine in a 1.5×1.5 inch package and producing a light beam having an intensity of 1,000 lumens over a still wide beam angle of 60°, such as the Lamina Lighting Titan™, suitable for some residential, stage, architectural, and commercial lighting applications. Such light engines typically include multiple emitters and cavities to produce a light beam having an acceptable intensity, however this increases the apparent source size to be much larger than the apparent source size from a single emitter light engine, thereby making it more difficult to collimate the light into a beam having a low level of intensity dispersion.
Conventional collimation solutions which are tall (e.g., ≧5″) or wide (e.g., ≧6″) are too costly to manufacture, ship, and install when the light source itself is already two to three times the cost of energy-inefficient incandescent and halogen sources that it replaces. A compact, low-cost collimation design is preferable for applications where space or cost considerations dominate. Therefore, a need exists to provide a compact, low-cost optics assembly which can optimize the collimation and throw distance of a light beam produced by a light engine.
According to the present invention, an optical assembly produces a narrow beam by replacing a single tall reflector with a compact optical system including two revolved spline reflectors, e.g., ≦2″ tall and ≦5″ wide. Micro-facets on the reflectors improve the uniformity of the beam with a minimal degradation in intensity dispersion. Light emitted by the LEDs passes through an optical assembly including the optical features of a primary reflector and a secondary reflector, the reflectors having predetermined shapes which cooperatively match in order to produce a light beam having a desired amount of collimation.
A device in accordance with an embodiment of the present invention preferably includes one or more of the following assembly design features or functions:
1) a light engine mounted on a substantially planar substrate, the light engine having multiple light emitters, each light emitter situated within a cavity, in which the light produced by the light engine is produced having a predetermined beam angle, and directed along a predetermined direction;
2) a secondary reflector having a substantially concave shape, oriented having a central axis substantially perpendicular to the substrate, having an entrance aperture, and an exit aperture at the top of the concave shape, the entrance aperture may be co-planar with the substrate and enclosing the light engine, and one or more mounting locations adjacent to the exterior of the exit aperture;
3) a plurality of support struts, each having a lower end attached to the substrate, and an upper end attached to a mounting portion of the secondary reflector;
4) one or more support spars, each support spar having an outer end attached to a mounting portion of the secondary reflector, and having an inner end extending toward the central axis of the secondary reflector;
5) a primary reflector attached to the inner end of a support spar, the primary reflector having a reflective surface facing the light engine, the support spar suspending the primary reflector within the predetermined beam angle of the light engine.
Embodiments of the present invention will be more readily understood from the detailed description of exemplary embodiments presented below considered in conjunction with the accompanying drawings, in which:
Structure of the Optical Assembly
Referring to
Referring to both
Under the secondary reflector 5 are two or more support struts 6, which stabilize and provide physical support to secondary reflector 5. The preferred configuration is three support struts 6 approximately equally-spaced, as shown in
Those skilled in the art will recognize that other means may be used to position, support, and align the secondary reflector 5 with respect to the primary reflector 3, e.g., a truss; or support ribs embedded in secondary reflector 5; or if secondary reflector 5 provides adequate stiffness then no additional support may be required.
In one embodiment, a first end 4a of one or more support spars 4 is attached to the mounting area 9, preferably at a location of mounting area 9 that is supported by a support strut 6. The means of attaching support spar 4 to the mounting area 9 may include bonding with an adhesive, or by having a portion of support spar 4 located between mounting area 9 and the locking portion of strut head 6a, thereby causing the first end 4a of support spar 4 to be physically held in place by the compression force exerted by the locking portion of strut head 6a.
In other embodiments, the first end 4a of the one or more support spars 4 may be attached to one or more struts 6, or directly to the substrate 2.
The second end of support spar 4 is attached to mounting ring 10. The means for attaching support spar 4 to mounting ring 10 may include adhesive, a physical snap connection similar to that which may be used to attach the locking portion of strut head 6a to the secondary reflector 5, or any combination of such methods. The lower surface of mounting ring 10 is attached to the upper surface of the folded path primary reflector 3.
The folded path primary reflector 3 is a structure having a reflective surface facing the light engine 1, and having a cross-section at least partially within the beam width produced by the light engine 1. Support spar 4 acts to hold the folded path primary reflector 3 in the required position within the beam width of light engine 1, and with the required degree of stability. Although one or two support spars 4 may be adequate to hold the folded path primary reflector 3 if the support spars 4 have adequate stiffness, three support spars 4 are preferred in order to provide a more stable support.
Preferred embodiments of the optical assembly are compact and low profile but may exhibit reduced efficiency due to light blockage by the support spars 4 and some uncaptured light from light engine 1 that does not strike both the folded path primary reflector 3 and secondary reflector 5.
Operation of the Optical Assembly
Referring to
Light emitted from the LEDs 1a superimposes to produce a beam of light having a desired level of uniformity. In one embodiment, generally acceptable uniformity includes an illuminance distribution which deviates by less than 20% within 5° of the optical axis of the light engine system. The field width of the intensity dispersion is 100°.
The primary reflector 3 is located within the beam angle of light from the light engine 1. The primary reflector 3 has a reflective surface facing the light engine 1 which may include facets to improve the light mixing. The facets include a simple tessellation (i.e., a repeating pattern) of the spline from a continuously varying function to that of a discrete function. The facets are flat. Faceting may also be included on the reflective surface of the secondary reflector 5. Table 1 presents five embodiments of facet design. The design of facet level 0 provides a relatively small number of larger facets, progressing to facet level 4 which provides a relatively large number of smaller facets.
The preferred embodiment of facet design among the levels of Table 1 is facet level 3, having 2,835 facets, providing a preferred combination of simple facets producing a 10° beam with acceptable uniformity. Persons skilled in the art will recognize that the number of facets of each facet level may be varied 5-10% from the exact values given in Table 1 without producing an unacceptable change in beam width or uniformity from that of the nearest facet level. Generally, the higher the number of facets the lower the intensity dispersion and uniformity.
Optical devices and features for controlled color mixing developed by the applicant, including faceting, are known and described in commonly-assigned U.S. patent application Ser. No. 11/737,101, the entire content of which is incorporated by reference herein in its entirety.
The primary reflector 3, aside from the faceting, is rotationally symmetric, having an approximate shape similar to a cone having a narrow end pointed toward the light engine 1. More specifically, the primary reflector 3 has a cross-sectional profile in the X-Z plane described as a free-form bezier spline.
Light emitted by the light engine 1 at an angle of approximately 45° to 90° with respect to the surface of substrate 2 will reflect from the primary reflector 3 toward the secondary reflector 5. Light emitted by the light engine 1 at an angle of approximately 0° to 30° will strike the secondary reflector 5 directly and be reflected to the side, forming side light. Light emitted by the light engine 1 at an angle of approximately 30° to 45° is uncaptured spill light.
Both side light and spill light are undesirable because they lessen the amount of light in the main beam produced by the optical assembly. In order to lessen the amount of spill light, the angle of emissions from light engine 1 that produces spill light can be reduced by constraining the optic assembly into as low a profile as possible.
The secondary reflector 5 is generally of an upwardly concave shape with a reflective inner surface facing the primary reflector 3. The secondary reflector 5 has a cross-sectional profile in the X-Z plane which is more precisely described as a free-form bezier spline. The secondary reflector 5 receives light reflected by the primary reflector 3, and reflects the light upward with the desired amount of collimation by performing a cosine correction by which collimation of the light is improved. The secondary reflector 5 may include facets on its inner surface, thereby improving the uniformity of the light beam reflected from the secondary reflector 5 with minimal degradation to intensity dispersion. The facets are produced by converting a circle into a polygon by dividing the 360 degrees of the circle into “N” segments of approximately equal size, where N is the number of sides of the polygon. The facets are simple square facets having a flat surface shape. Support spars 4 block a small portion of the light.
Embodiments of the present invention provide a more compact assembly compared to the prior art.
The above description is presented to enable a person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the preferred embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Thus, this invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
This application may disclose several numerical range limitations. Persons skilled in the art would recognize that the numerical ranges disclosed inherently support any range within the disclosed numerical ranges even though a precise range limitation is not stated verbatim in the specification because this invention can be practiced throughout the disclosed numerical ranges. The entire disclosure of the patents and publications referred in this application are hereby incorporated herein by reference.
This application claims priority from U.S. Provisional Patent Application No. 60/885,224, the entire content of which is hereby incorporated by reference in its entirety. Numerous references including various publications may be cited and discussed in the description of this invention. The citation and/or discussion of such references is provided merely to clarify the description of the present invention and is not an admission that any such reference is “prior art” to the present invention. All references cited and discussed in this specification are incorporated herein by reference in their entirety and to the same extent as if each reference was individually incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/051302 | 1/17/2008 | WO | 00 | 7/16/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/089324 | 7/24/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4174533 | Barthes et al. | Nov 1979 | A |
4580748 | Dalby | Apr 1986 | A |
6097549 | Jenkins et al. | Aug 2000 | A |
6629771 | Chiu | Oct 2003 | B2 |
6758582 | Hsiao et al. | Jul 2004 | B1 |
7181378 | Benitez et al. | Feb 2007 | B2 |
7517113 | Bruckner | Apr 2009 | B2 |
7784977 | Moolman et al. | Aug 2010 | B2 |
20030016539 | Minano et al. | Jan 2003 | A1 |
20030117798 | Leysath | Jun 2003 | A1 |
20050157503 | Lin | Jul 2005 | A1 |
20050169006 | Wang et al. | Aug 2005 | A1 |
20080047605 | Benitez et al. | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100039822 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60885224 | Jan 2007 | US |