The present disclosure relates generally to an optical assembly and to an optical subassembly of the optical assembly that includes a vertical cavity surface emitting laser (VCSEL) device disposed on an integrated circuit (IC) driver chip.
Time-of-flight (ToF) systems, such as three-dimensional (3D) sensing systems, light detection and ranging (LIDAR) systems, and/or the like, emit optical pulses into a field of view, detect reflected optical pulses, and determine distances to objects in the field of view by measuring delays and/or differences between the emitted optical pulses and the reflected optical pulses.
In some implementations, an optical subassembly includes an IC driver chip; a redistribution layer (RDL) structure that is disposed on a surface of the IC driver chip, wherein the RDL structure includes a cavity; and a VCSEL device disposed on a region of the surface of the RDL structure that is within the cavity of the RDL structure.
In some implementations, an optical assembly includes a substrate; an optical subassembly that is disposed on a region of a surface of the substrate; a housing that is disposed on another region of the surface of the substrate; a first optical element that is disposed on a first support component of the housing; and a second optical element that is disposed on a second support component of the housing, wherein the optical subassembly includes: an IC driver chip, an RDL structure that is disposed on a surface of the IC driver chip, wherein the RDL structure includes a cavity, and a VCSEL device disposed on a region of the surface of the RDL structure that is within the cavity of the RDL structure.
In some implementations, an optical assembly includes a substrate; and an optical subassembly that is disposed on a region of a surface of the substrate, wherein the optical subassembly comprises: an IC driver chip, an RDL structure that is disposed on a surface of the IC driver chip, wherein the RDL structure includes a cavity, and a VCSEL device disposed on a region of the surface of the RDL structure that is within the cavity of the RDL structure.
The following detailed description of example implementations refers to the accompanying drawings. The same reference numbers in different drawings may identify the same or similar elements.
A conventional projector module can be used for a three-dimensional (3D) sensing application, such as a time-of-flight (TOF) application. In some cases, the conventional projector module can be assembled using a conventional packaging process. For example, an IC driver chip, a VCSEL device, and a capacitor can be bonded onto a surface of a substrate by using solder reflow, and other components can be attached to the surface of the substrate by epoxy. However, the IC driver chip occupies a large region of the surface of the substrate, which increases a size of the substrate and therefore increases a size (e.g., an XY footprint) of the conventional projector module. This prevents the conventional projector module from being included in some user devices, such as smart phones.
Moreover, a conventional projector module includes a photodiode (PD) and a collimating lens. The PD can detect an in-field failure of the collimating lens (e.g., when the collimator lens is broken or has fallen off a housing of the conventional projector module). When the PD detects an in-field failure, the IC driver shuts down the VCSEL device of the conventional projector module (e.g., to prevent further emission of light by the VCSEL device for eye safety compliance). However, inclusion of the PD in the conventional projector module further increases the size (e.g., the XY footprint) of the conventional projector module.
Further, a typical substrate used in a conventional projector module includes multiple dielectric layers, which impede a thermal conductivity of the substrate. Consequently, a conventional projector module suffers from a high thermal resistance that decreases an optical power output of the conventional projector module (e.g., due to a high VCSEL junction temperature associated with the VCSEL device of the conventional projector module).
Some implementations described herein provide an optical subassembly for an electro-optical device, such as a ToF device. The optical subassembly includes an IC driver chip and an RDL structure that is disposed on a surface of the IC driver chip. The optical subassembly further includes a VCSEL device disposed on a region of the surface of the RDL structure. Accordingly, by disposing the VCSEL device over the IC driver chip (e.g., instead of positioning the VCSEL device and the IC driver chip next to each other), the optical subassembly has a reduced size as compared to a substrate of a conventional projector module and, thus, a size (e.g., an XY footprint) of the electro-optical device is reduced as compared to a size of the conventional projector module. This enables the electro-optical device to be included in some user devices, such as smart phones.
Some implementations described herein provide an optical assembly for an electro-optical device. The optical assembly includes the optical subassembly (described herein), a substrate, a housing, and a plastic optical element, such as a plastic collimating lens. The plastic optical element is attached to the housing (e.g., over the VCSEL device of the optical subassembly) via one or more ultrasonic welds and/or one or more laser welds. Accordingly, by using a plastic optical element that is less likely to break (e.g., as compared to a glass optical element) and that is unlikely to fall off from the housing (e.g., because the plastic optical element is integrated into the housing via the one or more ultrasonic welds and/or the one or more laser welds), a PD does not need to be included in the optical subassembly to detect a failure of the plastic optical element. In this way, a size of the optical subassembly is additionally reduced and, thus, a size (e.g., an XY footprint) of the electro-optical device is additionally reduced as compared to a size of a conventional projector module.
In some implementations, the RDL structure of the optical subassembly includes one or more dielectric layers (e.g., each with a thickness that is less than or equal to 5 μm) that are thinner than a dielectric material typically included in a substrate of a conventional projector module. Accordingly, the one or more dielectric layers have a reduced effect on a thermal conductivity of the RDL structure. Additionally, in some implementations, the RDL structure includes a cavity and the VCSEL device is disposed on a region of the surface of the RDL structure that is within the cavity of the RDL structure. This reduces a number of dielectric layers through which heat generated by the VCSEL device has to pass in the RDL structure. The heat then dissipates to the IC driver chip, which has a high thermal conductivity (e.g., because the IC driver chip comprises silicon (Si) or another material with high thermal conductivity). Therefore, the electro-optical device has an improved thermal performance as compared to a conventional projector module, which causes the electro-optical device to have an increased optical power output as compared to the optical power output of the conventional projector module (e.g., due to a lower VCSEL junction temperature associated with the VCSEL device of the electro-optical device).
The IC driver chip 102 may comprise silicon (Si), indium phosphide (InP), gallium arsenide (GaAs), and/or another similar material. The IC driver chip 102 may be configured to generate and provide an electric signal to the VCSEL device 110 (e.g., to cause the VCSEL device 110 to emit an output beam). The passivation layer 104 may include silicon nitride (Si3N4), silicon dioxide (SiO2), and/or another passivation material. As shown in
The RDL structure 106 may include a set of bond pads 112 (e.g., one or more bond pads 112, shown as bond pads 112-1 and 112-2 in
In some implementations, the RDL structure 106 may include a cavity 118. For example, a portion of one or more metal layers 114, of the set of metal layers 114, and/or a portion of one or more dielectric layers 116, of the set of dielectric layers 116, may be removed (e.g., using an etch removal process), or may not be formed, to cause the RDL structure 106 to include the cavity 118. In this way, as shown in
In some implementations, the set of bond pads 112 of the RDL structure 106 may be disposed on respective regions of the surface of the IC driver chip 102 (e.g., respective regions of the top surface of the IC driver chip 102). For example, as shown in
Each of the set of metal layers 114 of the RDL structure 106 may comprise, for example, tungsten (W), a W alloy, copper (Cu), a Cu alloy, a CuW alloy, molybdenum (Mo), a Mo alloy, a WMo alloy, silver (Ag), and/or an Ag alloy. Each of the set of dielectric layers 116 of the RDL structure 106 may comprise, for example, polyimide, an Ajinomoto build-up film (ABF), and/or another dielectric material. In some implementations, a dielectric layer 116, of the set of dielectric layers 116, may be disposed between two different metal layers 114 of the set of metal layers 114. For example, as shown in
The set of metal layers 114 and the set of dielectric layers 116 may be arranged in a particular order. In some implementations, the set of metal layers 114 and the set of dielectric layers 116 may be arranged in an alternating order, such as an (A/B)N order, a (B/A)N order, an (AB)NA order, or a (B/A)NB order (e.g., where A represents a metal layer 114, B represents a dielectric layer 116, and N≥1 and represents a number of times a pattern enclosed in parentheses is repeated). For example, as shown in
In some implementations, the RDL structure 106 may include a set of conductive structures 124 (e.g., one or more conductive structures 124, shown as conductive structures 124-1 through 124-5 in
The capacitor 108 may be disposed on a first region of a surface of the RDL structure 106 (e.g., a first region of a top surface of the RDL structure 106). In some implementations, the capacitor 108 may be electrically and/or structurally connected to the first region of the surface of the RDL structure via an attachment material 126, such as an epoxy (e.g., silver-epoxy (Ag-epoxy), sintered Ag-epoxy, or semi-sintered Ag-epoxy), a solder, and/or a similar material.
The VCSEL device 110 may be disposed on a second region of the surface of the RDL structure 106 (e.g., a second region of the top surface of the RDL structure 106). In some implementations, the VCSEL device 110 may be electrically and/or structurally connected to the second region of the surface of the RDL structure 106 via an attachment material 128, such as a conductive epoxy (e.g., sintered Ag-epoxy, semi-sintered Ag-epoxy, or Ag-epoxy), a solder, and/or a similar material. In some implementations, the second region may be associated with the cavity 118 of the RDL structure 106. For example, as shown in
In some implementations, a first metal layer 114, of the set of metal layers 114, may be configured as a ground for the VCSEL device 110. For example, as shown in
In some implementations, a third metal layer 114, of the set of metal layers 114, may be located at one or more portions of the top surface of the RDL structure 106. For example, as shown in
As indicated above,
The optical subassembly 202 may be the same as, or similar to, the optical subassembly 100 described herein in relation to
The substrate 204 may be a lead frame, such as Cu-based molded lead frame, or Cu alloy-based molded lead frame, or metal alloy with thermal conductivity greater than or equal to a thermal conductivity threshold (e.g., 15 watts W/mK). In some implementations, the optical subassembly 202 may be disposed on a region of a surface of the substrate 204 (e.g., a region of a top surface of the substrate 204). For example, as shown in
In some implementations, the optical subassembly 202 may be electrically and/or structurally connected to the region of the surface of the substrate 204 via an attachment material 216, such as an epoxy (e.g., sintered Ag-epoxy, semi-sintered Ag-epoxy, or Ag-epoxy), a solder, and/or a similar material. In some implementations, one or more encapsulations 218 (shown as encapsulations 218-1 and 218-2) may be disposed on respective portions of the optical subassembly 202 and/or the substrate 204. For example, as shown in
The housing 206 may comprise a polymer material, a plastic material, and/or a similar material and may be disposed on the substrate 204. For example, as shown in
In some implementations, the housing 206 may include at least one first support component 224 that is configured to hold the first optical element 208. For example, as shown in
In some implementations, the housing 206 may include at least one second support component 228 that is configured to hold the second optical element 210. For example, as shown in
In some implementations, the housing 206 may include a conductive path 232 associated with the second optical element 210 (e.g., to facilitate detection of damage to the second optical element 210). The conductive path 232 may comprise, for example, indium tin oxide (ITO). As further shown in
As further shown in
As indicated above,
The optical subassembly 302 may be the same as, or similar to, the optical subassembly 100 described herein in relation to
The substrate 304 may be an open-cavity ceramic substrate, such as an open-cavity high temperature co-fired ceramic (HTCC) substrate, an open-cavity low temperature co-fired ceramic (LTCC) substrate, or a similar substrate. In some implementations, the open-cavity ceramic substrate may comprise aluminum oxide (Al2O3), aluminum nitride (AlN), or a similar material. In some implementations, the optical subassembly 302 may be disposed on a region of a surface of the substrate 304 (e.g., a region of a top surface of the substrate 304). For example, as shown in
In some implementations, the optical subassembly 302 may be electrically and/or structurally connected to the region of the surface of the substrate 304 via an attachment material 316, such as an epoxy (e.g., sintered Ag-epoxy, semi-sintered Ag-epoxy, or Ag-epoxy), a solder, and/or a similar material. In some implementations, the substrate 304 may include one or more vias 318. The one or more vias 318 may be empty (e.g., hollow) or filled with a metal, such as W, a W alloy, Cu, a Cu alloy, a CuW alloy, Mo, a Mo alloy, a WMo alloy, Ag, and/or an Ag alloy, among other examples.
The housing 306 may comprise a polymer material, a plastic material, and/or a similar material and may be disposed on the substrate 304. For example, as shown in
In some implementations, the housing 306 may include at least one first support component 324 that is configured to hold the first optical element 308. For example, as shown in
In some implementations, the housing 306 may include at least one second support component 328 that is configured to hold the second optical element 310. For example, as shown in
In some implementations, the housing 306 may include a conductive path 332 associated with the second optical element 310 (e.g., to facilitate detection of damage to the second optical element 310). The conductive path 332 may comprise, for example, ITO. As further shown in
As further shown in
As indicated above,
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the implementations to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the implementations. Furthermore, any of the implementations described herein may be combined unless the foregoing disclosure expressly provides a reason that one or more implementations may not be combined.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various implementations. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various implementations includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiple of the same item.
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more.” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more.” Furthermore, as used herein, the term “set” is intended to include one or more items (e.g., related items, unrelated items, or a combination of related and unrelated items), and may be used interchangeably with “one or more.” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has,” “have,” “having,” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or,” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of”). Further, spatially relative terms, such as “below,” “lower,” “bottom,” “above,” “upper,” “top,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the apparatus, device, and/or element in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
This application claims priority to U.S. Provisional Patent Application No. 63/213,601, for “MINIATURIZED PACKAGING OF 3D SENSING PROJECTOR WITH HIGH OPTICAL POWER,” filed on Jun. 22, 2021, the content of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63213601 | Jun 2021 | US |