Claims
- 1. A system for molding an optical attenuator that includes a lens portion and a supporting portion unitary with the lens portion, the system comprising:an injection molding machine including a mold having: a cavity element and a core element which together define a space in which said supporting portion can be molded, a portion of the cavity element defining one surface of said lens portion, the cavity element and core element being separable from each other by an actuating motor of the molding machine subsequent to each injection cycle to permit removal of each optical attenuator molded between the cavity element and the core element, and a core pin, movably located in the core element and having a proximal end defining a second surface of the lens portion, and a core pin motor coupled to the core pin for moving the core pin relative to the core element to adjust a thickness of the lens portion, an extractor situated adjacent to the mold for extracting each optical attenuator from the mold, the extractor including an optical measuring device for measuring the thickness of the lens portion, the optical measuring device including an output for a signal indicative of the thickness of the lens portion, and a controller having an input coupled to the output of the optical measuring device, a first output coupled to the core pin motor, and a second output coupled to the actuating motor of the molding machine, the first output providing a first signal specifying any movement of the core pin motor necessary to achieve a desired thickness of the lens portion, and the second output providing a second signal for initiating an injection cycle by the injection molding machine.
- 2. The system of claim 1 wherein the mold further comprises a core pin holder block holding a distal end of the core pin, a ball screw end cap fixed to the core pin holder block, a ball screw engaged in the ball screw holder block so that rotation of the ball screw relative to the ball screw end cap causes movement of the core pin holder block to adjust the position of the core pin relative to the core element.
- 3. The system of claim 2 wherein the mold further comprises a first pulley fixed to the ball screw; a second pulley fixed to the core pin motor, and a transmission coupling the first and second pulley so that rotation of the core pin motor is transferred to the ball screw for adjusting the position of the core pin relative to the core element.
- 4. The system of claim 3 wherein the transmission coupling the first an second pulley comprises a flexible belt, and wherein the core pin motor comprises a servo motor.
- 5. The system of claim 1 wherein the optical measuring device for measuring the thickness of the lens portion comprises a laser emitting a light signal that passes through each lens portion subsequent to extraction of each optical attenuator from the mold, and measurement means for measuring the attenuation of the light signal by each lens portion, the measurement means having an output coupled to the output of the optical measuring device.
- 6. The system of claim 1 wherein the controller comprises a general purpose computer programmed with at least one standard relating to the optical attenuator, and programmed to process the signal indicative of the thickness of the lens portion that is output from the optical measuring device so as to determine whether an adjustment of the position of the core pin is necessary to comply with the at least one standard.
- 7. The system of claim 6 wherein the general purpose computer further includes means for determining the amount of movement of the core pin motor necessary to correct any given deviation from the at least one standard for the optical attenuator.
CROSS-REFERENCE TO RELATED FILES
The present application is a divisional application of Ser. No. 09/837,121 filed Apr. 18, 2001, which is now U.S. Pat. No. 6,494,706.
US Referenced Citations (18)