The present invention relates to optical cables and more particularly, to a system and method for establishing an electrical connection to a shield layer of an optical cable.
Optical fibers may be used as transmission paths for optical signals in communications networks. Such optical fibers often must extend across many miles and large bodies of water. To protect the optical fibers, particularly in an undersea or submarine environment, the optical fibers may be included in an optical cable that provides many layers of protection. An undersea or submarine optical cable may include, for example, layers of strength members, tubing, insulation, shielding, and sheaths depending upon the system environmental conditions.
Optical cables sometimes must be coupled to other cables or to other devices (e.g., to repeaters or branching units). To repair an optical cable, for example, one segment of the optical cable may be coupled to another segment of an optical cable using a cable-to-cable joint such as a universal joint as specified by the Universal Jointing (UJ) Consortium or a Millennia® Joint available from Tyco Telecommunications (U.S.) Inc. When joining optical cables including a metallic shield layer (sometimes referred to as a screen layer), an electrical connection may be made to the shield layer, for example, to provide a ground path or a continuity path from the shield layer to another cable segment or device. When such an electrical connection is made, the shield layer and the electrical connection may be sealed from water (e.g., in an undersea environment).
Existing processes for connecting wires to a screen layer in an optical cable have involved the use of heavy metal solders and chemical flux. Injection molding has been used over the connection to reinstate the insulation. Other processes have used corrosion resistant metals or a tapered screw thread and external collet arrangement. Such existing processes may involve extensive assembly time, potentially damaging heating, high cost and/or hazardous materials.
These and other features and advantages will be better understood by reading the following detailed description, taken together with the drawings wherein:
An optical cable shield layer connection may include a wire electrically connected to a shield layer of an optical cable. The optical cable shield layer connection may also be sealed to prevent leak paths. The optical cable shield layer connection may be made when coupling the optical cable to a device or another cable, for example, using a universal joint such as the Millennia® Joint available from Tyco Telecommunications (U.S.) Inc. The wire may provide a ground path from the shield layer or a continuity path from the shield layer to another optical cable.
Referring to
In an exemplary embodiment, the shield layer 106 may be a screen layer formed by a steel tape. The outer sheath 108 may be a polymer sheath made, for example, from polyethylene. Although the outer sheath 108 is shown as the outermost layer, other layers (e.g., additional layers of protection in an armored cable) may also be used around the outer sheath 108. The cable core portion 102 may include optical fibers 110 within a tube 112 surrounded by one or more layers of strength members 114, 116 (e.g., steel wires). The cable core portion 102 may also include a conductive sheath 118 (e.g., a copper sheath) and an insulating sheath 120 (e.g., a polyethylene sheath). One example of the optical cable 100 is the SPA Cable (Special Application Cable) available from Tyco Telecommunications (U.S.) Inc. Those skilled in the art will recognize that other optical cables including other layers may also be used in accordance with the connection system and method described herein.
Referring to
A portion of the outer sheath 208 (or any other outer layers) may be removed to expose a portion of a shield layer 206 (e.g., a screen layer formed from steel tape), as shown in
A stress relief termination (SRT) 222 may be placed on the shield layer 206, as shown in
A wire 230 may be positioned with a length of exposed conductor(s) 232 on the exposed shield layer 206, as shown in
A clamp 240 may be positioned over a first conductor portion 232a to secure the first conductor portion 232a against the shield layer 206, as shown in
After clamping the first conductor portion 232a against the shield layer 206, a first portion of sealant 250 may be applied over at least a portion of the shield layer 206, as shown in
After the first portion of sealant 250 is applied, the wire 230 may be folded over and embedded into the sealant 250, as shown in
When the wire 230 is folded over, a second conductor portion 232b lies against a first clamp portion of the clamp 240. A second clamp portion of the clamp 240 may then secure the second conductor portion 232b against the first clamp portion of the clamp 240,
Another portion of sealant 252 may also be applied to the shield layer 206 between the clamp 240 and the outer sheath 208, as shown in
An additional portion of sealant 254 may be applied over the entire connection, as shown in
Accordingly, the resulting optical cable system connection establishes an electrical connection to a shield layer of the cable and seals the connection and shield layer against leak paths. The connection may be made with a relatively short assembly time, without application of excessive heat, without the use of materials hazardous to a marine environment, and for relatively low cost. The optical cable shield layer connection may be established on both submarine optical cables and on land optical cables (e.g., adjacent to the submarine optical cables). The connection may be used during installation and repair of cable systems as well as during factory assembly of cable systems.
Consistent with one embodiment of the present invention, a method includes: providing an optical cable with an exposed shield layer extending from an outer sheath and a wire including at least one conductor; securing a first conductor portion of the at least one conductor of the wire to the exposed shield layer; folding the wire; securing a second conductor portion of the at least one conductor of the wire; and sealing at least a portion of the shield layer and the at least one conductor of the wire in a sealant.
Consistent with another embodiment of the present invention, an optical cable shield layer connection system includes an optical cable including a cable core portion, an outer sheath, and a shield layer located between the outer sheath and the cable core portion. The shield layer may include an exposed portion extending from the outer sheath. The connection system also includes a wire including at least one conductor with at least a first conductor portion secured in contact with the exposed portion of the shield layer and a second conductor portion folded relative to the first conductor portion. The connection system also includes at least one clamp securing the first and second conductor portions to the shield layer and a sealant encapsulating the conductor and the exposed portion of the shield layer.
While the principles of the invention have been described herein, it is to be understood by those skilled in the art that this description is made only by way of example and not as a limitation as to the scope of the invention. Other embodiments are contemplated within the scope of the present invention in addition to the exemplary embodiments shown and described herein. Modifications and substitutions by one of ordinary skill in the art are considered to be within the scope of the present invention, which is not to be limited except by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4032205 | Taj | Jun 1977 | A |
4950343 | Shimirak et al. | Aug 1990 | A |
5217808 | Cobb | Jun 1993 | A |
5528718 | Craig et al. | Jun 1996 | A |
5646370 | Perkins | Jul 1997 | A |
5657413 | Ray et al. | Aug 1997 | A |
6853780 | Brandi et al. | Feb 2005 | B1 |
20050180705 | Elkins et al. | Aug 2005 | A1 |
20070009214 | Elkins et al. | Jan 2007 | A1 |
20070104446 | Lu et al. | May 2007 | A1 |
Number | Date | Country |
---|---|---|
0430533 | Jun 1991 | EP |
9311584 | Jun 1993 | WO |
Number | Date | Country | |
---|---|---|---|
20070269169 A1 | Nov 2007 | US |