1. Field of the Invention
The present invention relates to an image inspection technique, and more particularly to an optical carriage structure of an inspection apparatus and its inspection method.
2. Description of the Prior Art
The drawback of industrial inspection by manual operation includes lower inspection speed and possible misjudgment. In addition, the difficulty of manual inspection increases with the increased complexity of sample. On the other hand, conventional industrial inspection apparatuses utilize scanners or cameras to obtain sample images for subsequent comparison; however, these industrial inspection apparatuses cost very much.
An optical carriage is configured within a scanner and connected to and driven by a stepping motor to move smoothly on a slide rail. The optical carriage usually includes an optical sensor array focusing and imaging a reflective or a transmitting light to a lens of the optical sensor array. A charge coupled device (CCD) is a commonly used linear optical sensor array and of reasonable price and good quality. The CCD array is stripe-shaped and comprises connected CCD. Each CCD represents a pixel, in which DPI (dots per inch) represents the resolution of the pixel. For example, the resolution 1200 dpi represents 1200 pixels per inch. A single-row grayscale CCD array is adopted in black and white scanning, and a three-row RGB CCD array is adopted in color scanning. As illustrated in
Assuming the same length of CCD arrays, for faster scanning speed, higher resolution as well as better and clear image quality, to increase pixels would decrease the dimension of single optical sensor and result in decreased photosensitivity and signal to noise ratio (S/N ratio). Hence, exposure time of scanning must be increased for enhancing the S/N ratio to obtain scanning images of the same quality; therefore, the scanning speed is decreased due to the increased scanning time. The above description illustrates the drawback of enhancing the resolution by increasing pixels.
However, in case of height difference of the sample surface, only components within a particular height can be captured clearly due to a single focal point of CCD. If the height difference of sample surface exceeds the tolerable focusing range of CCD greatly, the image comparison result would be severely influenced, e.g. a printed circuit board (PCB) with components of great height difference and high density in industrial inspection.
To sum up, it is now a current goal to achieve faster and more precise inspection.
The present invention is directed to provide an optical carriage structure of an inspection apparatus and its inspection method including a plurality of charge coupled device (CCD) arrays configured at different heights in the optical carriage, so as a plurality of individual images can be simultaneously captured in one scanning step to obtain a preferred inspection image for image comparison.
The present invention is directed to provide an optical carriage structure of an inspection apparatus and its inspection method including a plurality of CCD arrays configured at different heights in the optical carriage, so as those CCD arrays have enlarged focusing ranges and the depth of field is thus enhanced.
In an aspect, an optical carriage structure of an inspection apparatus includes a base, a first linear optical sensor array, and a second linear optical sensor array. The first linear optical sensor array and the second linear optical sensor array are configured at different heights in the base. A focal length of the first linear optical sensor array is equal to a vertical distance of the first linear optical sensor array to a first feature of a sample, and a focal length of the second linear optical sensor array is equal to a vertical distance of the second linear optical sensor array to a second feature of the sample.
In another aspect, an inspect method includes defining a scanning area and arranging a sample onto the scanning area; capturing a first image of the scanning area by using the first linear optical sensor array; capturing a second image of the scanning area by using the second linear optical sensor array, wherein the first image and the second image are simultaneously captured in one scanning step; and comparing the first image and the second image to a data image of the sample.
Other advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of the present invention.
The foregoing aspects and many of the accompanying advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
In an embodiment, a spacer 30 is configured in the base 10 to separate an optical path of the first linear optical sensor array 20 from an optical path of the second linear optical sensor array 22. In another embodiment, a plurality of notches (not shown) are configured in the base 10 to house the first linear optical sensor array 20 and the second linear optical sensor array 22 and to separate the optical paths thereof. The optical carriage 260 may further include a light source configured within the base 10. The light source, for example, may be a cold cathode fluorescent lamp (CCFL) or other visible light sources.
Next, the first linear optical sensor array 20 and the second linear optical sensor array 22 may comprise a charge coupled device (CCD) array, e.g. a RGB CCD array or a monochrome CCD array. In an embodiment, the number of adopted linear optical sensor array is not limited to two; three or more linear optical sensor arrays may be adopted.
Referring to
According to the above-mentioned description, a preferred inspection image may be chosen from the first image, the second image, or an image merged from the first image and the second image. In an embodiment, in case of three or more linear optical sensor arrays, the preferred inspection image may be chosen or merged from the individual images. In another embodiment, the first image and the second image are respectively compared to the data image of the sample.
Also referring to
In an embodiment, components on a printed circuit board are used as targets for inspection, for example. Refer to
The optical carriage 200 may be moved and the printed circuit board 50 may be placed on a carrying apparatus for motion in the XY-plane by programmed control; on the other hand, the optical carriage may be mounted and the printed circuit board 50 may be placed on a conveyor (not shown) for movement. The first linear optical sensor array 20 and the second optical sensor array 22 are configured at different heights in the base 10 and may pass through the sample 52 using their scanning lines in a sequential way. The first linear optical sensor array 20 and the second optical sensor 22 receive the reflective light from the surface of the sample 52 and capture a first image and a second image, which are subsequently converted electronic, data and saved in the memory of the inspection apparatus after completion of scanning.
The surfaces of components of the sample 52 in the XY-plane have obvious difference of heights as illustrated in
Referring to
To sum up, the present invention utilizes a plurality of CCD arrays configured at different heights in an optical carriage, so as a plurality of individual images can be simultaneously captured in one scanning step to obtain a preferred inspection image for image comparison; therefore, precise inspection can be effectively achieved. Furthermore, those CCD arrays configured at different heights have enlarged focusing ranges, and the depth of field is thus enhanced.
While the invention is susceptible to various modifications and alternative forms, a specific example thereof has been shown in the drawings and is herein described in detail. It should be understood, however, that the invention is not to be limited to the particular form disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the appended claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 97129577 | Aug 2008 | TW | national |