The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the figures, in which like reference numerals are carried forward.
Refer to
The containing unit 2 includes a first side 23, a second side 24, a location block 25 and a separating wall 26. The first side 23 is opposite to the second side 24. The location block 25 is set in the first inner space 21 between the first side 23 and the second side 24. The separating wall 26 defines the first inner space 21 and the second inner space 22. The location block 25 includes two guiding channels 251. The separating wall 26 includes an opening 261 communicating with the first inner space 21 and the second inner space 22.
The input optical fiber 3 is located in the first side 23 of the containing unit 2 along a first axis a1 and held in the first inner space 21. The input optical fiber 3 extends from the first side 23 to the second side 24 along the first axis a1 and includes a first terminal 31 and a second terminal 32, which are opposite to each other.
The output unit 4 includes a first output optical fiber 41 and a second output optical fiber 42. The first output optical fiber 41 and the second output optical fiber 42 are respectively held in the guiding channels 251 along the first axis a1 and a second axis a2, wherein the first axis a1 is parallel to the second axis a2. The location block 25 is located between the input optical fiber 3 and the second side 23. The guiding channels 251 are respectively defined in the location block 25 along the axis direction of the first axis a1 and the second axis a2. The first output optical fiber 41 has a first terminal 411 and a second terminal 412. The second output optical fiber 42 has a first terminal 421 and a second terminal 422 wherein the first terminal 411 and the first terminal 421 are set in the second side 24, and the second terminal 412 and the second terminal 422 are adjacent to the second terminal 32 of the input optical fiber 3.
The driving assembly 5, located in the second inner space 22 of the containing unit 2, includes an electromagnet relay unit 51 and a cylinder 52.
The electromagnet relay unit 51 includes a switching lever 511, a supporting rod 512 and an electromagnetic coil 513. The switching lever 511 is supported by the supporting rod 512 and is controlled to shift in either a first position or a second position through the electromagnetic coil 513.
The cylinder 52 is connected with the switching lever 511 and has a performing edge 521 attached with the input optical fiber 3. The cylinder 52 includes a cylindrical surface 522 along the periphery. The cylindrical surface 522 has a top edge 523 that defines the performing edge 521 wherein the performing edge 521 is shifted in either the first position or the second position through the opening 261. The material of the cylinder 52 of the present invention is made of an amorphous inorganic material. In this embodiment, this amorphous inorganic material is glass.
Refer to
Refer to
In addition, the stainless steel material and the ceramic material are both polycrystals respectively manufactured through the metallurgy process and the sintering process such that particle intensity of these materials is typically stronger than the amorphous material have not been manufactured through the high temperature process. Consequently, the contact or the friction between the glass optical fiber with lower particle intensity and the materials with higher particle intensity (such as the stainless steel or ceramics) results in the damage of the glass optical fiber.
The cylinder 52 in this embodiment is the amorphous inorganic material (glass) with similar hardness to the optical fiber. Therefore, the friction between the input optical fiber 3 and the cylinder 52 during the performance period is lessened such that the optical leakage is diminished because of the lower insertion loss (ΔIL).
The following table 1 displays the analysis dada of the insertion loss among the stainless steel material, the ceramic material and the four pairs of the optical channel shifting devices.
0.58
0.62
0.74
0.79
0.87
0.99
0.41
0.54
0.69
0.89
1.32
2.66
3.29
2.75
0.50
0.58
0.62
0.73
0.81
0.89
0.39
0.56
0.70
0.84
0.95
1.11
1.71
1.15
In accordance with the table 1, the insertion loss (ΔIL<0.2 dB) for the optical channel shifting device of the embodiment after 107 times shifting durability test are lower than the insertion loss (ΔIL>0.2 dB) for the stainless steel and the ceramic.
As the description above, the friction of the input optical fiber caused by the optical channel shifting is reduced to lessen the insertion loss such that the durability test standard can be conformed.
Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other embodiments are possible. Therefore, their spirit and scope of the appended claims should no be limited to the description of the preferred embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
95117283 | May 2006 | TW | national |